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A systematic method of gray tone texture generation is presented. The procedure
1s composed of two phases. The first phase is to generate a set of images having char-
acteristic pattern structures. Called mother images, these are synthesized by repeti-
tive applications of seed distribution operations, skeleton growth operations, and
muscle growth operations. The second phase is to synthesize a set of gray tone tex-
tures from a mother image by applying specific probahilistic transformations which
convert numbers in the mother image to gray tone values.

1. INTRODUCTION

Texture pattern feature extraction by computer is a very important tech-
nique in the analysis of remotely sensed data. Many algorithms have been
suggested for the purpose. Comparative studies of the efficiency and aceuracy
of these techniques have been done to identify their advantages [1, 2]. In
most such studies, samples of textures are analyzed from relevant natural
texture patterns of real image data. However, sometimes these results might
not be generalizable due to the limited number and variety of the samples.

In order to procced with comparative studies in a more thorough manner,
we can supplement the real data by synthesizing texture patterns having
specified statisties. There are only a few reports about such texture pattern
synthesis proecsses [3, 4, 5]. Recently Schachter [6] ef al. suggested a method
based on random mosaic models.

In a former paper [7], the authors suggested a synthesis method of texture
patterns using regular Markov chains. The spatial cooceurrence probabilities
of synthesized textures can be described by the transition matrices of the
Markov chains. The texture patterns gencrated by this method have a spatial
gray tone mierostructure.
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This paper presents another systematic method of texture pattern generation.
This method is originally aimed at synthesizing a set of textures having spatial
gray tone macrostructures in their patterns. In the first stage of the procedure,
a symbolie image is synthesized by applying various operations called seed
distribution operations, skeleton growth operations, and musele growth opera-
tions. Then a numeric image is generated by applying a transformation from
the category symbols of the symbolic image into gray tone values. Synthesized
patterns depend on the combination of operations and their parameters during
the symbolic image generation and the final transformation.

The seecond phase is to synthesize a set of numeric images whose texture
patterns and spatial cooccurrence probability matrices [8] of gray tones are
similar to those of the image gencrated in the first phase. This is done by ap-
plying speeific probability transformations to gray tone values of the original
image. For eonvenience, the original and its derived images are called a mother
and relative images, respectively. The methods of generating a mother image
and a relative image are described in Sections 2 and 3, respectively.

2. MOTHER IMAGE GENERATION

Before the main discussion, it will be appropriate to explain the notation
used in this paper. The domain of the image is assumed to be rectangular.
Let L, =1{1,2, ..., N,} and L. = {1, 2, ..., N.} be the row and the column
spatial domains, respectively. Then L, X L. is the set of resolution cells of
digital images. A digital image can be defined as a funection

I:L. X L,—> G

where G = {1,2, ..., n} is assumed to be a set of gray tone values or a set
of category symbols. In the former case, the image is called a numeric image.
In the latter case, it is called a symboliec image.

The mother image generation simulates growing processes in nature, for
example plants, biological organs, geological terrains, ete. It is composed of
seed distribution, skeleton growth, and musecle growth. Then a gray tone is
generated by transforming the category symbols in the symbolic image into
gray tone values.

2.1. Seed Distribution Operation

The image domain is assumed to be white at the beginning so that all reso-
lution cells have the same category symbol, say 1. The first operation for sym-
bolic image generation is seed distribution. This changes the category symbols
of some resolution cells in the image domain. The ones whose category sym-
bols are changed are called seed cells. Of course, it is possible to have many
varieties of seeds and a different category symbol is associated with each
variety.

Allocation of seed cells can be performed either in a deterministic manner
or in a random manner. In the deterministic manner, seeds are arranged pe-
riodically in the spatial domain. Only the position of the seed cell having the
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Fie. 1. Samples of seed image. Seed 1: Seeds exist at coordinates of (10i — 5, 105 — 5) with
4,7 =1,2, ... Seed 2: Seeds exist at coordinates of (207 — 10, 20¢ — 9), (20¢{ — 10, 20; — 10),
(20 — 10, 206 — 11) and (20 — 10, 20i — 12) with ¢, j = 1,2, .... Seed 3: The amount of
distributed seeds is 1¢; of the total resolution cells in the image.

smallest spatial coordinate and its periodicity in the row and the column di-
rections need be specified.

