
Music Generation with Relation Join

Xiuyan Ni, Ligon Liu, and Robert Haralick

The Graduate Center, City University of New York
Computer Science Department
New York, NY, 10016, U.S.A

{xni2,lliu1}@gradcenter.cuny.edu

{rharalick}@gc.cuny.edu

http://gc.cuny.edu/Home

Abstract. Given a data set taken over a population, the question of how can we
construct possible causal explanatory models for the interactions and dependen-
cies in the population is a causal discovery question. Projection and Relation Join
is a way of addressing this question in a non-deterministic context with math-
ematical relations. In this paper, we apply projection and relation join to music
harmonic sequences to generate new sequences in given composers styles. In-
stead of first learning the patterns, and then making replications as early music
generation work did, we introduce a completely new data driven methodology to
generate music.

Keywords: music generation, projection, relation join

1 Introduction

Could a computer compose music sequences that are indistinguishable from the work
of human composers to average human listeners? Di↵erent models have been applied
by researchers trying to answer this question.

Early work in music generation use pattern matching process to identify di↵erent
styles of music. The pattern matching process first designs a pattern matcher to locate
the patterns inherited in input works, stores the patterns in a dictionary, then makes
replications according to the patterns[1]. Cope’s Experiments in Musical Intelligence
incorporates the idea of recombinancy, he breaks music pieces into small parts and
then recombines them under certain music constraints to generate new music in a given
style. The music constraints are learned using augmented transition network (ATN).
ATN is a type of graph theoretic structure widely used in Natural Language Processing
to parse complex natural language and generate new sentences[2, 3]. The pattern match-
ing algorithm used by Cope matches intervals instead of pitch, that is, (C, E,G) can be
matched to (D, F#, A), or any major triads[2]. Manaris et al. (2007)[4] employ genetic
programming to music generation, which uses artificial music critics as fitness func-
tions[5, 6]. Walter and Merwe (2010) use Markov Chains (MCs) and Hidden Markov
Models (HMM)[7] to generate music. They use a certain style of music as training
data, then apply the LearnPSA algorithm[8] to produce a prediction su�x tree to find
all strings with a statistical significance. The relation between a hidden and an observed

2 Xiuyan Ni, Ligon Liu and Robert Haralick

sequence is then modeled by an HMM. After the whole learning process, they sample
from the distributions learned to generate new music sequences in the same style as
the training data[7]. An HMM is also used to classify folk music from di↵erent coun-
tries[9]. These sampling methods, however, have drawbacks that they may be stuck in
local optimal.

Some other music generation methods do not use music pieces as input. They gen-
erate music based on certain rules either from music theory, or principles from artificial
intelligence algorithms. Ebcioglu (1986)[10] codes music rules in certain styles in for-
mal grammar to generate a specific style of music, which means musical knowledge
related to specific style is needed to make new music. Al-Rifaie (2015)[11] applies
Stochastic Di↵usion Search (SDS), a swarm intelligence algorithm, to new music gen-
eration. This method generates music based on input plain text and the interaction be-
tween the algorithm and its agents. It maps each letter or pair of letters in a sentence
to the MIDI number of a music note, and then calculates the pitch, the note duration
and the volume of music notes based on parameters of SDS. The output music does not
have any specific style.

In general, the previous music generation methods either depend on music knowl-
edge, or use machine learning techniques that have to estimate the probability of a music
sequence. In the second case, they have to learn the probability of one element given
previous elements in a sequence. In this paper, we use a completely di↵erent methodol-
ogy to generate music specific to a certain composer. We break each piece in our music
corpus into overlapping small segments and use relation join to generate synthetic mu-
sical sequences. The relation join replaces the probabilities in methods like MCs, and
HMMs.

