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Abstract—In his influential work on motion analysis [1], Ullman
showed that for the orthographic case, 4-point correspondences over
three views are sufficient to determine motion and structure of the 4-point
rigid configuration. However, his method is nonlinear and the conditions
of uniqueness and convergence of his algorithm are not made clear. In
this communication, we show a very simple linear algorithm to solve
Ullman’s problem of determining motion and structure from three
orthographic views. We also give necessary and sufficient conditions of a
unigue solution. This research paves the way towards a robust version of
the algorithm which, as a viable and practical means for computing
structure and motion, may have a potential for wide applications.
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I. INTRODUCTION

As is well known, the topic of the motion and surface structure
estimates from multiple views (perspective projections or ortho-
graphic projections) is important to the field of Computational
Vision. In his influential work on motion analysis [1], Ullman
showed that for the orthographic case, 4-point correspondences over
three views are sufficient to determine motion and structure of the 4-
point rigid configuration. However, his method is nonlinear and
conditions of uniqueness and convergence of his algorithm are not
clear. The problem has been re-examined recently by Aloimonos and
Brown [2] and Lee [3]. Noticeably, Lee’s technique is linear using
only vector-matrix equations and vector cross products. An even
simpler linear algorithm is possible. This communication will show
that algorithm and give necessary and sufficient conditions of a
unique solution. Doing so, we develop a useful formula (see (33)) as a
by-product. In terms of this formula we can explain why, given two
orthographic views, the motion and structure of a rigid object cannot
be determined no matter how many point correspondences are used.
This research work paves the way towards a robust version of the
algorithm which, as a viable and practical means for computing
structure and motion, may have a potential for wide applications since
the algorithm requires fewer point correspondences than the well-
known two views-motion algorithms (see Longuet-Higgins [4], Tsai
and Huang [5], Zhuang ef a/. [6]) and since in many practical
situations orthographic views give good approximation to the imaging
processes.

Section II contains the problem formulation. In Section III we show
how to uniquely determine r33, $33, = (r13, F23, 731, 732)s £ (513, 523,
$31, §32) given three orthographic views. In Section IV we show how
to uniquely determine an orthonormal matrix R given ry3, r23, 31, 32,
rawith0 < r? +ri =r? +ri, =1 - r2 < 1. InSection V we
give the simple procedure to uniquely determine the motion and
structure from three orthographic views. The final section is a
summary.

II. PROBLEM FORMULATION

We assume that the image plane is stationary and that three
orthographic views at time #;, /;, and /3, respectively, are taken of a
rigid object moving in the three-dimensional (3-D) object space. By
processing the three views, we intend to determine the motion and
structure of the 3-D object.

We shall use the following notations. Let (x, ¥, z) be the object
space coordinates, and (X, Y¥') the image space coordinates. The X-
and Y-axis coincide with the x- and y-axis (in particular, the origins
of the x-y-z coordinate system and the X-Y coordinate system
coincide). Let

(x, ¥, 2) object-space coordinates of a point P on the rigid
object at £,
(x’,»',z") object-space coordinates of the same point P at 1;,
(x”, y”, z") object-space coordinates of the point P at 13,
(X, Y) image-space coordinates of the point P at f;,
(X' YY) image-space coordinates of the point P at £;,
(X", Y”)  image-space coordinates of the point P at f;.
Then
(x', ¥, 2')Y=R(x, 5, 2)'+ T, 0))
(x", »", 2")'=8(x,», 2} + T (2)
where R & (ry)ixs and § £ (5;)3x; are rotation matrices, 7, =2

(t:)3x: and Ty = (Z:)3x) are 3 X 1 translation vectors. The
superscript ‘‘t’’ represents transposition.
The problem we are trying to solve is: Given four image point
correspondences
(Xi: YI) A (X,": Y,-‘) Ad (Xf'ﬂs Y,'”):

i=1,2,3,4 (3

determine (R, T,—), (S, Ts)s (xis Yis Zi)a i=1,2,3,4
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Note that with orthographic projections
(X, V)=(x, ),
(X7, Y)=(x",»'),

(X7, Y")=(x",»") Gy
and therefore it is obvious that 7,4, 7,3 can never be determined and we
can hope to determine the depths of the object points to only within an
additive constant. What we are trying to determine are then: R, S, #,,
t_;,'(f = 11 2)! Zi — %1, i = 2) 39 4.

We can decompose the rigid body motion from ¢, to £ (f;) as a
rotation R (S) around the point (x;, ¥, z;) followed by a translation
elsyiaz)) (x>0 2]")).

To determine R, S, z; — 2Z;, i = 2, 3, 4, we can then use the
following equations:

(X;’ _X;! Yf’_ Y|’)£=R-(Xi—Xl: Yi_ Yl: Zl'_zl)!

