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This paper briefly reviews in a self-contained manner the perspective transformation
governing 2-D images taken of a 3-D world. Using coordinates of points, direction cosines of
lines on the image, or 3-D models of objects, relationships are developed that permit
determination of the perspective transformation parameters in closed form, as well as the 3-D
coordinates of objects. Contents. 1, Introduction; 1.1, 3-D Scene Analysis. II, The Perspective
Transformation in 2-D. ITI, The Perspective Transformation in 3-D. IV, Properties of the 3-D
Perspective Transformation; IV.1, Lines to Limes; IV.2, Vanishing Points. V, Image
Coordinates to 3-D Coordinates; V.1, Camera Geometry; V.2, Vanishing Point to Camera
Parameters; V.3, The Inverse Projective Transformation; V.4, Using the Inverse Perspective
Transformation; V.5, Using the Perspective Transformation; V.6, Models. VI, Example; VL1,
Example 1; V1.2, Example 2. Acknowledgement. References.

I. INTRODUCTION

The perspective transformation and its mathematical properties are well known.
Coexter [1] gives a treatment of it mathematically and Wolf [7] illustrates its use in
photogrammetric engineering and surveying applications. Duda and Hart [3] discuss
its use in scene analysis. D’Amelia [2] gives a good treatment of perspective
drawing for those people interested in understanding perspectives in a visual
manner without equations.

It is the purpose of this paper to review briefly and in a self-contained manner
the perspective transformation and some of its important properties. Then we
develop a variety of relationships based on the perspective transformation which
are helpful for deducing 3-D location information from the 2-D information on the
image. The contribution of the paper is in the reference value of the collection of
these relationships in one place for those researchers in scene analysis who do not
have the assorted reports or appendixes of these which also might develop some of
them.

L1 3-D Scene Analysis

We are often interested in interpreting the information on a 2-D image of a 3-D
world in order to determine the placement of the 3-D objects portrayed in the
image. To do this we need to understand the perspective transformation governing
the way 3-D information is translated onto the 2-D image. Thus, we first review the
basic and well-known concepts and properties of this perspective transformation.
Then we show how partial knowledge about distances between points or parallel
lines in the 3-D world can be used with their perspective projection on the image in
order to determine the location of these points or lines in the 3-D world.

In Sections II and IV we develop the perspective transformation, first in a 2-D
world and then in a 3-D world. In Section IV we show how the perspective
transformation equation forces lines in the 3-D world to transform to lines in the
image. Then we show why one end of parallel lines in the 3-D world must converge
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to a point, called the vanishing point, on the image. We give the general vanishing
point equation, as well as the specialization of the equation for lines parallel to the
axes of the original coordinate system.

In Section V we discuss some of the ways perspective information on the image
can be used to determine the location of points or lines in the 3-D world. We show
how knowledge of one or more vanishing points on the image can help determine
the camera parameters. Then we develop the inverse perspective transformation
and show how knowledge of the relative positions of points in the 3-D world can
be used with the coordinates of their perspective projections to determine their
actual 3-D coordinates. Finally, we show how the direction cosines of lines on the
image relate to their corresponding lines in the 3-D world. Specializing this
relationship to lines parallel to one of the axes lying in the x, y, or z = k plane, we
give the equations which relate the parameter k to the camera parameters and
direction cosines of the parallel lines. Finally, we specialize this relationship to
perpendicular lines.

The paper concludes with an example illustrating the use of the techniques of
Section V. The example image, taken with a 35-mm camera having a 50-mm lens,
portrays two parallel lines of known distance apart and lying in a z = k plane. In
addition, there are two points in the z = k plane of known distance apart in the
3-D world. The example applies the relationships developed in Section V to
determine the camera parameters. Then with the camera parameters known,
relationships such as the distance in the 3-D world between any two points lying on
a vertical line can be determined from the coordinates of those points on the image.

II. THE PERSPECTIVE TRANSFORMATION IN 2-D

In this section we suppose we have a camera taking one-dimensional pictures in
a two-dimensional world. As shown in Fig. 1, we assume that the camera lens is at
the origin and points directly down the y axis. In order to keep the image in a
positive orientation, we assume that the image line is at a distance f in front of the
camera lens and that the lens projects forward to it. This eliminates the problems of
left—right reversal in an image behind the lens. The image line for this first example
is parallel to the x axis.

y A

_ — —_——_ = — = = e Image Line

Lens

Fic. 1. How for a lens oriented along the y axis and an image plane parallel to the x axis, the
perspective projection gives the point (x,,y;) the coordinates (x, /v1,f) on the one-dimensional image.
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According to the geometric ray optics model for the lens, the lens will focus a
point (r,s) onto the image line which is a line parallel to the x axis and at a
distance f directly in front of the lens. The position in the line is determined by
where the line from (r,s) to origin intersects the image line. Hence, the perspective
projection has coordinates ((r-f)/s,f) in the original two-dimensional coordinate
system. Relative to the one-dimensional coordinate system of the image line, the
coordinate is (r-f)/s.

Note that both the numerator and denominator of (r-f)/s are linear
combinations of r and s. This suggests that if the numerator and denominator were
computed by an appropriate linear transformation, the one-dimensional perspective
coordinates could be computed by taking ratios of components of the transformed
vector. We illustrate this using homogeneous coordinates. The point (r,s) can be
represented as (r,s,1) in the homogeneous coordinate system. The first linear
transformation translates the point (r,s, 1) down the y axis by a distance f. The
second transformation takes the perspective transformation to the image line.

Hence,
1 0 0l/r
Wy (L0 9o —f(S).
(”) (0 1/f 1)0 0 118!

The one-dimensional image line coordinates for the point are then given by

u rf
)C]=;=?.

Figure 2 illustrates a more complex example. The lens is still at the origin, but is
pointing down the y’ axis. The x’—" axes are the x—y axes rotated by an angle of 4.
The projection (r,s) of the point ( p,q) can be determined as the intersection of
the image line with the line from the origin to ( p, ¢). The image line is given by the
equation,

(—sinﬁt\cosﬂ)(;) = f.