Take the MCs method as an example to compare a probability based method to our
method. A first order MC assumes that P(xt |xt�1, . . . , x1) = P(xt |xx�1), where
< x1, x2, . . . xt > is a sequence of states (a state can be a chord or a note). It esti-
mates those probabilities given a music corpus and then generates music sequences
based on the probabilities. While in our method, we first break the music sequences
into small segments according to specific length and number of overlapping notes
(chords). Then we reconstruct music sequences using the set of segments. We call each
sequence or small part a tuple (See definition 6). For example, we have a tuple se-
quence < x1, x2, . . . xt >, and we set tuple length of each segment to 4, and overlapping
number to 2. We first break the tuple sequence into a set of tuples {< x1, x2, x3, x4 >
, < x3, x4, x5, x6 >, < x5, x6, x7, x8 >, . . .}. If we repeat the first step for all sequences,
we will get a dataset that contain all possible 4-tuples with overlap of 2 (4 consecutive
chords) for a given music corpus which contain sequences of chords. Then we gener-
ate a chord sequence by randomly selecting one 4-tuple from the set that contains all
4-tuples from the music corpus, then look at the last two chords of the selected tuple,
and select another 4-tuple from the subset that contains all 4-tuples starting with the
last two chords from previous 4-tuple until we reach a certain length. If the process gets
stuck because there is no possible consistent selection, the process backtracks in a tree
search manner.

Thus, in our method, there is no need to estimate probabilities. For any 4-tuple (not
the first or the last) in a generated sequence, the 4-tuple in the generated sequence are

Music Generation with Relation Join 3

consistent with the 4-tuple that precedes it and that follows it in the generated music
sequence. Our music generation method is like a solution to a constraint satisfaction
problem. It can therefore be posed in a rule-based mode as well.

Our method can be used without musical knowledge of di↵erent styles, and we do
not need to learn patterns or parameters from input music pieces either. We use the idea
of recombination (first breaking the input music into small parts, and then recombine
them to generate new music sequences), but we don’t have to estimate the probabilities.
The idea of this method is that the progressions inherent in music sequences carry the
patterns of music of di↵erent composers themselves.

We will describe this method in detail in Section 2. Section 3 will demonstrate
how this method is applied to music generation. Several experiments are introduced in
Section 4. Section 5 concludes current work and looks into future work.

2 Definition

In order to introduce the procedure of applying relation join to music sequences, we
formally define the concepts used in this section[12].

Definition 1. Let X1, ..., XN be the N variables associated with a relation. Let Ln be the
set of possible values variable Xn can take. Let R be a data set or knowledge constraint
relation. Then

R ✓
N
⌘

i=1

Li (1)

We will be working with many relations associated with di↵erent and overlapping
variable sets and therefore over di↵erent domains. For this purpose we will carry an
index set along with each relation. The index set indexes the variables associated with
the relation. An index set is a totally ordered set.

Definition 2. I = {i1, ..., iK} is an index set if and only if i1 < i2 < · · · < iK.

Next we need to define Cartesian product sets with respect to an index set.

Definition 3. If I = {i1, ..., iK} is an index set, we define Cartesian product:

⌘

i2I
Li =

K
⌘

k=1

Lik = Li1 ⇥ Li2 ⇥ ... ⇥ LiK (2)

The definition tells us that the order in which we take the Cartesian product
⇣

i2I Li

is precisely the order of the indexes in I.
For a natural number N, we use the convention that [N] = {1, ...,N} and |A| desig-

nates the number of elements in the set A.
Now we can define the indexed relation as a pair consisting of an index set of a

relation and a relation.

4 Xiuyan Ni, Ligon Liu and Robert Haralick

Definition 4. If I is an index set with |I| = N and R ✓ ⇣i2I Li, then we say (I,R) is
an indexed N � ary relation on the range sets indexed by I. We also say that (I,R) has
dimension N. We take the range sets to be fixed. So to save writing, anytime we have an
indexed relation (I,R) , we assume that that R ✓ ⇣i2I Li , the sets Li, i 2 I, being the
fixed range sets.

We will be needing to define one relation in terms of another. For this purpose,
we will need a function that relates the indexes associated with one relation to that of
another. We call this function the index function.

Definition 5. Let J and M be index sets with

– J =
�

j1, . . . , j|J|

– M =
�

m1, . . . ,m|M|

– J ⇢ M

The index function fJM : [|J|] ! [|M|] is defined by fJM (p) = q where mq = jp.
The index function fJM operates on the place p of an index from the smaller index set
and specifies where – place q – in the larger index set that the index jp can be found;
thus mq = jp.