(X =X7, Ylﬂ)r=g()(i_X1: Y=Yy zi=z)”
i=2,3,4 5
where R 2 (rj)axs, S £ (Sy)2xa-

Once R, S, z; — 21, 1 = 2, 3, 4, all are determined, both z; — z/
andz —z;/(i = 2, 3, 4) can be uniquely determined, and moreover
both ¢,; and ¢; (i = 1, 2) are determined as a function of z;.

In the next section, we show that rj; and s3; can be uniquely

determined, and (73, r23, 31, 732) and (813, 823, $31, $32) Up to a sign
can also be uniquely determined, both from three orthographic views.

ITI. SOLVING 733, $33, (P13, 235 7315 T32)s (813, S23, S31, S32)
Let

@ =(X,— X, X5-X,, X4— X))
@=(Y,-Y, ¥3-Y, Yu-T)
@=(22— 21, T3— 21, U—21)
bi=(X] - X[, X{ - X, X; - X])
by=(Y;-Y{, Y= Y], ¥;-¥])
o=(Xy-X/, X/ -X/", X/ -X)

C=(X-X[, X! -X! X! -X!)

a-la] e-n] e-[o]-

B=RA. (6
C=754. @)

We further assume
Rank [A4]=3. (8)

Now what we are trying to determine are: R, S, a.
If

Rank [g;:l <3 (i.e.,=2)
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then ri3 = ry; = 0 because of (8) and
B=| T Tz 4| a
Far Iz 23 :
and ryy, ry2, 21, 22 are uniquely determined by

e (BANYAAY. ©)
T2z |
It is thus obvious that /33 = +1, 3, = r3; = 0, and 33 equals + 1 or
— 1 depending on whether
[STREN AV
| 71 F2

det

equals + 1 or not because of

i 2

a1 fzz] ’
Rank I:g] <3

the rotation matrix R can be uniquely determined even though (6)
does not contain any information about a;.

If both
A A
Rank I:B:I and Rank [C:l

are less than 3, then both R and S can be uniquely determined.
However, in this case the row vector a; cannot be recovered.

If
A A
Rank [E:|<3 and Rank [C] =3

then R is uniquely determined, and both S and @; have infinite
solutions (see Section IV). Similarly, when

A A
Rank |:B:| =3 and Rank [C-‘:| <3

S is uniquely determined, and both R and @, have infinite solutions.
Therefore, the case which really interests us is

A
Rank I:B:l =3

det (R)=ry; - det [

In summary, when
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Similarly, it holds that

(532, =531, 0)=(—523, 513)8. (13)
Using (6), (7) and (12), (13), we obtain
(r32, —ra, 00 A=(—ry, riz)B (14)
(32, — 531, 0)A=(—52, 513)C (15)
or equivalently
(rs2s —r3s)A=(—ry, ri3) B (16)
(532, —83)A=(—s2, 513)B a7
or still equivalently
[A'B'Wry, —ry, Fa3s ~r13) =0 (18)
LA CI(s32, — 31, S23, —$13)'=0. (19

Because of the assumptions (10) and (11) both (7,3, 3, 731, r32) up to
a scale factor o and (sy3, $»3, $3;, $32) up to a scale factor 8 are
uniquely determined by (18) and (19). That is, there exists four 1 x 2
row vectors u, v, 4, ¢ such that

(ris, raa)=au
(r31, r)=av
(513, $23) =P
20

(531, $32) =B,

Because of r2, + r3, = r, + r2, < land ri. + r2, >0, the latter is
implied by the assumption (10), we confirm

a#0 and |u|=|v|>0. 21
Similarly, using the assumption (11) we confirm
B#0 and || =]|0|>0. (22)

Without loss of generality, in the proceeding discussion we assume
laell=Nvli =Nzl =lo)=1. (23)

Using u, v, @, 0 and (6), (7), we can further derive

- ry r 4 r 'k r s
uB=wu | " PN Avu | B a=u [T T2 d4ag
f21 722 723 a1 TIn

(10)
=(ruriz+rara, Mmarfs+rars)A+oa

Rank l:g:l =93, (11) = —rulr, ra)A+aa,  since ryrg+ryrs+ryr=0 and

rialiy+rprs+rpr;s=0

In the following we show how ry3, $33, (r13, 723, F31, 32) up to a = —r;vd + aa; (24)
sign, (513, S23, $31, 532) uUp to a sign can all be uniquely determined

under the assumptions (10) and (11). and

Since the rotation matrix R can be expressed as function of 0, ¢,

and  as follows: #C = —5330A + Pa,. 25)

cos y cos 0 sin ¢ cos 6 —sin 6
R=| —siny cos ¢p+cos ¢ sinfsing cosycosg+sinysinfsing cosésing

sin ¥ sin ¢ +cos ¥ sin @ cos ¢

it is easy to directly verify the following identity:

(rs2 =731, 0)=(=ra3, ri3)R. (12)