(p,a)

e 2 Lérl\ws

Fic. 2. The geometry of a general one-dimensional perspective projection in a two-dimensional
world. The lens is at the origin and looks down the ¥ axis. The image line is a distance f in front of the
lens and it is parallel to the x’ axis. The x’'—y" axes are the x—y axes rotated clockwise by an angle 8.
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The line between the origin and the point (p,¢) is given by
X
(—ap)(3) =0
Hence the perspective projection (r,s) is determined by
( —sind cosé))(r) _ (f)
—-q P 5 0/

This system of equations has the solution,

(;) = ( -psinef+ qoose)(g)‘

To represent this in a coordinate system relative to the image line, we must first
rotate the x—y axes to the x'—y’ axes. Let us call the coordinates of (r,s) in the
x'—y’ reference frame (r’,s’). Then

( cosf sinﬂ)(r)=(r’)
—sin@  cos@/\s sl

Hence,

rl_ f pcosf + gsind
— psinf + gcosf .
s — psinf + gcosé

pcosd + gsind
=f| — psinf + gcosd
1

Note that the y’ coordinate is f, exactly as we expect it to be, since the image line
is at a distance f down the y’ axis from the origin. The x’ coordinate is the
coordinate with respect to the image line. Hence,

pcosf + gsind
— psind + gcosf’

xp=F

This relationship also has a numerator and denominator which are linear
combinations of the original coordinates ( p, ). Hence, the point x, can be written
as the ratio of two linear combinations.

Rewriting the relationships in terms of a homogeneous coordinate system, we
obtain

1 0 0 cosd sinf O)([P
/u) 1 o o0\|0 1 —fl|-sinf® cos8 0||9].
o 1/ 1)Jlo o 1JL o 0 1)1

Perspective ~ Translation
projection to image line

it

Rotation of axes
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Dividing u by v there results x,:

pcosf + gsinf
— psin@ + gcosf’

U
X, = —=
==

III. THE PERSPECTIVE TRANSFORMATION IN 3-D

The perspective transformation in 3-D parallels the general perspective
transformation in 2-D. To obtain the image frame coordinates for a given point in
3-D space, we first translate this point to a 3-D coordinate system centered at the
lens of the camera. Then we rotate the coordinate system so that its x—z plane is
parallel to the desired image x—z plane. Finally, the coordinates in the image are
then obtained by translating the rotated coordinate system along its y axis to the
desired location of the image and taking the perspective transformation to it.

We do this using a homogeneous coordinate system, assuming an arbitrary
position and orientation of the lens. Let

x
Z
be the original coordinates of a point in 3-D space and
()
ZI

be the coordinates of the perspective projection of
x

y )
s

X, %
Yi
£y

in the image. Let

be the position of the lens in the original coordinate system. Assume the lens is
pointing down the y axis in a new coordinate system obtained by rotating the x—y
plane through an angle 8, rotating the y—z plane through an angle ¢, and rotating
the x—z plane through an angle V. # is called the camera pan angle, ¢ is called the
tilt angle, and ¥ 1s called the swing angle. First we consider the case where ¥ = 0.
Figure 3 illustrates the geometry of the situation. We obtain from Fig. 4 the
perspective transformation:

x"y _ f
(z’) — (x — x;)sinfcos¢p + (y —y,)cosbcose + (z — z,)sin¢
(x — x;)cos@ + (y — y,)sin8
« (x — x,)smOsm«p- - )
— (¥ —y)cosfsin¢
+(z — z,)cos ¢
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2‘1\
y'
-
’/
v ]
P > x

Fic. 3. The reference frame for camera and the reference frame for the perspective image plane
when ¥ = 0.

Perspective Translation Translation to
Projection to Image Rotation by ¢ and ¢ Center of Lens
1000 100 0 cosa §ing 0 0 1.0 0 -x, X o
0010 o1 0-f -cos¢ sing cos¢ €O0sB sing 0 010 -y Yoo (7%
0 LI a0 10 sing sing  -sing cose cos¢ 0 001 -z, z e
f g 0 0 1 0 0 0 1 000 1 1
*
and x' =§—*; z' = i—:
(x - x,) coso + (y - y,) sine
Then x' = f . .
-Ix - xg) cosp sing + (¥ - ym) cosp cose + (z - Zy.) sing
(x - "1) sing sing - (¥ - ym} sinp cose + (z - z,) cose
z' =

fT(x - xk) COS¢ sing + [y - yl) cosp cosé * (z - z,) sine

FiG. 4. How the homogeneous coordinate representation can be used to obtain a 3-D perspective
transformation. First the original coordinate system is translated to the center of the lens. Then the x-y
axes are rotated by @ and the y—z axes are rotated by ¢. These coordinates are translated down to the
image plane and the perspective is taken to it.
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To determine the new representation after rotating the x—z axes by ¥, let (jf” )

be the coordinates after rotation by ¥. Then
(x”) _ ( cos¥ sinV¥ )(x’) )
24 —sin¥ cosW¥/\z' )

IV. PROPERTIES OF THE 3-D PERSPECTIVE TRANSFORMATION

The two most important properties of the 3-D perspective transformation is the
way lines in the 3-D world relate to lines in the image plane. They are: (1) lines in
the 3-D world transform to lines in the image plane and (2) parallel lines in the 3-D
world meet in a vanishing point in the image plane. In this section, we give the
basis for these properties and derive the equations which relate the positions and
directions of lines in the 3-D world to their slopes in the perspective image plane.

IV.1. Lines to Lines

Lines in the original 3-D world correspond to lines in the image plane. To see
this, let p, and p, be two points in the 3-D world. The line passing through p, and
p, consists of all points having the form Ap, + (1 — A)p, for some constant A. Let
the perspective projection of p, and p, be

¥ ul/wl) i (uz/Wz)
(91/“’1 0/ W, ’

where for some matrix T,

u U,
vy | = Tp, and 0y | = Tp,.
L 4 L)

. . . LN i - a .
The exact nature of the matrix 7 is not important in this discussion. We only
need to use the fact that 7 is a linear operator. Hence,

T(Ap, + (1 = X)p,) = ATp, + (1 — A\)Tp,

u U
=Nt | +(1—-A) v .
Wi Wy

The line in the image plane passing through .
w,/wy U,/ w
: ( W/ 1) i ( 4 2)
A v/ W 0/ Wy
consists of all points of the form

n(ul/wl) + (1~ n)(%/wz),

v/ w v,/ Wy
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for some constant 7. To show that the perspective transformation of every line in
the 3-D world is a line in the image plane and every line in the image plane
corresponds to a line in the 3-D model, we need to show that for every A there
exists an 1 and for every 7 there exists a A such that the following relationship is
satisfied:

Au, + (1= A)uy U, u,
Aw, + (1 = A)w w

1 2 =a| ) +0=-m)|,
Ao, + (1 = Ao, v, 2
Aw, + (1 = A)w, L wy

It is easily verified that if A is given, then

_ Aw,
T3, + 00— N)wy

And if 7 is given, then

nw, + (1 - "?)Wl

make the required relationship satisfied. Therefore, lines correspond to lines.