Another important concepts we need before we define project and relation join is
tuple. Also what is a tuple’s length.

Definition 6. A tuple is a finite ordered list of elements. An n-tuple is a sequence (or
ordered list) of n elements, where n is a non-negative integer. We call n the length of the
n-tuple.

Next we need the concept of projection since it is used in the definition of relation
join. If (J,R) is an indexed relation and I ✓ J, the projection of (J,R) onto the ranges
sets indexed by I is the indexed set (I, S) where a tuple

�

x1, ..., x|I|
�

is in S whenever for
some |J|-tuple

�

a1, ..., a|J|
�

of R, xi is the value of that component of
�

a1, ..., a|J|
�

in place
fIJ (i).

Definition 7. Let I and J be index sets with I ✓ J. The projection operator projecting
a relation on the range sets indexed by J onto the range sets indexed by I is defined by
⇡I (J,R) = (I, S) where

S =

8

>

>

<

>

>

:

(x1, ..., xI) 2
⌘

i2I
Li | 9

�

a1, ..., a|J|
� 2 R, a fIJ (i) = xi, i 2 I

9

>

>

=

>

>

;

(3)

That is,

⇡I
�

J,
�

a1, ..., a|J|
��

=
⇣

I,
⇣

a fIJ (1), ..., a fIJ (|I|)
⌘⌘

(4)

If I \ Jc , ;, then ⇡I (J,R) = ;
The operation of projection is overloaded, and if R ✓ ⇣N

n=1 Ln and I ✓ {1, . . . ,N},
we define

⇡I (R) = ⇡I ({1, . . . ,N} ,R) (5)

Music Generation with Relation Join 5

A relation join can be thought of as the equijoin or natural join operation in the data
base world.

Definition 8. Let (I,R) and (J, S) be indexed relations, let K = I [J and Lk be the
range set for variable k 2 K. Then the relation join of (I,R) and (J, S) is denoted by
(I,R) ⌦ (J, S), and is defined by

(I,R) ⌦ (J, S) =

8

>

>

<

>

>

:

t 2
⌘

k2K
Lk | ⇡I (K, t) 2 (I,R) and ⇡J (K, t) 2 (J,R)

9

>

>

=

>

>

;

(6)

Example 1. Following is an example for relation join. If we have two indexed relations,
(I,R) and (J, S) as in Table 1, the relation join for the two relations will be as in Table
2.

Table 1. Values for (I,R) and (J, S)

(I,R) (J, S)
I 1,4,7,9 J 2,4,6,7
1 (a, b, e, d) 1 (e, e, a, d)
2 (b, d, e, a) 2 (d, c, b, a)
3 (e, c, a, b) 3 (a, d, b, e)
4 (c, e, d, a) 4 (b, b, c, e)

Table 2. Values for (I,R) and (J, S)

(K,T) = (I,R) ⌦ (J, S)
K 1,2,4,6,7,9

(1, 4) (a, b, b, c, e, d)
(2, 3) (b, a, d, b, e, a)
(3, 2) (e, d, c, b, a, b)
(4, 1) (c, e, e, a, d, a)

3 Music Generation through Projection and Relation Join

Section 2 introduced the definition of project and relation join which are the core tech-
niques we will use in the music generation. In this section, we will introduce how the
techniques can be applied to music sequences (chord sequences). Before that, we need
to introduce the mathematical definition we use for music terms.

Definition 9. A note is a small bit of sound with a dominant fundamental to introduce
the frequency and harmonics sound. For the sake of simplicity, this domain includes all
the notes on a piano keyboard,

6 Xiuyan Ni, Ligon Liu and Robert Haralick

we define a set of notes N as:

N = {A0, B0,C1,C#1,D1, . . . , B7,C8} (7)

In music, a chord is a set of notes that is heard sounding simultaneously.

Definition 10. A chord is a set of notes, that is, for any chord c, c ✓ N.

Now we can define a music sequence such as an harmonic sequence.

