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ABSTRACT

Relation Join has been applied to generate music har-
monic sequences in a given composer or genre style. Com-
pared to other music generation method, Relation Join does
not require expert knowledge or estimation of any proba-
bilities while generating a massive number of sequences.
However, whether the generated compositions are distin-
guishable from the original ones is still a question that has
not been explored. The evaluation of synthetic music se-
quences is considered subjective and hard to quantify. In
this paper, we formed the evaluation problem as a clas-
sification task where the original and synthetic music se-
quences are assigned with two different labels. The evalua-
tion of synthetic music sequences can then be quantified us-
ing the accuracy of classification experiment. In this paper,
besides the traditional state-of-art classifiers, we propose
a Seq2Tree network based deep learning model to clas-
sify synthetic and original music sequences. Our model
extends the Long Short Term Memory network (LSTM) to
take advantage of the characteristics of music data. The
results show that our methods successfully classify 98.75%
of the corpus that contain both original and synthetic Bach
sequences, while the best performance of other machine
learning classifiers is 81.63%.

1. INTRODUCTION

Relation Join, as a very new music generation method, has
many advantages over classical generation methods [1],
because all the previous methods either depend on music
knowledge, or use machine learning techniques that have
to estimate the probability of a music sequence. For ex-
ample, Experiments in Music Intelligence (EMI), a music
generation system proposed by Cope (1992) [2] uses a pat-
tern matcher combined with Augmented Transition Net-
work (ATN) , Hidden Markov Model (HMM) [3] requires
the estimation of the transition matrix and the probability
distribution of the hidden states [4, 5], or Genetic Algo-
rithms (GAs) [6] requires a fitness function as evaluation
that must be trained. Ni et al. [1] displays part of the syn-
thetic Bach sequences generated by Relation Join, all of
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which sound very like Bach original work for general hu-
man listeners. However, despite the success and novelty of
Relation Join, they did not provide any quantitative evalu-
ation for the synthetic music sequences.

In this paper, we form the evaluation problem as a clas-
sification problem. Classification in machine learning is
the problem of identifying the labels of a new observa-
tion based on a training set of observations whose labels
are known. If we assign original and synthetic music se-
quences with different labels, the question of how distin-
guishable are the computer compositions from the human
compositions becomes a classification problem, in which
accuracy of the classification result can be used as the cri-
teria.

Various classification methods have been used in recog-
nizing music with different genres, music from different
countries, and music composed by different composers etc.,
which can be grouped into two groups. The first group
of methods calculates the statistics from music data, like
count of notes, pitches, etc. [7, 8, 9, 10, 11, 12], and
feeds the statistics into some classifiers to predict the la-
bels of the test set. The classical classifiers that have been
used to classify music sequences include: the k-Nearest
Neighbour Classifier (kNN) [13], Support Vector Machine
Classifier (SVM) with kernel [14, 15], Multi-layer Percep-
tron Classifier (MLP) [16, 12], and so on. The other group
uses a sequential model like HMM [17, 18] on certain rep-
resentations of music sequences. As an example, Chai
et al.[18] estimate HMM on Helmut Schaffrath’s Essen
Folksong Collection using four different representations
of melody including: absolute pitch, absolute pitch with
rhythm, interval and contour. They achieve 77% accuracy
when distinguishing between Irish and Austrian music.

By assigning different ground truth labels to human and
computer compositions, the classification accuracy can then
be used as a criteria to evaluate whether the synthetic mu-
sic sequences are distinguishable from the original work.
If the classification accuracy is high, it means the synthetic
work is easily distinguishable. Instead, if the accuracy is
relatively low, it means the synthetic work has higher simi-
larity to the original work. The generation process can then
be adjusted and improved based on the results. Our method
can be combined with the music generation methods to
help produce music sequences that are as pleasurable to
human listeners as music composed by human composers.