1V.2. Vanishing Points

In this section we assume that the rotation angle ¥ = 0. We represent lines in
the 3-D world by their direction cosines. Thus, a line consists of the set of points:

x\|{x Xo a
[()’) (y) = (yo) + ?\(b) for some constant}\].
x/|\z z, <
a
(%)
c

is a vector having unit length (a? + b? + ¢ = 1) and is the direction cosines of the
line. We say that two lines are parallel if they have the same direction cosines.

Two parallel lines in the 3-D world will converge to one point on the image. This
point is called a vanishing point. To see this, substitute

Bl

for x, y, and z in the equation given for the image coordinates (x’,z") in terms of

The vector
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the 3-D world coordinates (x,y,z) (see Fig. 4). We obtain

(xg +Aa—x,)cos@ + (y, + Ab — y,)sin@
— (xy+ Aa — x,)cospsinf +
(yo + Ab — y;)cosdpcos@ + (z5 + Ac — z,)sin¢

X' =

(xy +Aa — x,)singpsinf —

(yo + Ab —y)sinpcosf + (zy + Ac — z,)cos ¢
— (xo+ Aa — x;)cospsinf + '
(yo +Ab — y;)cospcosf + (z, + Ac — z,)sing

2 =f

Now take the limit as A goes either to + oo or —oo. We obtain

acosf + bsinf
—acososinfl + bcospcosf + csing’

x' = f

(3)

asingsinf — bsingpcosf + ccos o
— acos¢sinf + bcospcosl + csing

2 =f

(4)

Note that x’ and z’ depend only on the direction cosines of the line and the
orientation of the new axes relative to the old ones. There is no dependence on the
point

X0
Yo
Zp

through which the line passes. Hence, parallel lines in the 3-D world will converge
to one point on the image.

Some care is required for the physical interpretation of why both ends of the line
seem to converge to the same image coordinates since the limit as A approaches
+oc and — o is the same. Refer to Fig. 5, which illustrates the situation for a
two-dimensional perspective. Equations (3) and (4) say that the perspective
projection of the line ends is independent of any point through which the line may
pass. Hence, the given line L and the line L’, which is the line L translated so that
it passes through the origin, have the same vanishing point as shown in figure. Let
us suppose, without loss of generality, that the sense of the direction cosine vector
is such that A — + oo brings us to the top end or limit of the line and that
A — — oo brings us to the bottom limit of the line. Note that the top limit of the
line is in front of the lens so that as A — + oo we are discussing a situation that our
camera can see. The bottom limit of the line is behind the lens so that as A — — o
we are discussing a situation that our camera cannot see. The distinction about
what the camera can see and cannot see is purely a physical interpretation of the
geometrical model. For if we interpreted the image plane to be behind the lens
rather than in front of the lens, then the vanishing point shown in Fig. 5 would
correspond to the A - — oo limit of the line. '
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Vanishing point N ks

)

Fi1G. 5. The vanishing point for all lines in the parallel set shown.

It is easy to tell which limit of a line is in front of the lens. Let

d
e

b

be a unit length vector of the direction cosines indicating in what direction the lens
is pointing. Let the direction cosines of a line be

[2)

If the dot product

d
e| =ad + be + cf

F

o TR

is positive, then A — + oo is the limit of the line in front of the lens. If the dot
product is negative, then A — — oo is the limit of the line in front of the lens and
A — + co is the limit of the line behind the lens.

Equation (4) reduces to the especially simple form z’ = 0 for all lines in some
z = k (direction cosines of the form (a, b, 0)) plane when the camera tilt angle ¢ is
zero. Because in an outdoor picture, taken with zero tilt angle, the horizon appears
as the z’ = 0 line, the z’ = 0 line is called the horizon line. This means that
vanishing points for parallel horizontal lines must lie on the horizon line.

There are three vanishing points of particular interest and they correspond to
lines parallel to the original x—y—z axes. The direction cosine for lines parallel to
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)

and the vanishing point for all such lines is

the x axis (horizontal lines) is

—1
(f:) = f| cosptand |. (5)
— tan¢

The direction cosine for lines parallel to the y axis (depth lines) is

0

1

0
and the vanishing point for all such lines is

tan @

(xD)=f cose | (6)

Zp
— tan¢

Note that these equations imply zy = zp and —xp/xy = tan*@. The direction
cosine for lines parallel to the z axis (vertical lines) is

E’}

and the vanishing point for all such lines is

()-A80)

Note that Egs. (5) and (7) imply that

f=Vl]zuzy| .

V. IMAGE COORDINATES TO 3-D COORDINATES

The 3-D part of the analysis of a 2-D image of a 3-D world seeks to answer the
following question: Where does each point on the image come from in the 3-D
world? To determine the 3-D coordinates corresponding to any perspective
projection point on the image, the camera parameters must first be determined.
Then the 3-D coordinates can be obtained by the inverse perspective transformation
in conjunction with some additional information.
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In this section we show how to use the lens focal length equation and the
coordinates of the observed vanishing point(s) to determine the camera parameters.
Then we develop the inverse perspective transformation and show how knowledge
of the relative position of points in the 3-D world can be used in conjunction with
their perspective projection to determine their actual coordinates. Finally, we show
how the direction cosines of lines on the image relate to their corresponding lines in
the 3-D world. Specializing this relationship to lines parallel to one of the axes and
lying in an x, y, or z = k plane, we give the equations which relate the parameter k
to the camera parameters and direction cosines of the line on the image.

V.1. Camera Geometry

One of the camera parameters is the distance f that the image is in front of the
lens. This parameter can be determined from elementary camera geometry, which
is illustrated in Fig. 6. To do this we assume that the focal length F of the camera
lens is known, the size I of the image is known, and the size N of the negative
which the camera originally created is known. Let D be the distance behind the
lens that the film is located. The focal length equation is

1 1 1
-15 *':? = };. (8)
Letting M be the magnification, we have
Ir_Jf
M= ~¥=-D

Substituting D = f/M into the focal length equation, we obtain

IS

~l
=

Camera
Lens

Negative N

t I Image

!
1
|
I
I
|
|

<— D—> f "

1
L
I
|
|
|
I
|
M 1
| |
| |
| !
1 1
! |
! |
t |

|
|
|
|
|
1
1

Fig. 6. The camera geometry for a lens of focal length F. The focal length equation is:
1/D+1/f=1/F.
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Solving this equation for f yields
f=(M+ 1)F. 9)

Hence, the magnification of the image with respect to the film and the focal
length of the camera lens can determine the distance fin front of the lens which the
image is located.

