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The Wigner distribution has been extensively used for speech
processing. However, its use for image processing is new. Past
attempts at using the Wigner distribution for motion detection
have led to complex and often impractical algorithms. This paper
takes a new look at the use of the Wigner distribution, develops
necessary theory for its use, presents a new technique for reducing
the undesirable cross-term effects, and shows practical applica-
tions. Our results are based on 125,000 simulations in a 64 X 64
size frame. The results show that even with a signal-to-noise ratio
(SNR) of 5 dB, one can detect rectangular objects of at least 6
pixels in length and width, to within 0.5 pixel location accuracy.
The misdetection rate is near zero and the average false detection
rate is one false object per frame in a 5-dB SNR environment. This
false detection rate is reduced to zero by using the pseudopeak
elimination technique developed here. The method is then applied
to an image sequence obtained from a real dynamic scene of a 747
airplane taking off. Using the new method, the 747 take-off speed
was was predicted to be 142 knots, which is well within the typical
range of 140 to 150 knots. Another sequence consisting of cars in
motion also gives good results. The results presented here clearly
show the successful application of the method to real life situa-
tions. © 1993 Academic Press, Inc.

1. INTRODUCTION

Motion estimation has several applications in different
disciplines. In order to solve the motion estimation prob-
lem, a number of methods have been proposed. Most of
these methods are inadequate for handling multiple ob-
jects and/or noise.

In this paper we develop a new method using the
Wigner distribution to estimate motion parameters. Con-
sider, for example, the image shown in Fig. !. The prob-
lem at hand is to identify where the objects are located.
This task becomes relatively simple if the Wigner distri-
bution based method, described in this paper, is used.
After the Wigner distribution is computed, the original
image is transformed into the image shown in Fig. 2.

From the transformed image one can easily identify ob-
ject locations by identifying the peaks.

The results presented here clearly show that the
method can be successfuily applied to real life situations.
In this paper we present a performance characterization
of the new algorithm. This performance characterization
is based on more than 125,000 simulated images. The
simulated images are 64 X 64 in size and have three ob-
jects in motion. Then we present performance results of
real dynamic scenes. These scenes constitute an airplane
taking off and cars on a highway.

Outline of the Paper

The problem statement is given as a formal mathemati-
cal statement in Section 2. In Section 3, we discuss some
of the methodologies prevalent in this field and more di-
rectly related to the problem stated here. We begin with
the Fourier transform approach and its shortcomings.
Then we discuss one of the most widely used methods,
namely, optic flow.

In Section 4, we discuss the Wigner distribution. We
begin with a definition, followed by its properties. The
Wigner distribution is then modified so that it can be used
for image processing. One of the main complications
about using the Wigner distribution is the cross terms
resulting from two or more nearby signals. This in our
application causes pseudopeaks. Section 5 is devoted to
the discussion of these pseudopeaks and how to over-
come their effects.

In Section 6, experimental protocol is discussed. The
algorithm for simulating images, type of noise model
nsed, and an algorithm for generating an image sequence
are outlined in this section. Then the details of how real
dynamic scenes were obtained is discussed.

When any new algorithm is evaluated, it is essential to
generate performance characterization corves. Such
curves are given in Sections 7 and 8. In Section 7 we also
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FIG. 1. Simulated noisy image with SNR = -1 dB.

discuss the algorithm for motion estimation. Results ob-
tained from real dynamic scenes are also analyzed in Sec-
tion 8. Finally, we conclude this work in Section 9.

2. ASSUMPTIONS AND PROBLEM STATEMENT

The applicability of a method for solving a class of
motion estimation problems depends on certain assump-
tions regarding the images and the world itself. In this
section we present such assumptions in detail and give a
formalized problem statement.

2.1. Assumptions

Our end goal is to develop a method that can estimate
motion parameters from a sequence of images without
using any a priori knowledge of the object or the world.
We do not use point correspondence, CAD models, or
ohject features. Since we do not consider range data or
stereoscopic images, we limit the discussions to the 2D
world. The objects are assumed rigid and are free to
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FIG. 2. Pseudo-Wigner distribution.
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transiate and/or rotate in a 2D plane. We assume that the
images from the 3D world have been projected onto the
2D plane by perspective projection. Motion between suc-
cessive frames is assumed to be relatively small for per-
spective projections. This restriction is removed as one
takes orthographic projections.

The images are assumed to be grey scale images with
gray-scale values greater than (0. The gray-scale values
are assumed to be greater than ! throughout the image.
The experimental results presented here use gray-scale
ranging from 1 to 255. However, any positive range is
acceptable. In the Wigner distribution method one takes
the sum of symmetric correlations. If a gray value of 0 is
encountered then the product would also result in a zero
value, Thus, no clue can be obtained about the value of
other nonzero pixel. This reason becomes more apparent
in Section 4, where it is presented in detail.

During computation, if the image coordinates go be-
yond the frame size, it is assumed that the gray-scale
values are (). In other words, the gray-scale values do not
repeat outside the frame boundary.

It is equally important to give consideration to image
contrast. Thus, we assume that the image contrast is
good. The adjective “‘good,”” however, needs to be quan-
titatively stated. When one thinks about detecting fea-
tures or objects from a given scene, then two questions
need to be answered. The first one is how large is the
object that you want to detect and the other is how good
is the image contrast. Answers to these questions are
interdependent. If the object of interest is very small,
then the required contrast has to be high. On the other
hand, if we are interested in a large object detection, then
a relatively poor contrast might suffice. A relationship
between the object size and image contrast is derived for
a specific case in Section 4. It is further assumed that the
objects of interest are brighter than the background. In
cases where this condition cannot be met, the images can
be inverted in gray scale. Such an example is given in
Section 9.