Definition 11. Let C be a collection of all chords, the harmonic sequence of a musical
piece of length L is then a tuple h 2 CL.

A music corpus can be represented as a set H of Z Harmonic Sequences. H =
n

hz 2 CLz
oZ

z=1
, where Lz is the length of the tuple hz.

An example of an harmonic sequence with 8 chords is as following:

Example 2. {’B4’, ’E4’, ’D4’, ’G3’}, {’A4’, ’E4’, ’C#4’, ’E3’, ’A3’}, {’G4’, ’E4’, ’C#4’,
’E3’, ’A3’}, {’A5’, ’F#4’, ’E4’, ’C#4’, ’A3’, ’A2’}, {’G5’, ’E4’, ’C#4’, ’A3’, ’A2’},
{’F#5’, ’F#4’, ’D4’, ’A3’, ’D3’}, {’E5’, ’F#4’, ’D4’, ’A3’, ’D3’}, {’D5’, ’F#4’, ’D4’,
’A3’, ’D3’, ’F#3’}

We know that there exist certain rules in chords progressions to make a harmonic
sequences sound consistent. To take advantages of those rules, we need to design index
sets for the sequences to project on.

Definition 12. A collectionI (m, n) of K length m sets with uniform overlap of n (n < m)
is represented as:

I (m, n) = {Ik | Ik = {(m � n) · k + 1, (m � n) · k + 2, . . . , (m � n) · k + m}}K�1
k=0 (8)

I (m, n) is a collection of tuple sets.
For example, if m = 4 and n = 2, the tuple sets are:

Example 3.
I0 = {1, 2, 3, 4}

I1 = {3, 4, 5, 6}

I2 = {5, 6, 7, 8}
...

IK�1 = 2 · (K � 1) + 1, 2 · (K � 1) + 2, 2 · (K � 1) + 3, 2 · (K � 1) + 4

I (4, 2) = {I0, I1, . . . , IK�1} .
We can now collect data sets from music sequences based on the tuple sets.

Music Generation with Relation Join 7

Theorem 1. Let I = I (m, n) be a collection of K length m sets with uniform overlap
of n, let h be a harmonic sequence, the set Rh of all m-tuples with overlap n from h is
defined by

([(m � n) · (K � 1) + m],Rh) = [I2I⇡I (h) (9)

If H is set of harmonic sequences, then

([(m � n) · (K � 1) + m],R) = [h2H [I2I ⇡I (h) (10)

As an example,

Example 4. If we have two pieces. The first piece is: <{’B4’, ’E4’, ’D4’, ’G3’}, {’A4’,
’E4’, ’C#4’, ’E3’, ’A3’}, {’G4’, ’E4’, ’C#4’, ’E3’, ’A3’}, {’A5’, ’F#4’, ’E4’, ’C#4’,
’A3’, ’A2’}, {’G5’, ’E4’, ’C#4’, ’A3’, ’A2’}, {’F#5’, ’F#4’, ’D4’, ’A3’, ’D3’}, {’E5’,
’F#4’, ’D4’, ’A3’, ’D3’}, {’D5’, ’F#4’, ’D4’, ’A3’, ’D3’, ’F#3’} >, as in the sheet shown
in Fig.1. The second piece is: <{’D5’, ’E4’, ’D4’, ’B3’, ’G3’, ’G2’}, {’C#5’, ’E4’, ’D4’,

Fig. 1. The First Example of 8-Tuple

’G3’}, {’B4’, ’E4’, ’D4’, ’G3’}, {’A4’, ’E4’, ’C#4’, ’E3’, ’A3’}, {’G4’, ’E4’, ’C#4’, ’E3’,
’A3’}, {’A5’, ’F#4’, ’E4’, ’C#4’, ’A3’, ’A2’}, {’G5’, ’E4’, ’C#4’, ’A3’, ’A2’}, {’F#5’,
’F#4’, ’D4’, ’A3’, ’D3’} >, as in the sheet shown in Fig.2.