V.2. Vanishing Point to Camera Parameters

For convenience, we take the origin of the original 3-D coordinate system to be
the center of the camera lens. Following our convention, we let f be the distance in
front of the lens that the perspective x—z image plane is located. Let the pan and
tilt angles of the camera be # and ¢, respectively, and the x—z rotation angle be ¥.
We initially assume that ¥ = 0 and then we generalize some of our results.

First, suppose that f is known. If the horizontal vanishing point is known, then
from Eq. (5),

tang = —zy/f (10)

and
tanf = z/ (xysing). (11)

If the depth vanishing point is known, then from Eq. (6),
tang = —zp/f (12)
and
tanf = (xp/f)cos ¢. (13)

If the vertical vanishing point is known, then from Eq. (7), only the angle ¢ can be
determined: :

™.

tang = f/z,. (14)

Next, suppose that f is not known, that ¥ is not guaranteed to be zero, but both
the horizontal (xg,zy) and depth (xj,z,) vanishing points are known. Then by
rotating the x-z axes by —¥ we can obtain vanishing points for an image whose
swing angle is 0. The vanishing points in the rotated axes are given by

xg\ _[cos¥ —sin¥\[xy
Zy sin ¥ cosV¥ i\ zyy

i (xb) _ (cos‘l' - sin‘P)(xD)- (15)

Zp sin ¥ cosV/\ zp,

Hence, by Egs. (10) and (12),

xysin¥ + z cos ¥ xpsin¥ -+ zcos ¥
tang = — ol -

/ f
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Solving this equation for ¥, we obtain

H™ *p

Once ¥ is known, f, 8, and ¢ can be determined using the rotated vanishing
points (xy, zy) and (xp, zp) from the rotated axes. From Eqgs. (11) and (13),

__ . _*
tanf = g COs . (17)

Hence,

’ ’

XpX )
f= D Hcosqssmgb.
z

’

H

But by Eq. (10), f= —zy/tan¢ = (zj;cos¢)/sin¢, and putting these two equa-
tions together, we obtain

; 1
sing = zy ,—xi{- i (18)
D

With ¢ known, Eq. (17) gives

’

Z
tanf = —2—— = gign( x|
X}y Sin ¢ gn(xy)

/
Xp

/

H

(19)

When the vertical vanishing point is known, then ¥ can be determined by
noticing that from Eq. (7):

(xv) _ ( —sinqrfcot¢)
Zy cos¥fcotgp /'
Hence,

tan ¥ = —x/zy. (20)

When the horizontal and vertical vém’shing points are known, the distance f can be
determined using Egs. (5) and (7):

f=VI(xusin¥ + z, cos ¥)(xysin ¥ + zy cos ¥)| . (21a)

Similarly, when the depth and vertical vanishing points are known, the distance f
can be determined using Eqs. (6) and (7):

f= \/|(xDsin‘If +zpcos¥)(xysin¥ + zycos¥)| . (21b)
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V.3. The Inverse Projective Transformation

Each point (x’,z’) on the image can be the perspective projection of many points
in the 3-D world. All of the points having perspective projection (x’,z’) must be
located on a line emanating out of (x’,z") and passing through the lens. It is the
purpose of this section to give a representation for that line so that in the next
section we can use that representation in order to develop some of the relationships
between points in the 3-D world and points on the image.

For convenience, we take the origin of the original 3-D coordinate system to be
the center of the camera lens. Following our convention, we let f be the distance in
front of the lens that the perspective x—z image plane is located. Then with respect
to the rotated reference frame whose origin is at the lens, the point (x’,z’) on the
image is the point (x',f, z) in the 3-D world. Since we desire our representation to
be in terms of the original reference frames, our first problem is to express the
point (x’,f,z") in terms of the original coordinate system.

Suppose that the pan, tilt, and swing angles of the camera are #, ¢, and ¥,
respectively. Then the rotated reference frame is obtained from the original
reference frame by rotating the x—y plane by # and then rotating the y—z plane by ¢
and then rotating the x—z plane by ¥. To express (x',f, z) in terms of the original
reference frame, we just need to undo these rotations. First, we have to rotate the
x-z plane by — W, then rotate the y—z plane by —¢, and then the x—z plane by — 8.

With respect to the original coordinate system, let (u, v, w) be the coordinates of
the point (x',f, z"). Then

u cos§ —sinf 0][1 0 0 cos¥ 0 —sin¥][x’
v| =|sinf cosf 0||0 cos¢ —sing 0 1 0 f
w 0 0 1|0 sing cos¢|sin¥ 0 cosV¥||z’
cosfcos¥ + sinflsingsin¥ — sinflcoso sinfl sin¢ cos ¥ — cos#sin ¥
= |sinflcos¥ — cosfsingsin¥ 4+ cosfcosd — cosfsingcos¥ — sinhsin ¥
cos ¢ sin ¥ sin ¢ cospcos ¥
xf
fl @
z!

Since the lens is the origin, a line passing through the lens and the point (u, v, w)
consists of all multiples of (u, v, w). Hence, the line whose perspective projection in
the image is (x’,z’) consists of the points

X X U
{()’) (y) = )\( 0) for some constant)\}.
z

z w
To simplify our further analysis, we assume that the angle ¥ = 0. We may do
this without loss of generality since if (x”,z") is the point on an image whose x—z




206 ROBERT M. HARALICK

Zl’ sin ‘1’ COs

we obtain the coordinates (x’,z’) of the point on an image whose x—z rotation
angle ¥ is zero. With this assumption, the line whose perspective projection in the
image is (x’,z") consists of the points

()

V.4. Using the Inverse Perspective Transformation

X x'cosf — fsinfcosp + z'sinfsing
(y) =3 )\(x’smﬂ + fcosfcosp — z’cosBsiu¢)for some ?\}.
Z fsing + z'cos¢

The inverse projective transformation gives us a representation of 3-D points in
terms of 2-D points. This representation is useful in a number of ways. In this
section we assume that the swing angle ¥ is zero and that the camera lens is the
origin. We discuss:

(1) how certain useful planes in the 3-D world project to a line on the image;

(2) how the perspective projection (x’,z") of a point (x, ¥,z) can be used to
determine two of its coordinates when a third coordinate is known;

(3) how the perspective projections of two points known to have a common
but unknown value in one coordinate can be used to determine the value of the
common coordinate when the relative positions of the points in the 3-D world are
known; and

(4) how the perspective projections of three points known to have a common
but unknown value in one coordinate can be used to determine the camera
parameters f, 8, and ¢ as well as the actual coordinates of the points when only
their relative positions are known.