In a multiple object scene, it is assumed that the ob-
jects are separated from each other by at [east a 2-pixel-
wide boundary. In other words, we assume that the ob-
jects are not occluded, In a given dynamic scene, one
may have some objects only translating, while others
may only be rotating, and still more objects may be un-
dergoing rotation and translation simultaneously. It is as-
sumed that the object rotation is around the axis passing
through the origin of the image and that the objects do not
rotate around the centroid. These rotations and transla-
tions can be small or large.

The method presented here is based on three frames.
Thus, it is assumed that the rotational and translational
velocities of the objects remain constant between the first
pair and last pair of frames.
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2.2. Problem Statement

The problem can be formalized in a mathematical state-
ment as follows. Given a sequence of 2D perspective
projection images, I;, ., . . ., I,, with m rotating and
translating rigid objects, each separated at least by a 2-
pixel boundary, to find the translation vector ¢, and the
rotation vector R,, for all m’s where 6, is the counter-
clockwise rotation angle related to the rotation matrix by

cos f,, -sin 8,
Ry =
cos 4,

sin &,
and the translation vector ¢, is given by

Xom
by = .
Ym

Let p,; be any point on an object O,,. The point p,; is

given by
Xmi
prm' =
Yumi

Further, let p,; be a point on the object O, before the
motion, and let p,,; be a corresponding point on the object
after the motion. These two points appear in two images,
namely, [; and . The relationship between the points is
given by

M

@)

3

Pmic = Rm * Py + by - (4)

3. LITERATURE REVIEW

A number of methods have been proposed for gstimat-
ing 2D motion when CAD models of the objects are not
available. Some of these may be classified as matching,
the method of differentials, and the Fourier method
(Huang and Tsai [2]).

The method of differentials is a simple method to deter-
mine motion. This method, although simple to use, does
not always work. The main reason for its failure is the
presence of noise in the images and/or any variations in
the gray-scale intensities from one image to the other.

The Fourier method involves taking the Fourier trans-
form of two images. The phases of the two images are
subtracted, and this result is obtained for two separate
frequencies. This leads to a set of two algebraic equations
with two unknowns.

Haralick and Shapire [7] gave a good review of the
current work in motion estimation. They also gave an
extensive bibliography of the work done.
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In this paper the main focus is on estimating motion
without point correspondence. There are two methods
that are most commonly used for solving this type of
problem, namely, the Fourier method and the optical
flow method.

3.1. Fourier Transform Approach

The Fourier transform method has been successfully
used by Jain [11] for object classification. Rajala et al.
[14] used the Fourier transforms for tracking moving ob-
jects in noisy environments by averaging the power spec-
tra over the frequencies. Lin ef al. [12] made use of the
Fourier transform approach for determining motion from
a set of points on an object of interest. They made use of
the range data from two time instances to determine 3D
motion parameters, The method assumed noise-free data
and no missing points from one set to the other set. This
method is more suitable where range data is available or
points on an object from a 2D scene are available.

The Fourier approach, for motion estimation, consists
of 1aking the Fourier transform of the two images and
utilizing the phase difference relationship to compute
translation. Similarly, there is a simple relationship be-
tween space-domain rotation and frequency-domain rota-
tion. Although this approach is simple, it has certain limi-
tations.

Shortcomings of the Fourier Transform Approach

The Fourier transform approach works well for esti-
mating motion parameters from images with a single ob-
ject. If the image has multiple objects, this method can-
not distinguish the motion of one object from that of the
other. Thus, it cannot estimate the motion of each object
individually. In addition to this problem, the Fourier
method does not give correct results for images with a
nonmuniform background (Huang and Tsai [9]).

With the Fourier approach, once space-domain infor-
mation is converted into frequency domain, the new
function has only frequency variables. The information
about space-domain variables is lost in the frequency do-
main. This is a major drawback.

The Wigner distribution based method, discussed in
Section 4, overcomes these problems of the Fourier ap-
proach.

3.2. Optic Flow Method

A vast amount of literature is available on optic flow,
Recently, Willick and Yang [18] evaluated motion con-
straint equations. They evaluate Horn and Schunk’s {8,
Schunk’s [15], and Nagel’s [13] equations, In the follow-
ing discussion we claborate on a method for computing
optic flow using the Wigner distribution.
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Wigner Distribution for Optical Flow Computation

Jacobson and Wechsler [10] were the first ones to ap-
ply the Wigner distribution to image processing prob-
lems. They use the Wigner distribution to compute optic
flow. Their approach is a modification to Gafni and
Zeevi's [6] approach to optical flow computation. Gafoi
and Zeevi used Fourier transform, which gives a single
velocity for the entire image. This limitation was realized
by Jacobson and Wechsier. Thus, they proposed replac-
ing the Fourier transform with the Wigner distribution.

The following steps are required to compute optical
flow using Jacobson and Wechsler’s method.

1. Given a time-varying sequence of images, f(x, v,
1), compute its 3D Wigner distribution for a selected
value of (x, y, t):

Wf(“’ls Wy, W3 X, ¥, t)

=I:J':j:[f(x+%,y+£;—,t+%) “
f( - %, y — -g, t — %) e—j(awﬁﬁwﬂwf)]da dw dB.