To use classification as evaluation method, we need to de-
sign a good classifier. We believe that the music data con-
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tain sequential information that traditional classifiers like
SVM can not catch. In addition, the segments of chords
formed by nearby chords could provide useful information
for the recognition task. Based on our assumption, we in-
troduce a new classifier called Seq2Tree classifier based
on Long Short-Term Memory networks. We compare our
model with existing state-of-art classifiers on two different
features, N-Tuples feature, in which each element in the
feature vector is a segment of /N successive chords, and
the Forte Class Number feature. Our model is introduced
in Section 2. In Section 3, we demonstrate how the two
features are extracted, and the classification experiments
on the features. Section 4 concludes our work and dis-
cusses future work.

2. TREE STRUCTURED LSTM MODEL

2.1 Recurrent Neural Network

The Recurrent Neural Network (RNN) multilayer deep learn-

ing model has been introduced for sequential data [19].
The sequential input is fed into the network, and then trans-
formed into some output. The output will be a label in clas-
sification tasks. The architecture of RNN is as in Figure 1.
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Figure 2. RNN unit.

Each RNN unit is shown as in Figure 2, where z; is
the input, h; is the hidden state, o is a sigmoid activation
function (o(s) = H_%), and z; is the output at time ¢.
The RNNs map input sequences to hidden sequences via
W = Whn, U =Wgep, V =Wy,

ht =0 (UfEt + Wht_l + bh)
and map hidden sequences to output sequences via:
zi=0(Vhy +0,)

where W;;’s are the weight elements that are the trained
parameters, o can be replaced with other element-wise non-
linearity activation functions, such as a hyperbolic tangent,
etc.,t € {1,2,...,T}.

2.2 Long Short-Term Memory Network

Long Short-Term Memory (LSTM) [20] is Recurrent Neu-
ral Network with long-term memory blocks. In RNN, back
propagation flows through many layers. So the information
flowing through neural net passes through many stages.
During the process, gradients quickly vanish, and become
too small to provide a learning signal for very deep layers
[20], which makes the RNN not able to learn long-range
dependencies well. LSTM addresses this problem by intro-
ducing memory blocks to RNN. Each block contains a re-
current memory cell and three multiplicative units: the in-
put, output and forget gates. The memory blocks help pre-
serve the signals and keep them large enough to be back-
propagated through time and layers, thereby making learn-
ing long-term dependencies possible. The architecture of
LSTM is as in Figure 3.

Figure 3. LSTM unit.

The LSTM can handle long-term temporal dynamics. It
updates timestep ¢ given x;, hy_1 and c¢;_ iteratively from
t = 1to T according to [21]:

it = 0 (Wyixe + Whihe—1 + b;) , an input gate

fi =0 (Wysae + Whrhi—1 + by) , forget gate

0t = 0 (Wyowt + Whohi—1 + b,) , output gate

gt = ¢ Waext + Whehi—1 + by) , input modulation gate
¢t = ft © g1 + i+ © g¢, memory cell unit

he = 0: © ¢(ct)

where ® means element-wise multiplication. The input
gate i, controls the input flow to the memory cell. The
block learns to forget previous memory and consider cur-
rent input selectively through f; and g;. o, then determines
how much of the memory cell to be transferred to the hid-
den state.

2.3 Bidirectional LSTM Network

The basic idea of Bidirectional LSTM Network (BLSTM)
[22, 23] is to incorporate future information into predic-
tion. BLSTM processes the input data in both directions
with two separate hidden layers (forward layer and back-
ward layer), then feeds the two layers to the same out-
put layer. The architecture of a bidirectional network is
demonstrated in Figure 4.