The horizontal line on the image which is the perspective projection of the plane
of eye-level points is easily determined. Since the camera lens is the origin, eye-level
points have z coordinates which are zero. Hence,

0 = A(fsing + z'cos¢) for all A.

This implies that

, _ —fsing =
ey ftané. (23)

Therefore, all eye-level points in the 3-D world will have a perspective projection
whose z’ coordinate is —ftan ¢.
Likewise, the perspective projection of the plane x = 0 is a line on the image
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consisting of the points,
{(;‘:)IO=x’cosB—fsin900s¢+z’sin9sin¢}, (24)

and the perspective projection of the plane y = 0 is a line on the image consisting
of the points,
()
z!

Another use of the inverse perspective transformation is for using the perspective
projection (x’,z") of a point (x,y, z) to determine two of its coordinates when the
third is known. For example, suppose the z coordinate of a point whose perspective
projection is (x’,z") is known. If fsin¢ + z'cos¢ # 0 so that z 5 0, it is possible
to determine the 3-D x and y coordinates of the point from (x’,z"). Set

0=x'sinf +fcos9cos¢—z’cosﬁsin¢}. (25)

z=A(fsing + z'cos¢)

and solve this equation for A.

z
"~ fsine + z'cosd

Now substitute this expression back in the equations for x and y. We obtain

ez X cosg—fs_macosg’b+z smﬁsmqb, (26)
fsing + z'cos o

y=zx sin 8 +ch)s€cosq?—z cosf)smq). @7)
fsing + z' cos¢

In a similar manner, if the y coordinate is known and nonzero, we obtain

LY

x"cosf — fsinficos¢ + z'sinfsing

Y sing + fcosf@cos¢ — z' cosBsing’ (28)

_ fsing + z'cos¢
2=V sing + fcosfcosgp — z'cosfsing 2

And if the x coordinate is known and nonzero, then
x'sinf + fcosfcosdp — z' cosfsing (30)

x'cosf — fsinfcosdp + z'sinfsing ’
fsing + z' cos¢

z=x (31)

x'cosf — fsinflcos¢ + z'sinfsing

If two points in the 3-D world are known to have a common value in one
coordinate, these equations allow us to determine that common value if we know
the difference between some other coordinate of these points. For example, if
(xy,¥,2,) and (x,,y,,2,) are two points satisfying z, =z, =z and whose
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perspective projections are (xi,z{) and (x3,z3), and if the difference x; — x, is
known, then

xjcosf — fsinflcos¢ + zjsinfsing
Sfsing + z{cosd

X T X = Z

x5cosf — fsinfcos¢ + z;sinfsing
fsing + zicos¢

If (x, — x,) # 0, then by collecting terms and solving for z by dividing by an
expression guaranteed to be nonzero, it follows that

(x, — x,)( fsing + z{cos)( fsing + z3cos¢)

z= : : :
(x] — x5)fcos@sing + (z] — z5)fsin@ + (xjz; — xjz7)cosfcos ¢

(32)

If the difference y, — y, is known and nonzero, then

L (71 = »)(fsing + zjcos §)(fsing + z;.cos¢) )

(x} — x3)fsingsind — (z; — z3)fcosf + (x{z; — x,z!)sinfcos ¢

If the coordinate having common value is y and the difference x; — x, is known
and nonzero, then

(x, — x;)(x}sin@ + fcosf@cosp — zjcosfsing)-
(x}sin® + fcosfcos¢p — z5cosfsin¢)

= 34
d i = x3)foosd + (x37} — xiz3)sing )
If the difference z, — z, is known and nonzero, then
(zy — z,)(x}sin@ +fcosfcos ¢ — zjcosfsing)-
(x4 sinf + feos@cosf — z5cos@sin¢)
y = : (35)

© — (x} — x})fsinfsin¢ +
(z; — z5)fcos@ + (—xyz5 + x3z])sinfcos

If the coordinate having common value is x and the difference y, — y, is known
and nonzero, then

(7, = »)(xjcos® — fsinfcos¢ + zjsinfsing)-
(x5cosf — fsinfcos¢ + z5sinfsine)

T T (%) = xy)fcose + (xjz5 — X4z))sin (36)
If the difference z; — z, is known and nonzero, then
(z, — z,)(x}cos® — fsinfcos$ + z{sinfsinf)-
. (xécosB—fsinGcosnp+z§sin05in¢a). (37)

— (xy — x5)fcos@sing —
(z; — z3)fsin@ — (x1z5 — x5z{)cosfcos ¢
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Thus, we have shown that when f, #, and ¢ are known and the lens is the origin,
then the perspective projections of two points which have known and nonzero
difference in one coordinate and unknown but common value in another coordinate,
comprise sufficient information to recover the values for each of the coordinates of
the points. The recovery is achieved by using one of the second set of equations
(Egs. (32)-(37)) to determine the common coordinate value and then using two
appropriate equations from the first set of equations (Egs. (26)-(31) to determine
the remaining coordinate values for each of the two points.

We close this section by showing how the relative positions of three points to one
another in a z = k plane, where k is unknown, is sufficient to determine the actual
coordinates of the three points, as well as the camera parameters f, 8, and ¢.

Suppose

Xp)(*2)[*3

Yij|Yal| Vs
Zl 22 Z3

are three points with common z coordinates so that z, = z, = z;. Suppose further
than x, # x, # x4 and y, # y, ¥ y5. Then

(x; — x;)(fsing + zjcosd)( fsing + z5cos¢)
(x} — x5)fcos@sing + (z; — z3)fsin8 + (xjz5 — x3z;)cosf cos ¢

(»1 —2)(fsing + z{cos$)(fsing + zjcos¢)
(x] — x5)fsingsin® — (z; — z3)feos @ + (x}z5 — x3z])sinfcos

38
_ (x, — x3)( fsing + zjcosd)( fsing + z5cos ) B
(x5 — x3)fcoslsing + (z5 — z3) fsin@ + (x5z; — x3z5)cosfcos ¢

_ (y, = »3)(fsing + zjcos )( fsing + z3cos ¢)
(x} — x4)fsinesin® — (z, — z3)fcos @ + (x4z3 — x4z} )sinBcosd

These three equations allow the determination of the parameters f, #, and ¢.
(Unfortunately, these equations are highly nonlinear.) Nevertheless, once f, 8, and
¢ are known, the common value for the z coordinate can be determined as before
and from it the x and y coordinates can be determined. This means that knowledge
of the relative positions of three points on a z = k plane where k is unknown is
sufficient to determine the camera parameters f, #, and ¢ and from them the
coordinates of each of the points.