2. Compute the modulus of Wy and raise it to the
power #n. In their paper, Jacobson and Wechsler use 2 as
the value of n:

le(wxyw)’! W X, ¥, t)ln' (6)

3. Sclect a set of integer values for velocities V, and
V.

4. Compute the velocity polling function Cr for the
selected values of V, and V,. The function Cyis given by

Cf(ny Vy; X, ¥, t)

= J:n J:u ,L 'Wf(w‘t’ Wy, ey X, ¥, t)'n
(Voo + Vyo, + w)dw, do, do,. (7)

5. Repeat steps 3 and 4 until all values of V, and V,
have been tried. If the range of possible values of V, and
V, is from —35 to +5 then step 4 needs to be computed 121
times.

6. Find the velocity coordinate of peak in Cy. This
gives optical flow

Vilx, ¥, 1)
Vi(x, y, £} = . 8
7y, 0 ({Vy(x,y,:)D ®

7. Repeat steps 1-6 for all (x, y, ¢).
Within the main loop there is another loop for discrete
values of V, and V, which needs to be repeated 121 times
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for a range of —5 to +5. If the user-guessed range of
velocity values is incorrect, the correct answer will not
be obtained. This is a serious shortcoming of this method.
Jacobson and Wechsler [10] reported results based on
simulated grating images and only considered uniform
translation. The effect of noise was not investigated.
They did not use images with a distinct foreground and
background. The error obtained in calculating velocities
is nonzero, although there is no noise present. The paper
does not mention the problem of cross terms which is
inherent to the Wigner distribution. When these factors
are taken into consideration, it becomes clear that the
method is not well suited for general purpose use. Their
approach, nevertheless, makes a significant step in mak-
ing use of the spatiotemporal-frequency representation
for image processing.

4. WIGNER DISTRIBUTION

The Wigner distribution is a generalized time—fre-
quency representation. In some sense it is a true repre-
sentation of the phenomenon that takes place everyday in
nature. When we watch the sunset, we are unaware of
the fact that what we watch is nothing but the frequency
variation as a function of time. The characteristic of the
Wigner distribution, to be a function of both time and
frequency, is remarkable. The Fourier transform, on the
other hand, is strictly a function of frequency. Thus, once
we convert a function using the Fourier transform, we
strictly deal in the frequency domain. If we take the in-
verse Fourier transform, we end up strictly in the space
domain. The Wigner distribution, on the other hand, al-
lows one to simuftaneously use the time- and frequency-
domain information.

Wigner [17], in 1932, proposed this function for the
study of quantum mechanics. Ville [16] proposed it again
in 1948. However, researchers did not pay much atten-
tion to the method untj! the 1980s. Researchers, in the
speech processing area, extensively used this concept in
the 1980s.

Although the concept of mixed representation has been
applied extensively to the signal processing area, re-
search papers applying the Wigner distribution to the im-
age processing area are limited. Jacobson and Wechsler
[10] modify Gafni and Zeevi’s [6] approach for calculat-
ing optic flow using the Wigner distribution.

Claasen and Mecklenbrauker [4, 5] published a series
of papers on the Wigner distribution in order to facilitate
and promote the use of this technique in other areas of
rescarch. These papers put emphasis on the properties of
the distribution so that this concept of a generalized
space—frequency representation could be applied in sev-
eral disciplines. The following sections, 4.2 and 4.3,
closely follow Claasen and Mecklenbrauker’s papers
i4, 5].
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4.1.

The Wigner distribution of two signals, f{(¢) and g(s), is
defined as

Definition of the Wigner Distribution

WDy () = [ emif(e + ki2)g*(t — ki2) dk, ()

where w is the frequency, ¢ is time, and g* is the complex
conjugate of the function g(¢). The auto-Wigner distribu-
tion is given by

WD, @) = [ ekt + kif* — k12) dk. (10)

The auto-Wigner distribution for a real function (1) is
given by

WD, @) = [ ekt + kDG — ki2) dk. (1)
One can also define the WD for the spectra F and G by

WDr.o(w, 1) = 5 [ emFlw + /2)GHw — nf2) dn,
2

In the discrete domain the Wigner function is defined as

WDy (1, w) = 2 i e Mokf(t + k)g*(t - k). (13)

he —

The auto-Wigner distribution is defined as

WD(1, w) = 2 2 e 2okf(s + IO FHE — k). (14)

k=

If the function f is real then the auto-Wigner distribution
is defined as

WDy, w) =2 i e vkt + RYF( — k). (19)

k=—ox

The azbove equation would be useful in the development
of the Wigner distribution for image processing.

Properties of the Wigner Distribution

Claasen and Mecklenbrauker {4, 5] gave a number of
properties of the Wigner distribution. Here, we discuss
only a few properties related to the present work.

First, for any two signals f{¢) and g(1),
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WDy {1, @) = WD} [(t, @). (16)
Hence, the WD of any function, real or complex, is al-
ways real.

Another way of arriving at the same conclusion is as
follows. Since

sin(—k#) = —sin(kf) (17)

i sin(—k&)Lf(x + k) # f(x — k)] = 0.

k=—w

(18)

Therefore, the Wigner distribution is always a real func-
tion.