Fig. 2. The Second Example of 8-Tuple

If m = 4 and n = 2, five 4-tuple will be generated. R = { <{’B4’,’E4’, ’D4’, ’G3’},
{’A4’, ’E4’, ’C#4’, ’E3’, ’A3’}, {’G4’, ’E4’,’C#4’, ’E3’, ’A3’}, {’A5’, ’F#4’, ’E4’,
’C#4’, ’A3’, ’A2’}>, <{’G4’, ’E4’, ’C#4’, ’E3’, ’A3’}, {’A5’, ’F#4’, ’E4’, ’C#4’,’A3’,
’A2’}, {’G5’, ’E4’, ’C#4’, ’A3’, ’A2’}, {’F#5’, ’F#4’,’D4’, ’A3’, ’D3’}>, <{’G5’, ’E4’,
’C#4’, ’A3’, ’A2’}, {’F#5’, ’F#4’, ’D4’, ’A3’, ’D3’}, {’E5’, ’F#4’, ’D4’, ’A3’, ’D3’},
{’D5’,’F#4’, ’D4’, ’A3’, ’D3’, ’F#3’}>, <{’D5’, ’E4’, ’D4’, ’B3’, ’G3’,’G2’}, {’C#5’,
’E4’, ’D4’, ’G3’}, {’B4’, ’E4’, ’D4’, ’G3’},{’A4’, ’E4’, ’C#4’, ’E3’, ’A3’}>, <{’G4’,

8 Xiuyan Ni, Ligon Liu and Robert Haralick

’E4’, ’C#4’, ’E3’, ’A3’}, {’A5’, ’F#4’, ’E4’, ’C#4’, ’A3’, ’A2’}, {’G5’, ’E4’, ’C#4’,
’A3’, ’A2’}, {’F#5’, ’F#4’, ’D4’, ’A3’, ’D3’}>}

Now we can define the relation join for harmonic sequences.

Definition 13. If R is a set of m-tuples produced from projections with index setI = I (m, n),
and if I 2 I is an index set, (I,R) becomes an indexed relation. Let J = [I2II, we then
can get new harmonic sequences by computing

(J, S) = ⌦I2I(I,R) (11)

The above procedure can be applied to harmonic sequences with and without corre-
sponding time duration. But there is no intentional control of key of harmonic sequences
in this procedure.

Definition 14. Let K be the set of all possible keys in music, then

K = {C,Db; D; Eb; E; F; Gb; G; Ab; A; Bb, B} (12)

Enharmonic keys are counted as one key, that is, C# = Db; D# = Eb; F# =
Gb; G# = Ab; A# = Bb; Cb = B

When we say a piece is in a certain ‘key’, it means the piece is formed around the
notes in a certain scale which, in music, is a set of notes ordered by certain frequency
or pitch. For example, the C Major Scale contains C, D, E, F, G, A, B, and C. A piece
based on the key of C will (generally) use C, D, E, F, G, A, B, and C.

Now we could do key constraint relation join.

Definition 15. Let
Rb

k = {(c1, c2, . . . , cm) | c1 2 Ck} (13)

Re
k = {(c1, c2, . . . , cm) | cm 2 Ck} (14)

where Ck is a set of chords who are in the key of k, Rb
k ✓ R contains all m-tuples

of chords in which the first chord is in the key of k, 0b0 means begin. Similarly, Re
k ✓ R

contains all m-tuples of chords in which the last chord is in the key of k, 0e0 means end.
Then compute

(J, S) =
⇣

I0,Rb
k

⌘

⌦K�2
i=1 (Ii,R) ⌦

⇣

IK�1,Re
k

⌘

(15)

Which is relation join constrained by using chords in the key of k that begin and end the
piece.

We could also do scale constraint relation join.

Definition 16. A scale, in music, is a set of notes ordered by certain frequency or pitch.
For example, the C Major Scale contains C, D, E, F, G, A, B, and C.

Let RS ✓ R be a set of tuples of chords in which all chords are in scale S. Then we
can get new harmonic sequences in which all chords are in scale S by computing

(J, S) = ⌦I2I(I,RS) (16)

Music Generation with Relation Join 9

4 Experiments

In this section, we apply the techniques introduced in Section 2 and 3 to a music corpus
from Music211.