2.4 Seq2Tree Classifier

For music data, we believe that the sequential informa-
tion and potential tree structure of the input units are very
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Figure 4. The architecture of a bidirectional network.

important for prediction tasks. For accurate predictions,
we design a new LSTM network that reconstructs the tree
structure from sequential inputs called Seq2Tree model. In
the Seq2Tree model, we not only make use of the sequen-
tial music information, but also take advantage of the tree-
structured dependency paths inherited in sequential inputs.
Different from the original LSTM in which nodes always
take their previous states as parent nodes, we select the
parent node for each state from the previous state and its
ancestors by adding a direction gate. Figure 5 shows a
sample structure generated from our model.
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Figure 5. An sample structure generated by our model. x> is the ancestor
node of ¢4, x5, T, 7 and x4 is the parent node of x5, 6, 7. Root node
of every subtree summarizes the output from its children nodes. Children
nodes’ hidden states are inherited from their parent nodes.

The Seq2Tree updates timestep ¢ iteratively from £ = 1
to T" according to:

df = 0(c(Wraxt + Whrahy + bg)), k € K, direction gate
hparent = H dfhkv keK

dk+0
Z‘t - U(Wxil't + Whihparent + bz)
ft = (erzt + thhparent + bf)
0t = (Wl‘oxt + Whohpa'r'ent + bo)
gt = tanh(Wxgxt + Whghparent + bq)
=1t Og+ fr ©ci
hi = g1 © tanh(c;)
my = J(Wzmzt + Whmht + bm)
ng =my © ¢,
ci :ci—knt —ngt,l eL

l

hl = ol ® tanh(cl),l € L
where 6 represents a binary thresholding function, ® means
element-wise multiplication, /C contains all indexes of the

ancestor nodes of the previous state h;_; and £ contains
the indexes of current node’s ancestors. Note that the sizes

of K and £ do not necessarily match. hpgpent stands for
the parent selected for node h;. For each node h;, we put
node h;_1 and the indexes of all the ancestor nodes of node
h¢—1 in a parent candidate list /C in leaf-to-root order. For
example, if ho is the parent node of hy and hy is the parent
of xg, when it comes to h7, its candidate parent list will
be K = {he, ha, ha}. Then, calculate the decision gate for
each node in the candidate list, until we find a positive gate,
or we reach the root of the tree. If all the decision gates are
negative, the node has no parent node.

For our task, we add a root node to the tree structure gen-
erated by our model. More specifically, we add an extra
node as the parent node for the highest level nodes gener-
ated by the model. For example, we will add a new node
zo as the parent node of x1, x2, X9, 10,12 in Figure 5.
The root node’s state is updated through the root states of
its non-empty subtrees. Then we build a softmax classifier
on top of the root node. The output of the softmax function
is a probability distribution over all possible classes:

hT

etroot

T 9
E ¢ eh'root’wc

9 = argmaz. p(y = c|hroot)

wy

p(y:j|h7“oot) = cecC

where w; is the weight vector for label j, A0 is the hid-
den states of the root node, and ¢ is the predicted label of
the input.

We use cross entropy loss of the predicted label g as our
loss function:

1 N N
J(0) = “icl > " p(i) - 10g po(§lhroot), c € C
y=c

where C is set that contains all possible labels, |C| is the
size of the set, p(¢) represents the probability that the in-
put music sequence actually belongs to the class ¢, and
Do (J|hroot) indicates the predicted probability that the in-
put sequence falls in the class ¢ with the parameter set 6.

3. EXPERIMENTS

In this section, we compare our methods to existing state-
of-art classifiers in machine learning.

3.1 Data

We generate 400 synthetic chord sequences in Bach style
with Relation Join [1], and put them together with 400
original Bach chorales. So we will have a corpus with
800 sequences. In the Relation Join process, the length of
each chord tuple is set to 5, and the number of overlapping
chords in successive tuples is set to 3.