The WD of a real function is an even function of the
frequency:

WDs(t, w) = WDF (1, — w). (19)

The WD is a spectrum of the symmetric correlation func-
tion f(z + k/2)g*(r — k/2) which is a function of & for a
fixed value of ¢. Thus, the WD can be computed by using
the FFT technique,

Since the Wigner distribution is always a real function,
Eq. (15) can be written as

=—w

WD(t, w) =2 i cosuk) f(t + k) f(t — k). (20)
k

4.2, Pseudo-Wigner Distribution

The concept of windows is widely used in signal pro-
cessing. The same concept can be applied to the WD.
This was first proposed by Claasen and Mecklenbrauker
[4]. As we see later, this concept is very useful for the
image processing application presented here. The win-
dowing in the time domain involves applying a sliding
window to the functions f(¢) and g(r). Let wyand w, be
such windows. Then at time ¢,

filr) = f@welt — 1) 21)

and

g(7) = g(@w(t — 7). (22)

The Wigner distribution WDy, , is the convolution of
WDy, and WD, , and is given by

WDf,,g,(T w)

1 w
=5 f_w WDy 4(r, )) WD, . (r = 1, @ — m)dn, (23)

where ¢ is a parameter indicating the position of the slid-
ing window. The above equation also makes it clear that



286

it gives the whole family of WDs. To get an individual
WD at time 7 = ¢, one would use

1 =
WDy o (t @) = 5= | WDy 4(t, ))WD, 0, © = m)dn
(24)

This family of WD's is called the pseudo-Wigner distribu-
tion.

In our application the function f(¢) is real and discrete.
If we apply a window w of duration 2d + 1, then

PWDf(I, w)

=2 i cosCal)w(k) f(r + Kywi~-k)f(r — k). (25)
k

Since the duration of the window is 2d + 1,
PWD(t, )

=2 i cosQRuk)w(k)f(t + Dw(~k)f(t — k). (26)
k

=—d

4.3. The Wigner Distribution for Image Processing

To use the Wigner distribution function for image pro-
cessing, one needs to extend it to two-dimensjonal space,
Such an extension results in a four-dimensional Wigner
distribution function. The function has two space-domain
variables x and y, and two frequency-domain variables u
and v. The extension to 2D space is then

WD{(x, v, u, v)
4 Ni2 M2 .
- E’\_{ I=—N12 k—-zwz e‘J"'"[“k/M*’UUN]f(x thy-D

*flx —k,y—1)
4 TONR M2

>, cos@f(x + k,y + 1)

MN I=—NI2 k=-MI2

*flx =k, y = D),

@7

where M is the number of columns, N is the number of
rows, 8 = 4xfuk/M + vi/N], and fis the gray-scale func-
tion.

4.4, Information from the Peaks in the Wigner

Distribution

The Wigner distribution, as defined from 2D space,
becomes a function of four variables. To plot a function
one needs a five-dimensional space. To overcome this
difficulty one can keep three variables constant and plot
the function in 2D space.
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FIG. 3.

Wigner distribution curves for a constant y,

Let us set the frequency variables, « and v, to 0. This
gives stationary contributions of the signal. Such a con-
tribution can be plotted as a 2D graph where x or y is held
constant. Figure 3 shows such a graph for y equal to a
constant. Thus, one obtains a series of curves for a con-
stant y. These curves reach a peak and then start going
down. The peaks represent points on the object. For
symmetric objects with uniform gray-scale values the
highest peak occurs at the centroid of the object. The
pixels on the boundary may not have sharp peaks.

Let us review some of the assumptions made. We as-
sumed that the gray scale is greater than 0, and the gray
scale for the object is greater than the background. This
means that when one travels from left to right along a
constant-y line, the value of the WD is the highest at the
centroid of the object.

4.5. Analytical Development

In this section we develop a relationship between the
object size and the gray-scale contrast. This relationship
is required to effectively use the Wigner distribution
method,

Let G be the background gray-scale value and F be the
foreground gray-scale intensity. Let us assume that the
background and foreground are uniform throughout the
image. The difference between the foreground and back-
ground is denoted by d. It is assumed that the foreground
intensity is greater than the background intensity. Thus,

F=d+G. (28)
Let 'y be the contrast ratio defined as
d
Y= G (29)
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{(C+1)

FIG. 4. General case. Object size al X b1. Frame size a X b. Object
centroid is C.

Let « and v in the Wigner distribution calculations be 0.
For simplicity in the equations let W be defined as fol-
lows:

WD

W= mnN

(30

Let M be the number of columns and N be the number of
TOWS,

General Case for the Wigner Distribution

Figure 4 shows an object of size a; X b, located in a
frame of size a X b. Let C be the point at which the
Wigner distribution is calculated first. This point is a cen-
ter of a region a; X b,. The next point at which the WD is
calculated is (C + 1). Since we traveled 1 pixel along the
x axis, we have added 25 pixels in the calculation of the
WD. We want to calculate the slope of a WD curve at
point (€' + 1). Inside the object we have foreground gray-
scale values and outside the object we have background
gray-scale values, The WD at point C is given by

We = (ab — a:b)G? + a1bi(G + dY (31)

and the WD at (C + 1) is

Wer = lla — 20b1(1 + 2y + yD) + 4b(1 + )

+ (a + b — (ay + VHGE (32)
The slope at point (C + 1) is given by
slope = 2b — 2bpy?) = G2, (33)

When using the WD curves, we look for peaks. These
peaks should occur at the centroid C. Thus, for a peak to
exist at point C, the slope at point {C + 1) should be less
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than or equal to zero. For slope to be less than or equal to
0,