4.1 Experiment 1: Harmonic Sequence

There are five steps in this experiment.
Firstly, extract chords. We extract chords from 202 music sequences of Bach from

the database of Music21. Every sample is a list including several tuples. Every tuple
represents a chord, which contains all the notes in the chord. As an example,

< {0F40,0C40,0 A30,0 F30}, {0G40,0C50,0C40,0G30,0 E30}, {0C40,0C50,0G30,0 E30}, ... >

is a harmonic sequence sample.
Secondly, transform chords into integer indexes. We make a dictionary(mapping)

for all the chords, the key of the dictionary is each chord itself, the value is the integer
index from index set {0, 1, 2, ...D � 1}, where D is the number of distinct chords. Then,
transform the chords in each sample into the integer indexes according to the dictionary.

Thirdly, get all tuples of chord from music piece samples. In this experiment, we set
I = I (4, 2), that is, m = 4, n = 2, K = 142, then compute

([(m � n) · (K � 1) + m],R) = [h2H [I2I ⇡I (h) (17)

There are 8731 4-tuples extracted from the music sequences in this experiment.
Fourthly, do relation join on the projected index relations, that is, compute

(J, S) = ⌦I2I(I,R) (18)

Fifthly, create mp3 files from the new pieces generated in the fifth step. There are
two sub-steps in this step: first, swap the keys and values of dictionary dic1 to get a new
dictionary dic2, that is, dic2 is the inverse mapping of dic1; second, transform the new
chords sequences represented by index into chords lists according to dic2, and generate
mp3 files from the new chords lists.

The relation join procedure, if done completely, generates over 24.12 million har-
monic sequences in this experiment. We pick samples using a tree search method. We
randomly pick one tuple from R, and then pick the next tuple that can join onto it.
If there are no tuples can join onto it, then the procedure backtracks in a tree search
manner. In this way, we can get certain number of synthetically generated sequences.
Another way to pick the sample is to randomly select from the results of a full relation
join. This can be very time consuming, because we need to get all the results before
sampling. After we have some samples, we can make them into mp3 files that can be
listened to.

1 Music 21 is a toolkit for computer-aided musicology. See http://web.mit.edu/music21/.
2 K is set to 14 to ensure the length of each output sample is 32, which is a reasonable length of

a harmonic sequence sample.

10 Xiuyan Ni, Ligon Liu and Robert Haralick

4.2 Experiment 2: Harmonic Sequence with Rhythm

In this experiment, instead of only extracting information of the chords, we include the
information of rhythm for each chord. Thus, each chord comes with its time duration.
There are 8773 4-tuples extracted in the third step in this experiment.

In the first step, we extract a harmonic sequence sample as following, the number
at the end of each chord is the time duration in quarter length, 1.0 represents a quarter,
0.5 represents a eighth, and so on:

< {0F40,0C40,0 A30,0 F30, 0.5}, {0G40,0C50,0C40,0G30,0 E30, 0.5}, {0C40,0C50,0G30,0 E30, 1.0}, ... >

The other four steps are the same as in experiment 1. Relation join generates above
1.67 million sequences in this experiment.

4.3 Experiment 3: Harmonic Sequence in Specific Key and Scale

In the above experiments, there is no intentional control of the key of harmonic se-
quences and the scale the chords in. We want to see if the harmonic sequences sound
better when we specify the key and scale. So we do two constraint relation join exper-
iments based on each of the above two experiments, which will generate four combi-
nations of experiments. The number of harmonic sequences each experiment generated
are summarized in table 3.

Table 3. The number of sequences generated with key and scale constraint

type with key constraint with scale constraint
chord 65648 577602

chord with rhythm 4958 867977

Since relation join generates new sequences using existing harmonic sequences, it
relies on the transitions of chords of existing sequences. In addition, machine generated
sequences will have the same length, while the human generated sequences have more
sequential features of longer length.

4.4 Experiment 4: Redo the Experiments with m = 5, n = 3

We also do another set of experiments with m = 5, n = 3. We extract 8797 and 8813
5-tuples from the 202 Music21 sequences respectively for tuples with only chord and
tuples including both chord and rhythm. The results are summarized in Table 4.