3.2 Features
We use two sets of features in this paper.

3.2.1 N-Tuples

The first feature we used in this paper is called N-Tuples.
There are five steps in the feature extraction process. First,
we extract all the chords from the corpus. We ignore the
octave designation for all the notes, replace each note with
their pitch class, remove the duplicate notes, and sort all



the notes. Then we adjust each chord based on the key
signature of the sequence the chord in. Third, we assign
a unique index to all the chords extracted from the whole
corpus, and replace the chords in each sequence with the
unique index. Fourth, we extract all distinct N-Tuples of
successive chords. Fifth, for each sequence in the corpus,
we count each of the types of N-Tuple, and normalize the
counts to be components of the feature vector. For details
Sse€ http://haralick.org/music/ntuples_xiuyan.pdf

Example 3.1 Suppose we have a corpus that contains two
sequences, sequence 1 is the first 10 chords from Bach
bwv26.6 (Figure 6) and sequence 2 is the first 10 chords
from Bach 66.6 (Figure 7).
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Figure 6. The first 10 chords of Bach bwv26.6.
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Figure 7. The first 10 chords of Bach bwv66.6.

After the first two steps, we will get

q1 = [(la 679)7 (15 578)7 (1’ 6, 9)7 (L 6, 9)7 (17 6, 9)7
(4787 11)v (15479)7 (1a479 ) (1?45 9)7 (1a4a 8, 11)]

from the sequence 1, and get

% = [(3,7,10), (2,5,10), (0,3,7), (2,5,10), (3, 7, 10),
(2,5,10), (3,7,10), (3,7,10), (2,5, 10), (2,5,8, 10)]

from sequence 2. There are 8 different chords in the cor-
pus. If we assign an unique index to each chord as in the
following:
{(0,3,7) : 0,(1,4,8,11) : 1,(1,4,9) : 2,(1,5,8) : 3,
(1,6,9) : 4,(2,5,8,10) : 5,(2,5,10) : 6,
(3,7,10) : 7,(4,8,11) : 8}.

Let N = 3, in the fourth step, we extract all 3-Tuples from
q1 and qo. Finally, the feature vector extracted from q1 and
q2 are as following:

¢1 = [0,0.125,0.125,0.125,0.125,0.125,0.125,0.125,

0,0,0,0,0,0,0,0.125]

¢ = [0.125,0,0,0,0,0,0,0,0.125,0.125,0.125,0.125,
0.125,0.125,0.125, 0]

3.2.2 Forte Class Number

The second feature we use is the Forte Class Number of
the chord. Forte number is a pair of numbers used by Al-
lan Forte to present pitch class set [24]. The first number

represents the number of different pitch classes in the pitch
class set. The second number is the order number of the
pitch class set in Forte’s ordering of all pitch class sets with
the same number of pitches. The Forte class number is the
number of the Forte set class within the same set group.
For example, the Forte class number of chord (C, E, G) is
11. Then we extract the first 30 chords from each sequence
in the corpus.

Example 3.2 Take the first line of bwv26.6 in Figure 8 as
an example. The feature vector we extracted from the se-
quence using forte class number is:

[11,11,11,11,11,11,11,11,11, 26, 11, 20, 27, 10, 2,
11,27,11,16,11]
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Figure 8. The first line of Bach bwv26.6.

3.3 Baseline Classifiers

We use 12 traditional state-of-art classifiers in machine learn-
ing as our baseline classifier, which include: kNN, MLP,
SVM with Linear kernel (Linear SVM) [25], SVM with
Radial Basis Function kernel (RBF SVM) [25], Decision
Tree Classifier (DT) [26], Random Forest Classifier (RF)
[27], AdaBoost Classifier [28, 29], Guassian Naive Bayes
Classifier (NB) [30, 31, 32], Gaussian Process Classifier
(GP) [33], Linear Discriminant Analysis Classifier (LDA)
[34], the Quadratic Discriminant Analysis Classifier (QDA)
[35], and BLSTM Classifier [36].