V.5. Using the Perspective Transformation

Two points in the 3-D world determine a line. As shown in Section IV.1, this line
in the 3-D world projects to a line in the image. In this section we determine the
relationship between the parameters of the line in the 3-D world and the direction
cosines of the line in the image. We do this using the perspective transformation of
Section ITI assuming that the swing angle ¥ is zero and that the camera lens is the
origin.
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Recall that if (u, v, w) is a point in the 3-D world and (x, z) is the coordinates of
the perspective projection of (u,v,w), the perspective projection (x,z) is given by

(x) - ¥
z — ucospsind + vcosdpcosf + wsing

ucosf + vsinf (39)
usinfsin¢ — vcos#sing + wcoso |

We represent the line in the 3-D world in its direction cosine form. A line passing

through the point (xg,¥o,2,) and having direction cosines (a,b,c) consists of the

points,
x\|{x X a
{(y) (y) = (yo) + A(b) for some constant?\].
z z ZO C

Let (x,,2,) and (x,,z,) be the perspective projection of the points (x4, Zo) +
A (a,b,¢) and (x40, 20) + Ayx(a,b,c), respectively. Then the direction cosines
(m, n) of the line on the image satisfy

(x, — x)n=(z, — z;)m. (40)
Substituting (xg, ¥, Zo) + A(a, b,¢) and (xg,¥q,20) + A,(a, b,c) into the perspec-
tive projection equation (1), and determining x,, x5, z;, and z,, we obtain
[cos ¢ (ay, — bxy) + cosfsing(azg — cxy) + sin@sing(bzy — cyp) |7
=[sinf(az, - cxo)@cosf)(bzo - )] m-
Upon rearranging this equation there results:
xo[ —nbcos¢ — nccosfsing + mcsin 0]

+ yo[ nacos¢ — ncsin()sin:p@)mg;os&]

+ zo[ nacos@sin¢ + nbsin@sin ¢ S mbcosf — masinf] = 0. (41)

This equation is useful in a number of ways. For example, if the direction cosines
of a line in the image can be measured and if two out of the three coordinates
(xg>Y0sZo) are known, then Eg. (41) allows the determination of the third
coordinate. Perhaps more interesting is Eq. (41) specialized for lines which are
parallel to the x or y or z axes. The direction cosines for all lines parallel to x axis is
(a,b,c) = (1,0,0). For these lines,

Yo[ ncos¢] + zo[ ncosfsing — msinf] = 0. (42)
For lines parallel to the y axis, (a,b,¢) = (0, 1,0) and

xo[ —ncos] + zof nsin@sin (- mcosf] = 0. (43)
.".
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For lines parallel to the z axis, (a,b,c) = (0,0,1) and

xo[ —ncosfsing + msin ] + yo| —nsianintpf}_‘}mcosG] =0. (44)

These equations imply that for lines parallel to the axes, knowledge of one of the
coordinates of the point (x,,y0,2,) is sufficient to determine one of the other
coordinates. These equations also allow relative position information of two
parallel lines to determine one of the coordinates of the point (xg,y,,24). For
example, let (x,,¥;,2,) + A(1,0,0) and (x,,y,,2,) + 1(1,0, 0) be two lines parallel
to the x axis. Suppose that these lines lie in the plane z = z,. Hence z, = z, = z,.
Let the direction cosines of the perspective projection of these lines be (m,,n,) and
(m,,n,), respectively. Then, from Eq. (42),

yyn,cosé + zo(n,cosfsing — m,sind) =0
and

yanycos¢ + zo(n,cos@sing — m,sinf) = 0.
Solving this pair of equations for z, in terms of (y, — y,) we obtain

_ (y1 = y2)nynycos ¢
(myn, — myn,)sinf

(45)

Zp

Hence, the common z coordinates for these two parallel lines is proportional to the
difference in their y coordinates. Knowledge of the difference of the y coordinates
is sufficient to determine the common z coordinate.

In a similar manner, if the lines (x,,y,,z;) +A(1,0,0) and (x,,5,,2;)
+ 71(1,0, 0), which are parallel to the x axis, lie in the plane y = y,, then

(zy — z)(—n,cos@sing + m,sind)(—n,cosfsing + m,sinf)
Yo = . (46)
(myn, — mn,)sinfcos¢

If the lines are (x,,y,,2,) + A(0,1,0) and (x,,y,,2,) + 1(0, 1,0) (parallel to the y
axis) lie in the plane x = x,, then

..:!" V_%;,A
(2, — z,)(+n,sin@sinp=im, cos@)(n,sindsin ¢ —m,cosf)
X = . (47

~(myn, — myn;)cosf cos ¢
If these lines lie in the plane z = z,,, then

(x, — x,)cospnn,

z (48)

¢ i(mzn] — mn,)cosf’

If the lines are (x;,y;,z,) + A(0,0,1) and (x,,y,,2,) + 7(0,0, 1) (parallel to the z
axis) lie in the plane y = y,, then

(x; — x,)(n,cos@sing — m,sinf)(n,cosfsin¢ — m,sinf)

(myn, — mn,)sin ¢ (sin®-f—=c0s2f)

Yo = (49)
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If these lines lie in the plane x = x, then

(¥ = »2)(n,sinfsin¢ f%}mlcosB)(n2sinE)sin«p{:}mzcosB) (50)
Xg = .
0 = (myn, — mn,)sin ¢ (eosfe=sint-f-)

Hence, knowledge of the distance between two parallel lines lying inax,y, or
z = k plane and knowledge of their direction cosines on the image is sufficient to
determine the parameter k of the plane.

If the rotation angle ¥ is 0, then if three edges which are known to be mutually
orthogonal meet at coordinates (x¢,Vq,Z), then the direction cosines of these lines
on the image are sufficient to determine a relationship between the ‘angles 8 and ¢.
We assume here that the camera rotation angles 8, ¢, and ¥ are relative to a
coordinate system whose axes are parallel to those edges known to be mutually
orthogonal.

Let (m,,n,), (m,n,), and (m;,n;) be the direction cosines on the image of the
three orthogonal lines passing through the point (xg,y,2o)- By Eq. (42), (43), and
(44),

0 n;cos ¢ n,cosfsing — m,siné
— n,CO8¢ 0 n,sinf#sing — m,cosd
— nycosfsing + mysind  — nysin@sing + mycosé 0

Xy 0
Yol =101,
Zo 0
This implies that the determinant of the matrix must be zero. Setting the determinant

to zero and solving for sin ¢ there results

my(nym, — mn,)sinf cosf

sing =

(51)

ny(nymy — myng)sin? @ + ny(myns — n,m,)cos?f

V.6. Models

We sometimes have knowledge about the 3-D objects appearing on a 2-D image.
Man-made objects are often rectangular parallelpipeds or some other regular
geometric shape. In this section we illustrate a few techniques which can be used to
determine camera parameters as well as object dimensions with this kind of
knowledge.