2b — 2b1y? < 0. (34)
This gives the following condition:
b
2
VEg (35)
The highest v can be obtained by
2= maximum {rows, columns) 36)

" minimum (length or width of the
smallest object to be detected)

General Case for the Pseudo-Wigner Distribution

For the pseudo-Wigner distribution let x,, and y,, be the
window size in the x and y directions. This window is
assumed to be larger than the object size, The equations
for this case become

We = (x¥, — @b)G? + a,bi(G + 4 (37)
and the WD at (C + 1) is
Wear = ar — b1 + 29 + v3) + 4bi(1 + ) G8)
+ X3 — (a; + 2)b]G2,
The slope at point (C + 1) is given by

slope = (=2byy?) = G2 39

As before, for the slope to be less than 0,
—2byy? < 0. (40

This gives a new condition for the PWD. The condition is

¥y >0, 41)
As can be seen, this condition is far less restrictive than
the condition for the regular Wigner distribution.

The Selection of Frequencies and the Use of Windows

The WD for image processing is a function of four vari-
ables, namely, x, v, u, and v. Qur end goal is to develop a
technique whereby one can observe the peaks and find
out object locations. Due to physical limitations, we can
visualize only 3D information. Thus, we need to keep
two variables constant. One way is 10 keep u and v, the
frequency variables, constant. Another way, of course, is
to keep x and y constant, If we keep x and y constant,
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then for each pair of (x, y) we need to compute the WD
for every discrete value of « and v. Then we have to plot
the WD as a function of u and v for every single pixel.
This means analyzing as many plots as the number of
pixels in an image. This certainly makes the other option
of keeping frequencies constant more appealing. Having
decided to view the WD as a function of x and y by

keeping the # and v constant, the next question is how

does one go about selecting these frequencies.

Windows can be looked at from a statistical estimation
point of view, Quite often in statistical estimation theory
one uses the concept of weights. Windows or the pseudo-
Wigner distribution can be looked upon as a means to
apply weights to each pixel value. The simplest window
is a 2D rectangular window. This means that the pixels
within the window have a complete influence on the WD
computation. However, the pixels outside of the window
have zero influence. Considering the kernel values as
weights applied to individual pixels, we have come up
with different possible 2D windows. Each of these cases
are evaluated as stated in the Experimental Protocol sec-
tion. The results of the experimental evaluation are re-
ported in the Results section.

5. PSEUDOPEAKS

In the last section we saw how to use the Wigner distri-
bution to represent each object by a peak. The method
works well so long as there is only one object in a given
frame. However, if there are muitiple objects in a frame
then this results in a number of peaks larger than the
number of objects. The additional peaks, which do not
correspond to any objects, are termed pseudopeaks. In
this section we see the reasons for the occurrence of
pseudopeaks and how to eliminate them,

5.1. Pseudopeaks in the Wigner Distribution

Consider, for example, two symmetrically located ob-
jects such as these shown in Fig. 5. In Fig. 5 we see two
rectangular cbjects of size 3 % 3 simulated in a 16 x 16
frame. The object gray scale is 50 and the background
gray scale is 10. These objects are symmetrically located
around the point (7, 7). Figure 6 shows curves for this
simulation. In the curves, there are two peaks located at
(4, 4) and (10, 10). The peaks correctly estimate the ob-
ject centroids. In addition, there is also a peak located at
the point (7, 7). In reality, however, no object is located
at this point.

If a Wigner distribution is calculated at the point (7, 7),
due to the symmetric location of both objects, the WD
peaks at this point. Although there is no object at the
point (7, 7) the result here indicates that there is an object
located at the point (7, 7). Thus, the peak at the point (7,
7) is termed a pseudopeak.
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FIG. 5. Two symmetrically located objects in a 16 x 16 frame.

Pseudopeaks can also occur at the center of the frame,
The WD is maximum at the frame center since the maxi-
mum number of pixels are involved in the calculation.
For a nonzero positive gray scale, the sum of the prod-
ucts would be maximal if the sum were carried out overa
maximum possible range. This makes the center a peak
point in the WD curves. If there is no object present at
the frame center, then such a peak is also a pseudopeak.

5.2. Mathematical Explanation for Pseudopeaks

From Section 4 we know that

WD (x, 0) = | e‘i‘"’ff(x + ’5‘) f( - ’5‘) dk. (42)

Let p(x) and g(x) be two functions such that

flx) = I;(x) + g{x)
WD, (x, ®) = fw ek [p (x + %{) q (x + %()] (43)
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FIG. 6. Wigner distribution curves for two objects. A pseudopeak
ocecurs at (7, 7).
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Thus,

WDp-J\rq(xv Cr)) = WDp(x, (U) + WD,?(JC, (ﬂ) (44)
+ WDp,q(xa w) + WDq,p(x1 w).

In the above equation, the last two terms, WD, ,(x, o)
and WD, ,(x, ), show the interaction of the two signals
p and g. This interaction is the cause of pseudopeaks. It
is commonly referred to as cross terms in the signal pro-
cessing literature.

The next guestion is, how can one eliminate these
pseudopeaks. This is the topic of the next section.

5.3. Elimination of Pseudopeaks

To eliminate the peak we need to shape the kernel in
such a way that this contribution to the WD is nullified.