~cos ¥ sin ¢+ sin ¥ sin # cos ¢ cos & cos ¢

Equations (24) and (25) lead to

6[[{3-{-@;(!}/&)]=Q[L?C+533(EA_)] (ZG)
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which can be further written in a more readable form as
R\ AN = AY! '8 '8 ! Teals
[(uB)', (A)!, (v4)'] o o T =(uC)". (27)

Ifthe 3 X 3 coefficient matrix of (27) has a rank 3, then 8/« 133, 533
are all uniquely determined, as can easily be seen. Furthermore, «
and g are uniquely determined up to a sign

a=£V1-rZ (28)
_— E)
o
]l ¢ (E) : (29)
o

As aresult, both (r13, 723, 131, r32) up to a sign and (513, $23, 831, §32) Up
to a sign are uniquely determined

(rs rs ra rp)=xvV1-ri(u, V) (30)
(513 s 53 532):i(g)\f1—f§3(17, v). (31)

In the next section we show how to determine a unique
orthonormal matrix R, i.e., R'R = I3, given (ry3, ra3, a1, r12) and r33
obeying: 0 < r3, + r3 = r} + r3, = 1 — rl, < 1. Thus there
exist two candidates for the rotation matrix R(S) since (13, 723, 7315
r32)(S12, 523, 531, §32) is uniquely determined only up to a sign even
though rs33(sy;) is uniquely determined. The right one could be
determined by the condition: det (R) = 1 (det (§) = 1). The other
one is a reflection matrix and given by

5 a]=([ 2]

IV. SOLVING A UNIQUE ORTHONORMAL MATRIX R GIVEN r3, 23,
31y 32, F'33 WITH 0 < f'%e’ + f%s = f%l + l’;‘z =1 - f§3 <1

Using the identity (12) again and noticing
(r3, r3)R=(ryris+rary, rars+rars, "ﬁ'“‘%g)
=(—ran, —rar, r4+rk) (32)

which is because ryjri3 + ryryy + ryrs3 = 0, rars + Fary +
Iyl = 0, we obtain

~Ty T | B I3 I 0 (33)
rns — Iyl “"33"3sz2 +r3;
which leads to

1
IR
rytry

i —ra3 I 32 — I 0 (34)
3 I, —rpry  —rarafl  +r

R= [R ] (35)
ry
where ry = (ry;, 2, 13).

We can also directly verify that the matrix R computed by (34) and
(35) is orthonormal, i.e., R'R = L.

In the next section we give the algorithm to determine R, S, a3
under the assumptions (10) and (11).

e

V. ALGORITHM TO SOLVE R, §, a; UNDER ASSUMPTIONS (10) AND
11
Now we are ready to give the following simple algorithm:

Step 1) Solve four unit 1 X 2 vectors u, v, @, 0 by (18) and (19).
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Step 2) Solve B/a, ry3, 533 by (27).

Step 3) Determine (ry3, 23, 31, F3z) and (813, S23, 31, 532) by (30)
and (31).

Step4) Determine the rotation matrix R by using (34) and (35) and
using the condition det (R) = 1. Similarly determine S.

Step 5) Determine a3 by

1 _
PR e 7. 36
as ) [(r13, ra3) B+r33(r3g, rp)A] (36)

The fact that the solution method is simple does not mean that it
will be robust. Thus a stability analysis of the algorithm is needed.
Since the authors believe that this research may have a potential for
wide applications, they are now furthering their investigation in order
to develop a robust version of the algorithm. They will be happy to
furnish real implementation results at that time.

VI. SUMMARY

Given two orthographic views the motion and structure of a rigid
object cannot be determined no matter how many point correspon-
dences are used, as opposed to the intuitive thought (see Marr [7]).
As a matter of fact, from the argument in Section III, we saw both
(13, r23) and (r3;, r3z) can only be determined up to an arbitrary factor
a, 0 < |a| < 1, from two orthographic views. And for each o, 0 <
|| < 1, (20) and (34)-(36) determine two orthonormal matrices
when letting r33; = +£+1—a?. One of them is a rotation matrix. Thus
the number of solutions is uncountably infinite as o varies. As
reported in Aloimonos and Papageorgiou [8], however, using the
regularization technique can help to obtain a unique solution in the
case of two orthographic views.

Given three orthographic views, the motion and structure can be
uniquely determined when assuming (10) and (11) and

Rank [(uB)', wA)", 5A)"] =3. (37)

As easily seen, assumptions (10) and (11) imply assumption (8).
However, it is not very clear whether assumption (37) is always
assured by assumptions (10) and (11). If not, then assumptions (10),
(11), and (37) comprise a set of necessary and sufficient conditions to
uniquely determine the motion and structure from three orthographic
views, as clear from the argument in Section III. By comparison,
Ullman’s method is nonlinear. As commonly happens with a
nonlinear technique, Ullman’s analysis does not include the unique-
ness and convergence verifications.
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