Following Roberts [5] we define a model to be the canonical form of a known
3-D object. The model consists of the ordered pair (P, R) where P = {p,,... PN}
is a set of three-dimensional vertices and R is a relation, R C P X P, which
contains all the pairs of vertices in P which could be connected by a visible edge in
the 3-D object. Using a screening and searching process, it is possible to scan the
image and select a set Q = {q,,...,qy} of two-dimensiona] coordinates which
have a possibility of being the perspective projection of some of the points in P and
determine a set S which contain pairs of points of @ which have visible edges
between them on the image. Then with a tree search, the topological correspondence
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or matching f between the points in Q and points in P can be established. Such a
correspondence must be a relation homomorphism from § to R. It satisfies
SefC R, where the composition ° is defined by S f= {(b,,b,) E P X P| for
some (a,,a,) € 8, b, = f(a,) and b, = f(a,)}. Hence, if a, and a, are a pair of
points on the image which have an edge between them, then f matches them to a
pair of points b,, b, in P which by the model can have a visible edge between them.
Once the correspondence is established, we may let A be a 4 X M matrix whose
columns are the points f(q,),...,f(qg,,) and whose last row consists of all ones:

| | [
flay) flgz) - flay)

| | |
1 1 1

A=

A is the matrix whose columns are the coordinates of some of the points in P
expressed in a homogeneous coordinate system so they have a fourth component.
Let B be a matrix whose columns are the points in Q expressed in a homogeneous
coordinate system.

Let T be the 3 X 4 transformation which scales the points in P to their true
dimension, rotates the camera coordinate system, and takes the perspective
projection to the image plane. The relationship among 4, B, and 7 is given by

TA = B.

As done by Roberts [5], this equation can be solved for T using a standard
least-squares approach. The normal equation is

T = BA'(A4")™"
and the squared error of the fit is given by
| B(1— (A4'(44)7"4)|1%

If the fit is bad (high error), then the hypothesis that the observed object can be
modeled by ( P, R) is rejected. If the fit is good (low error), then the hypothesis that
the observed object can be modeled by (P, R) is not rejected. In this case, the
camera parameters and object dimensions can be obtained from 7 in the following
manner.

The transformation T consists of an independent scaling of x—y—z in the original
coordinate system followed by a translation which places the (0, 0, 0) point of the
object at new coordinates (xq,¥y,z,), followed by a coordinate rotation @, ¢, and
¥, a translation by f down the y axis and a perspective projection to the image
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plane.
1f1 0 0 Olla & ¢ O
T=(l)g(l)3010—fghi0
0 01 0||j kK I 0
~01/f0]‘00010001
(1 0 0 x,){d, 0 0 0
0 1 0 y»||0 4 0 0
0 0 1 z||0 0 4 Of
(0 0 0 1Jl0 0 0 1
where
a b ¢ 0
g h i 0]
jkl()—
0 0 0 1

cos ¥ cos @ + sin ¥ sin ¢ sin § cos ¥ sinf — sin ¥ sin ¢ cosf sin¥cos¢ O
—cos¢sinf cos¢pcosd sin ¢

—sin¥cosd + cos ¥singsin@ — sin ¥sinf — cos ¥ sin ¢ cos § cosWcosep O

0 0 0

Upon multiplying these matrices we obtain

da d,b dye x'o
T=\|d,j dyk dyl z%
dig/f dyh/f dyiff ¥'off

b

where (x'y,5’y, 2'y) is (xg,), Z) expressed in the coordinate system. Recovery of
the scaling and translation transform and coordinate rotation parameters can be
obtained by premultiplying 7.

I 0 0 dia d,b die x'
0 0 f|T=|dig dyh dyi y,|.
0 1 0 dj dk dyi =z,

The rotated translation parameters x,, ¥, and z, appear in the last column. Now
notice that since the matrix

c

~R R
= oo

[

is a rotation, it is an orthonormal matrix. Hence, upon taking the square root of the
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sum of the squared entries of the first three columns of
1 0 0
0 0 f|T
0 1 0

we obtain the scaling parameters 4|, d,, and d,.

V(dia) + (dyg)* + (d,j) = di(a® + g + ) =d,,

W(ds) + (dyh) + (dyk) = \d3(b* + B> + K?) =d,,

V(dse)? + (dsi) + (sl = a3 (c? + 2+ 1?) =dj.

By postmultiplying by the inverse scaling transformation, there results the rotation
matrix;

it 00 ;
1 00 i a c
o flr| 0@ 4 0 g h il
o1 0 |0 0 j k1
0O 0 0

The angles @, ¢, and ¥ can be obtained from simple trigonometry. The equation
i = sin ¢ determines the angle ¢ to within its sign. Then

— g/cos¢ = sinf and h/cos¢ = cosf
c/cos¢ = sin¥ and l/cosd = cosW

determine # and ¥ exactly. The proper sign for ¢ can be determined by checking
the values for # and ¥ in one of the entries a, b, j, or k.

VI. EXAMPLES

In this section we discuss two example uses of the equations developed in the
earlier sections. Our first example comes from an agricultural problem: given a
close-up view of some rows of plants, determine their height. Our second example
comes from robotics: given an image of a rectangular parallelpiped, determine the
camera parameters and the coordinates of the corners of the rectangular parallel-

piped.
VI1. Example 1

Figure 7 illustrates an image of a couple of rows of small cotton plants. The
image is taken with a 35-mm camera having a 50-mm lens. The problem is to
determine the height of each cotton plant. The only additional information known
is that the cotton rows are parallel with a distance between them of about 38 in.
and a spacing between plants of about 7 in. We assume that whatever point on the
plant we choose for its top, that point lies vertically above the base of the plant.
The camera parameters f, 8, ¢, and ¥ are all unknown.
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(mT ’"T) direction cosines of L,

v

p,® —0
1 ]q1
2

(mz,nz) direction cosines of L,

FiG. 8. The variables involved in the example image.

Figure 8 illustrates with an exaggerated perspective drawing the known and
unknown information on the example image. The lines L, and L, are parallel in
the 3-D world and are of known distance apart. The lines L, and L, and the points
P1, Py, and g, all lie in the same z = & plane, where & is unknown. The line passing
through p, and p, is parallel to L, and L,. In the 3-D world, the point g, lies
vertically above the point ¢,. The problem is to find the distance between g, and
q;

Our analysis proceeds in the following way. The distance f which the image is in
front of the lens can be easily obtained from the camera geometry. The size of a
35-mm negative is known and the size of the image is known. This determines the
magnification M. The focal length F of the camera lens is known. Then, by Eq. (9),

f=(M+1)F.