Figure 7 shows the projection of objects shown in Fig.
5. This projection is along the y = 7 line. When the WD is
calculated at the point (7, 7), the contribution from the
objects would occur for k = 2, 3, and 4. For this range of
k, (x — k) ranges from 3 to 5. This is the object location
for the first object. Also, for the same values of k, (x + k)
ranges from 9 to 11. This is the object location for the
second object.

Let the kernel values be C;, €5, and C; for &k = 2, 3,
and 4, respectively. Further, let us assume that the kernel
values for negative k’s are same as C,, C;, and Cy. Let
be the sum of the contributions to the WD when kis 2, 3,
and 4. This is given by

a=Cixfoxfs+ Coxflo*fo+ Cyxfiy xfi. (45)

Let the contribution to the WD be g when & is —2, —3,
and —4. 8 is given by

B=Cisfsxfo+ Co%faxfio+ Cixfi*fi. (46)
Now if we add « and 8, the net contribution should be

zero, This would eliminate pseudopeaks. If the gray-
scale intensity of the two objects is uniform, then

/
LI VI LI/

O 1 2 3/a S 6 7 8 9 10MN11213 1445

— ] 5 |es-e

FIG. 7. Kernel shaping. A cosine curve is passed through the
pixels.
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fL=h=Ff (47)

and

fo = fio = Ju. (48)

Therefore, in the above equations for @ and 8, we have
Li*fs=fu*hi. (49)

Thus, to make « equal to zero we need to meet the fol-
lowing kernel values:

C= -0
Cz = 0.

(30)
(51

Such a kernel would eliminate pseudopeaks. The next
question is how can one shape the kernel to achieve the
above described result. This is described in the next
section,

5.4. Kernel Shaping for Pseudopeak Elimination

In Fig. 7, one object spans from pixel 3 to pixel 5. The
centroid of this object is at pixel 4 and is referred to as
point A in the following discussion. The second object
spans from pixel 9 to pixel 11 and its centroid is at pixel
10, which is referred as point B. A and B are symmetri-
cally located with respect to point C i.e., pixel 7. After
computing the Wigner distribution, one would see peaks
at points A, B, and C. The distance between A and Cis §.
Due to symmetry, the distance between points B and C is
also §. We want the kernel to have positive values in half
of the region and negative values in the other half. From
the Wigner distribution equation we know that the kernel
is a cosine wave form. The desired results may therefore
be achieved by passing the cosine through the center of
the object. The cosine would have a zero value at the
center of the object. In one-half of the object region, the
cosine would be positive and in the other half it would be
negative. Thus, let

Br= — -';f (52)
k2
65 =3 (53)
and
B = 0. (54)

If there is indeed an object located at C, we do not want
its contribution to be nullified. This is achieved by setting
#c = 0. At point B we have
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m
By = 5. (53
Therefore,
T g [ 91]
2—477[M+N. (56)
Forv =0, and k = § we get
T us
5= 4 M 57
Therefore,
1M
U = g ? (58)
and
v =0 (59)

The above equations give frequency values for shaping
the kernel to eliminate pseudopeaks.

5.5. Kemel Modification to Eliminate Pseudopeaks at
the Frame Center

The idea behind the kernel modification to climinate
pseudopeaks at the frame center is similar to the one
outlined in the previous section. In this case the kernel
should look like the one shown in Fig. 8. At the center,
the angle 8 should be 0 and at the edges it should be .
Thus, for v = 0 and &k = M/2,

u[M/2]
T

g=m=4 (1))

FIG. 8 Kernel shaping to eliminate the pseudocenter peak.
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Therefore,
(61)
and

(62)

5.6. Procedure Summary

The procedure used here for eliminating pseudopeaks
may be summarized as follows. Find all peaks appearing
in the WD plot. Using this set of peaks, find out groups of
three peaks such that one peak out of these three is ex-
actly in between the other two. Using S, the distance
between the farthest peaks in a group, calculate the fre-
quency u by using the formula

1M

u=gg (63)

and set v to 0. Use these frequencies and calculate the

WD. Check the location where the peak in doubt oc-

curred. If a peak appears again, then the peak is a true

peak. Otherwise it was a pseudopeak. Repeat this proce-
dure for every peak in question,

6. EXPERIMENTAL PROTOCOL

To test the new Wigner distribution based method, we
carried out experiments on simulated as well as real im-
ages. The experimental data may be divided into three
categories. The first set of data consists of simulated im-
ages used for characterizing performance error in detect-
ing centroids of rectangular objects. In this set we have
only single-frame images and an image sequence is not
simulated.

In the second set of data we have simulated an image
sequence consisting of three frames. The number of ob-
jects per frame is 3. In this set we simulate two rectangu-
lar objects that are rotating and translating. This data set
is used to characterize the translational and rotational
error.

The third data set has a real dynamic image sequence.
The images include traffic scenes and the airplane take-
off scenes.

Simulated Image Generation

The simulated images, used for experiments presented
here, are 64 % 64 in size. The objects generated in these
images translate and rotate within the 64 X 64 size, and
all the objects remain in view at all times. The basic pa-
rameters of an image are the background gray-scale
value, the contrast ratio, and the foreground gray-scale
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value. The generated objects are rectangles rotated be-
tween (° and 180°.

Real Images

The real image sequences used here constitute images
from traffic scenes and airplane take-off scenes. These
images were taken from a building on Highway 99 near
Seattle~Tacoma International Airport in Seattle, Wash-
ington. The camera used for capturing the images is
“palmcorder’ made by Panasonic. The recorded images
were transferred from a VHS cassette to a real-time data
disc made by Applied Memory Technology.