3.4 Results

We randomly partition the whole corpus into five groups,
use each of them as the testing set while the remaining
four groups are used as the training set. All the classifi-
cation results are the average of the five experiments as
the test sets are rotated. Let N, and N, be the true num-
ber of original and synthetic sequences respectively. For
each experiment, we calculate the number of original se-
quences that are classified as synthetic (/V,s), the number
of synthetic sequences that are classified as original (Ny,),
and the number of sequences that are classified correctly
(N¢). Then accuracy is Accuracy = N./N. False positive
rate (FPR) is defined as FPR = N,,/N,. False negative
rate (FNR) is defined as FNR = N,4/N,. The classifi-
cation accuracy on the corpus with all the classifiers we
mentioned are summarized in Table 1. We find that for the
N-Tuples features, Adaboost achieve the highest accuracy
among the classifiers. We did not use our model on N-
Tuple data, because the feature vectors are not sequential
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. Accurac
Classifier  Rstes@) }I;CN(%)
kNN 66.00 63.75
NB 71.63 62.38
Linear SVM 47.50 58.63
RBF SVM 74.25 49.88
MLP 49.50 59.38
DT 74.13 68.13
RF 52.38 62.13
GP 67.25 63.75
LDA 66.50 59.25
QDA 52.13 64.50
AdaBoost 81.63 67.38
BLSTM — 62.75
Seq2Tree — 98.75

Table 1. Results of all classifiers on the corpus that contain 400 original
Bach chorales and 400 computer compositions with Forte Class Number
feature (FCN) and N-Tuples feature, the numbers in the table are based
on the average of the five experiments.

data. For the Forte Class Number feature, our model out-
perform all the existing state-of-art classifiers with 98.75%
accuracy.

To further identify the mistakes made by the classifiers
on the Forte Class Number feature. We calculate the FPR,
the percentage of the number of synthetic sequences that
are identified as original over the true number of synthetic
sequences, and FNR, the percentage of the number of orig-
inal sequences that are identified as synthetic over the true
number of original sequences. The results are summarized
in Table 2.

Classifier FPR (%) FNR (%)
kNN 36.75 35.75
NB 64.50 10.75
Linear SVM 52.25 30.50
RBF SVM 22.25 78.00
MLP 42.25 39.50
DT 48.50 15.50
RF 38.50 40.25
GP 36.50 36.00
LDA 66.50 59.25
QDA 44.00 27.00
AdaBoost 35.25 30.00
BLSTM 36.25 37.75
Seq2Tree 1.25 1.25

Table 2. The FPR and FNR of all classifiers over Forte Class Number
feature (FCN). the numbers in the table are based on the average of the
five experiments.

We can see from Table 2 that, our classifier has the the
lowest FPR and FNR. For other classifiers, FPR is gen-
erally higher than FNR, which means most classifiers tend
to classify a synthetic sequences as original work, which is
consistent with our impression that the synthetic sequences
are very much like Bach original work for human listeners.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we described a method to distinguish be-
tween human composed music and computer generated mu-
sic. Our classifier is based on the LSTM network. Our
model reconstructs the tree structure from the input se-
quences. It can incorporate the sequential information in
music data into the prediction. Furthermore, because of
the tree structure of our model, it also takes advantage of
the fact that the segments of chords also carry the infor-
mation helpful for the classification task. Our model is the
first one that distinguishes between human compositions
and computer compositions using a tree structured LSTM.
We tested our method on a corpus consisting of 400 origi-
nal Bach chorales and 400 synthetic Bach-style sequences
using the N-tuples features and the FCN features. We com-
pared our method with existing state-of-art classifiers. For
the N-tuples features that carry only segments informa-
tion, the best performance is 81.63% achieved by the Ad-
aboost classifier. For the FCN features that carry the se-
quential information, we achieve 98.25% accuracy, which
means our model can successfully discriminate between
most original and synthetic music sequences. Our model
significantly outperforms the existing state-of-art machine
learning classifiers, which makes it possible to be used to
evaluate any music generation method to help improve the
quality of computer compositions. In addition, it proba-
bly means our model is able to catch the features in mu-
sic sequences which are important in classification tasks.
In other words, our model has potential use in other mu-
sic classification tasks, such as music style recognition,
or composer recognition. For future work, we will fur-
ther explore the features in the music sequences that make
the computer compositions distinguishable from the hu-
man compositions when the synthetic sequences are al-
ready very “Bach” for general human listeners.
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