The remaining camera parameters #, ¢, and ¥ are more difficult to obtain. By
extending the parallel lines L, and L, until they meet, we can determine the image
coordinates of a vanishing point. For convenience, we take the lens as the origin of
the 3-D coordinate system and take the x axis of the 3-D coordinate system to be
parallel to the lines L, and L,. We take the ground to be a z = k plane, where k is
unknown. Let the vanishing point coordinates be (xy,z;;). Equations (10) and
(11), which relate the horizontal vanishing point coordinates to the camera pan and
tilt angles # and ¢, assume that the swing angle ¥ = 0. Therefore, we rotate the x—z
axes by — V¥ to obtain (xy,zy) in a coordinate system in which the x—z rotation

angle is zero:
xu(¥))  [cos¥ —sin¥)fxy
Zy(¥) ) \sin¥ cos¥ J\zy /)

This gives the coordinates of the vanishing point in the rotated coordinate system
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as a function of ¥. With f known, Eqgs. (10) and (11) determine 8 and ¢.

s i1 _Z;-l(\P)
(V) =t —
. zi_l(\lf)
Bl = e X (¥)sing(¥)

Since points p; and p, have the same z coordinate and lie along a line parallel to
the x axis, the directed distance between p, and p, is just the difference in their x
coordinates, x, and x,. With x; — x, known, and the perspective projection of p,
and p, being (x{,z;) and (x5, z), respectively, by Eq. (32), we can solve for their
common z coordinate:

(x; — x,)[ fsing(¥) + z{cosp(¥)]

[ fsing(¥) + z5cosp(¥)]
(x} — x}) feos@( ¥ )sing(¥) '
+ (2] — z5)fsin@(¥) + (x{z5 — xjz])cos (¥ )cos o (¥)

2(¥) = (52)

The z coordinate is a function of ¥ which is still not known. However, we can
use the direction cosines (m,, n,) and (m,,n,) of the lines on the image. First, we
need to convert these direction cosines to those in the image whose swing angle is 0
by

(mi(‘lf))
ni(¥)
cos¥ —sin¥ \({m, " m5(¥) cos¥ —sin¥ \fm,
= ans = .
sin ¥ cos¥ J\ n, v \n5 () sin ¥ cos¥ J\ n,

Then, using the fact that the directed distance from line L, to line L, is d,, and the
fact that three parallel lines in the same z = k plane as the points p, and p,, we
have by Eq. (45),

dy c0s p(¥ )i (¥)n;y(¥)

z2(¥) =— - - - - ;
(m{(F)n5(¥) — my(¥)n (¥)sin 6(¥)

(53)

The two equations (52) and (53) can then be solved for the unknown ¥. The
simplest procedure is to partition the —90° to +90° range in which ¥ must lie into
small intervals, say 5°, and do a binary search for a zero of the function which is
the difference between the two expressions for the z coordinate. Once ¥ is known,
then # and ¢, as well as z, becomes known.

Let ¢, = (u,,v,,w,), where w, is the common value for the z coordinate of the
lines L, and L, and the points p,, p,, and ¢,. Let (r;,5,) be the coordinates of ¢,
on the image and let (r,,s,) be the coordinates of g, on the image. Express these



PERSPECTIVE TRANSFORMATIONS 219
coordinates in terms of a reference frame which is rotated by —¥. This gives
ry cos¥ —sin¥\(r ry cosV —sin¥\fr,
(s;)=(sin\lf cos\I’)(s,) and (s§)=(sin‘1' cos ¥ )(52)'
Now Egs. (26) and (27) allow us to determine the x and y coordinates of the

point g, = (4, v,,w,):

ricosf — fsinfcos¢ + s;sinfsin¢

“1T W fsing + sjcos¢ ’ G4
_risinf + fcos@cos¢ — s{cosfsin¢ (55
< I fsing + s;coso ’ )

Since the point g, is directly above g,, it has coordinates g, = (u,,v,,w,). Its z
coordinate w, can be obtained from Egs. (29) or (31):

B fsing + s;coso (56
Wz—“1r£coso—fsin0cos¢+s§sin95in¢’ )

_ fsing + s3cos¢ 57)
e r;sinf + fcos@cosp — sjcosfsing

The distance which ¢, is above g, is then given by

Wy — Wi (58)

V1.2, Example 2

It is interesting that if an object is only known to have a pair of orthogonal faces
meeting in an edge, the camera parameters and some of the coordinates of the
vertices of the meeting edge can easily be determined. For diagrammatic purposes,
Fig. 9 illustrates an object in which the edges marked 1 and 1’ as well as 2 and 2’

(xg-¥9+2g)

F1G. 9. A rectangular parallelpiped. The direction cosines of the edges 1, 1’, 2, and 2’ are measurable
on the image and the vanishing points determined by 1 1’ and 2 2’ are measurable.
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are parallel. Furthermore, the face 1 1’ is orthogonal to the face 2 2'. The faces
meet in edge 3, which is orthogonal to edges 1 and 2.

Let #, ¢, and ¥ be the camera rotation angles relative to edges 1, 2, and 3. Let
(xp, Zy) be the coordinates of the vanishing point determined by the lines 1 1". Let
(xp,zp) be the coordinates of the vanishing point determined by the lines 2 2.
Then, by Eq. (16),

Zp = n

tan ¥ = .
Xp — *p

Now undo the rotation ¥ be letting the rotated vanishing points be (x},2y) and
(%55 2).

Xy cos¥v —sin¥ xy d XD cos¥v —sin¥ xp
= an =1 . :
Iy sin ¥ cos¥ zy zZp sin ¥ cost¥ zj

By Eq. (18),

By Eq. (10),

And by Eq. (19),
tanf = zyy/ (x};sing).

These equations completely determine the camera parameters.

The x and y coordinates of the ends (xg,¥g,2¢) and (x,,y,,z,) of edge 3 can be
determined in terms of the z coordinate. Let (n,,m,) be the direction cosines of the
line labeled 1. Let (n,,m,) be the direction cosines of the line labeled 2. Let
(n{,m}) and (n, m}) be the direction cosines in a coordinate system rotated by
—¥. Then by Egs. (42) and (43)

—zo[ n}cosfsing — m)sind]

Yo =

?
njcos¢

zo[ nysinfdsing — mycosd]

Xg =
0 [
n2005¢

A similar relationship can be written for the coordinates for the lines 1" and 2
which meet in the corner (x,y,,2,).
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