Camera Calibration

For the images described above, calibrating the camera
is the most difficult task. However, we have tried to cali-
brate it with the available information, In case of some
traffic scenes we found some markers used for dividing
lanes, These are circular in shape and are separated by
about 3 ft. We measured these marks on Highway 99 near
Scattle-Tacoma International Airport, Seattle, Washing-
ton. The same marks were measured by displaying the
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images on a screen. This gave us the pixels-per-inch
ratio.

In the case of airplanes, we identified the type of air-
plane and obtained its structural data for calibrating the
images.

Performance Measure

The first set of data consists of simulated images. The
objective of these, the error in estimating object cen-
troids, averaged over 1000 experiments, is plotted as a
function of the signal-to-noise ratio. The standard devia-
tion, Temor, Of the error is also calculated. Two more
curves representing (€Irror + Geror) and {error — ¢.p;) are
also plotted.

Another important criterion for algorithm evaluation is
the number of computed centroids. This is a measure of
the elimination of pseudopeaks. We know that there were
only three objects. Thus, any number higher than 3
comes from pseudopeaks. The number of centroids is
plotted as a function of the signal-to-noise ratio. The
standard deviation of the number of centroids, gy is
also calculated. Two more curves indicating (centroids +
Teent) @and (centroids — o) are also plotted.
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7. PERFORMANCE CHARACTERIZATION AND THE
ESTIMATION ALGORITHM

Performance Characterization of the
Object Location Algorithm

A brief discussion of each case is given below. The
contrast ratio, v, is defined as the ratio of foreground to
background gray scale. For all the cases the contrast ra-
tio, v, is kept constant at 2.8. The top graph in every
figure shows absolute error, averaged over 1000 trials,
versus signal-to-noise ratio (SNR}). In addition, it shows
two curves, one for +o and the other for —o. These
curves indicate deviation of the error from the average.
The minimum value of the —¢ curve was restricted to 0,
since negative absolute error is not meaningful. The bot-
tom graph shows average number of centroids computed
by the algorithm. This graph also has two additional
curves showing deviation from the average. In all these
cases the number of centroids should be 3, since there
were three objects in each image, However, due to
pseudopeaks and noise we see more peaks than the ac-
tual number of objects. This indicates a false detection
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rate. In all of the following cases, the misdetection rate
is 0.

Case A. Inthis case the frequencies & and v are set to
0 and the Wigner distribution is computed. This case
evaluates the performance of the symmetric correlation.
Figure 9 shows that the average object location error is
within 3 to 4 pixels and remains relatively constant for all
values of SNR. The curve showing +o deviation indi-
cates that the error could go as high as 9 pixels. The
number of centroids detected by this algorithm is more
than 7 for —1 dB SNR. This further goes down to about 6,
The actual number of objects was 3. Thus, the false de-
tection rate is about 3. This is indeed high. In our applica-
tion this means that we will have three additional false
objects in motion,

Case B. This case is used to evaluate a kernel with
u = 0.25 and v = 0. Figure 10 shows that the average
object location error and the number of centroids. This
case performs better in terms of location error since the
error is now reduced to 2 pixels compared to about 3 to 4
in Case A. However, its performance in terms of false
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detection rate is the same as in Case A. We still have
about three false objects per frame.

Case C. 1In this case « is changed to 0.5. All other
parameters are same as in Case B. In Fig. 11 we see that
the error is further reduced to 1 pixel. However, the false
detection rate remains around 3,

Case D. In this case we evaluate the use of the
pseudo-Wigner distribution (PWD). We use a window
size of 10 pixels and « and v are 0.125 each. From Fig. 12
we see that the location error is less than 0.5 pixels for a
SNR of 5 dB and higher. However, the false detection
rate continues to be 3 or higher. The location error is
approximately 1 for a SNR of —1 dB.

Case E. Here we evaluate ¢ = 0.4, and v = 0.4 with
the PWD. The window size is selected to be 10 pixels.
This kernel gives better results than the one used in
Case D,

The location error is less than half that for a SNR of —1
dB and higher. This case is the best case if we want to
have minimum location error. The false detection rate is
about 1 for a SNR of 5 dB and higher. For a SNR of —1
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dB we get an excessively high false detection rate, which
is 7. The curves for this case are shown in Fig. 13.

The Effect of Contrast Ratio on Performance

Figure 14 shows performance curves as a function of
contrast ratio. It is seen that as the contrast ratio is in-
creased, the error in object location goes down. In this
case the pseudo-Wigner distribution with a window size
of 10 X 10 is used.

Performance curves for contrast ratios 3.3, 4.3, and 5.3
were also analyzed and are similar to the ones given here.

ALGoriTHM. From the above set of five cases one
was selected for evaluating the motion estimation algo-
rithm. This case uses the PWD with a window size equal
to 10 pixels. The frequencies « and v are given by

1M
u=z (—— (64)
328
and
5 (55)
v=2i5s 65
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where M and N are the number of columns and rows,
respectively. The algorithm is as follows: First, we com-
pute the WD for each frame. From the WD data we deter-
mine the locations of the peaks. In the case of a noisy
environment, it is difficult to detect peaks. In such cases
we first eliminate peaks with values of 20% or lower than
the highest peak observed in an image. If within a small
neighborhood the number of peaks is greater than 1 then
a centroid of all such peaks is computed to the give loca-
tion value of the peak. This neighborhood is 5 x 5 for the
WD. Then a check is made for any pseudopeaks. If
pseudopeaks are present then they are eliminated by the
method discussed earlier in this paper. After locating true
peaks, we find point correspondence. The point corre-
spondence is found from matching the peaks from one
frame to the closest peak in the other frame. The
weighted least-squares method is then used on these
matched data points.