Some samples from these experiments are also posted to the website: http://
haralick.org/music/music.html.

3 Except this experiment, the time duration of all chords with rhythms are restricted to be half
chord

Music Generation with Relation Join 11

Table 4. The number of sequences generated with key and scale constraint

type no constraints with key constraint with scale constraint
chord 63262 266 365

chord with rhythm 571 119 3 1

5 Conclusion and Future Work

Previous music generation methods try to find music sequences set:

{x1, x2, . . . , xN |P (x1, x2, . . . , xN) > 0} (19)

they use machine learning techniques to estimate:

P (x1, x2, . . . , xN) =
K

Y

k=1

fk (xi : i 2 Ak) (20)

for all x1, . . . xN 2
⇣N

i=1 Li, where Li are the space of music elements (such as
chords), N is the length of each sequence, Ak is a set of index tuples.

Only those music sequences with P (x1, x2, . . . , xN) > 0 will be generated. So they
have to estimate fk (xi : i 2 Ak) and make sure that for 8k, fk (xi : i 2 Ak) > 0.

In this paper, we use a completely di↵erent methodology to generate music spe-
cific to certain composers called projection and relation join. Instead of estimating the
probabilities, we calculate the relation join of (Ak,Rk) for all k,

in which

(Ak,Rk) = (Ak, {(xi, i 2 Ak) | fk (xi, i 2 Ak) > 0}) (21)

Thus, in our method, fk (xi : i 2 Ak) > 0 is ensured for any k.
This method requires neither expert level domain knowledge nor learning patterns

and parameters from input music pieces. The method is based on the idea of recom-
bination, but without estimating any probabilities. The idea of this method is that the
progressions inherent in music sequences themselves carry on the patterns of music of
di↵erent composers.

References

1. Papadopoulos,G.,Wiggins,G.: AI Methods for Algorithmic Composition: A survey, a Critical
View and Future Prospects. In: AISB Symposium on Musical Creativity, Edinburgh, UK, 110-
117 (1999)

2. Cope, D.: Computer Modeling of Musical Intelligence in EMI. Computer Music Journal, 69-
83 (1992)

3. Winograd, T.: Language As a Cognitive Process: Volume 1: Syntax. (1983)
4. Manaris, B., Roos, P., Machado, P., Krehbiel, D., Pellicoro, L. and Romero, J.: A Corpus-

based Hybrid Approach to Music Analysis and Composition. In Proceedings of the National
Conference on Artificial Intelligence (Vol. 22, No. 1, p. 839). Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999 (2007)

12 Xiuyan Ni, Ligon Liu and Robert Haralick

5. Romero, J., Machado, P., Santos, A., Cardoso, A.: On the Development of Critics in Evolu-
tionary Computation Artists. In: Applications of Evolutionary Computing, 559-569, Springer
(2003)

6. Machado, P., Romero, J., Manaris, B.: Experiments in Computational Aesthetics. In: The Art
of Artificial Evolution, 381-415, Springer (2008)

7. Schulze, W., Van der Merwe, B.: Music Generation with Markov Models. IEEE MultiMedia
(3) 78-85 (2010)

8. Ron,D.,Singer,Y.,Tishby,N.: The Power of Amnesia: Learning Probabilistic Automata with
Variable Memory Length. Machine learning 25(2-3), 117-149 (1996)

9. Chai,W.,Vercoe,B.: Folk Music Classification Using Hidden Markov Models.In:Proceedings
of International Conference on Artificial Intelligence. Volume 6., Citeseer (2001)

10. Ebcioglu, K.: An Expert System for Harmonization of Chorales in the Style of JS Bach.
(1986)

11. Al-Rifaie, A.M., Al-Rifaie, M.M.: Generative Music with Stochastic Di↵usion Search. In:
Evolutionary and Biologically Inspired Music, Sound, Art and Design, 1-14, Springer (2015)

12. Haralick, R.M., Liu, L., Misshula, E.: Relation Decomposition: the Theory. In: Machine
Learning and Data Mining in Pattern Recognition, 311-324, Springer (2013)