8. RESULTS AND DISCUSSION

Pure Translation

Figure 15 shows the results of two objects translating
in different directions with different velocities. The trans-
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lation velocities ranged from 1 to 10 pixels per frame in
either direction. The algorithm uses three frames to solve
the problem. The figure shows that for the PWD the
translational error rapidly goes down as the SNR is
increased. It should be noted that if we were to know
beforehand that there is no rotation then the results
would be very accurate. This conclusion is based on the
performance characterization of object location error.

Translation and Rotation

Figure 16 shows the results for the same objects as
before but in this simulation the objects are translating
and rotating. The translational velocities are within 1 to
10 pixels in either direction. The rotational velocity is
randomly selected between 0° and 30° per frame. It is
seen that the translational error is higher than before.
This is partly due to the fact that we are simultaneously
solving the equations for translation and rotation. Thus,
overall error gets distributed between translation and ro-
tation,
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FIG. 16. Performance curves for translation and rotation.
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Real Image Sequences

We have two image sequences with which the PWD
method is evaluated. The first sequence is of a car mov-
ing near a busy intersection on a highway in Seattle,
Washington. The first frame of this sequence is shown in
Fig. 17. The car in motion is the white car, The white
circular marks seen in the figure are line dividers. These
were for calibrating the images. Using the PWD method
the speed of the car was determined to be 26.54 mph. If
one were to actually count the number of pixels moved
and compute the speed of the car, it would be 28.06 mph.
Thus, we see that the speed from using the PWD is in
close agreement with the estimated speed.

The second sequence consists of a 747 airplane take-
off. The first frame is shown in Fig. 18. It is seen that the
object in motion is darker than the background. Since one
of our assumptions is that the object is brighter than the
background, we cannot directly use this sequence. The
original images are first inverted in gray scale. After in-
version, the object is motion is brighter than the back-
ground. Thus, we meet our assumption. For calibration
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we use the airplane dimensions at various locations.
Based on the new method, the speed of the airplane is
estimated to be 141.13 knots. This is well within the typi-
cal range of 140 to 150 knots.

Discussion

In this section we presented results for simulated as
well as real image sequences. In simuolated seguences
when there was pure translation, the new method gives
perfect results for a SNR of 5 dB or higher. This in itself
is an accomplishment. This result shows that the method
can be applied to noisy image sequences and we can
expect to get near-perfect answers.

When a sequence was generated with rotation, the
method did not work well. This could be due to various
reasons. The data obtained after rotation has errors in it
due to quantization. Such errors do not exist with pure
translation. Another problem is that we have only three
data points. This seriously limits our ability to correct for
any errors. Besides, all our information is based upon
ong point from an object. So if the object rotates by, say,

FIG. 17. First frame of the car sequence.
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FIG. 18.

10°, the point representing the peaks may or may not
rotate much. In terms of pixels this movement could be
zero due to quantization. Additionally, since the rotation
is around the origin of the frame, in a discrete case a point
is more likely to show motion if it is far away from the
origin than if it is near the origin.

The real sequences involve pure translation and, as
expected, we obtain excellent results. We have also pre-
sented a case where the background is brighter than the
foreground and shown how to meet the required condi-
tions for the algorithm to work. Alse, it is worth noting
that although the images for the airplane sequence have
poor conirast, we still get good resuits.

9. CONCLUSION

Qur performance characterization results are based on
over 125,000 simulations in which the object size, object
location, object orientation, and gray-scale intensity
were all selected at random. We characterize perfor-
mance for noise levels as high as —1 dB SNR. The results
presented here show that the misdetection rate is near 0
and the false detection rate is one object per image of
three objects each. In addition, this false detection rate
can be reduced to 0 by shaping the kernel as outlined in
Section 5.
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First frame of the airpiane sequence,

Since our primary objective is to develop a method that
can be used in real applications, it is necessary to find out
how the method would work with real images. Thus, we
use real image sequences to validate the method. It is
seen that our algorithm predicted the speed of the car to
be about 25 mph, which was quite reasonable for that
particular intersection. With the help of the next image
sequence we predicted the speed of the 747 as 142 knots,
which is well within the range of 140 to 150 knots.

In conclusion, in this paper we have developed a
strong analytical basis for using the Wigner distribution
for image processing. We have also developed a method
to eliminate the cross terms. Our simulation results as
well as results from reat life scenes clearly give the re-
quired confidence to machine vision researchers and
practitioners to use the method in noisy environments.

As with any other research, we have continued our
investigation for pseudopeak elimination methods. Co-
hen [3] formulated a generalized time-frequency distri-
bution of which the Wigner distribution is a special case.
His work led to many more kernels such as the exponen-
tial kernel of Choi and Williams [2] and the cone kernel of
Zhao ef al. [19]. As expected by one of the referees of
this paper, the results based on the exponential kernel
and the cone¢ kernel give better results than the pseudo-
Wigner distribution. Our new research findings on the
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gencralized space—frequency distribution and the two
kernels mentioned above have been recently sent to a
journal for publication.
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