In random sced distribution, positions of sceds are determined by pscudo-
random numbers with respect to a probability function of seed location in the
image domain. The probability funections of sced location and total number
of distributing sceds must be specified for each speeies.

Samples of seed images are shown in Iig. 1. Tmages of sceds 1, 2, are gen-
crated by the deterministic mode, and of seed 3 by the random mode. In cach
case, there is only one speeies of sceds (black dots).

2.2. Skeleton Growth Operation

The purpose of the skeleton growth operation is to extend skeleton shapes
from sceds. As in the case of the seed distribution operation, there is a de-
terministic mode and a random mode in this operation.

In the deterministic mode, skeletons with definite shapes grow from cach
seed cell. The shapes of skeletons ean be arbitrarily speeified with respeet to
the seed species. Then skeletons extend their shapes one resolution cell at a
time aceording to the specified scquences during the scanning iteration of the
exeeute cyele. Resolution eells forming skeleton shapes are called grown cells.
Category symbols of grown cells can be specified arbitrarily.

In the random growth mode, skeletons extend their shapes randomly from
bud cells during each scanning iteration. Bud cells are resolution cells from
which skeletons can extend their shapes. In the first scanning iteration, bud
cells are dircetly assumed to be all seed cells, or ean be limited to sced cells of
specific speeies. When a bud cell of a skeleton is located in a scanning iteration,
a random number generator is accessed. Its output specifies one of eight direc-
tions (0, 43, ..., 3135) of growth, or growth halting.

If it specifies a specific growth dircetion, the skeleton extends its shape to
the next resolution cell in that direction. The bud cell is renamed to be a regu-
lar grown cell, and the new grown cell is appointed a bud cell for the next
scanning iteration, There are three cases when growth is halted. One is the
case when the random number specifies growth halting. The other two cases
arc when an extended part hits a grown cell on the edges of the image domain,
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In these cases the bud eells are simply renamed to be regular grown eells, and
the skeleton cannot grow from them at the next seanning iteration.

Different probability funetions of growth dircetion ean be assoclated with
different sced speceies. Category symbols ean be arbitrarily assigned to skeletons
according to their speeies. Although skeletons grown by this proecedure have
arbitrary shapes, they can be classified into groups by the eategory symbols
of grown cells or by their shape forms. The exeeution of the growth operation
stops when a preassigned number of scanning iterations are completed.

Figure 2 shows samples of skeleton images generated from seed distribu-
tions 1 and 3 of Fig. 1 by the random mode. In each case, the number of
scanning iterations is 5.

Figure 3 shows samples of images generated by the deterministic mode of
the skeleton growth operations. In their seed images, two species of sceds are
distributed. Then skeletons with two gray tone values (black, gray) are ex-
tended from these seeds.

F1a. 2, Samples of skeleton images generated -by the random mode. For skeletons 1 and 3,
the probability vector of growth directions is Py = [0.125, 0.125, 0.125, 0.125, 0.125, 0.125,
0.125, 0.125, 0.0]. For skeletons 2 and 4, the probability vector of growth directions is Py = [0.05,
0.0, 0.0, 0.0, 0.05, 0.2, 0.5, 0.2, 0.0]. Skeleton 1: Generated from seed 1. Skeleton 2: Generated
from seed 1. Skeleton 3: Generated from seed 3. Skeleton 4: Generated from seed 3.
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T1e. 3. Samples of skeleton image: generated by the deterministic mode. Skeleton 4: IToney-
comb image. Skeleton 5: Check image.

2.3. Muscle Growth Operation

The musele growth operation is very similar to the random skeleton growth
operation. The only difference is that every grown cell is identified as a bud
cell in cach scanning iteration of growth, whereas bud cells in the skeleton
growth are limited among grown cells. The grown parts ean be likened to
museles rather than skeletons. Applied to an image of skeletons, the speed
of shape growth in this operation is very rapid.

Different probability functions of growth directions can be specified with
respeet to the sced speeies of skeletons or the scanning iterations to provide
various [eatures of musele shapes. The category symbols of musecles can be
arbitrarily assignable so that layers of museles can be formed. When a pre-
assigned number of scanning iterations is completed, growth stops.

Figure 4 shows samples generated from the skeleton images in Fig. 3 by the
muscle growth operation. Eight category symbols, from the blackest to the
lightest, are used in each image. By directly associating the eategory symbols
to gray tone values, we can see that combinations of different parameters and
operations can provide a variety of texture patterns.

2.4. Numeric Image Generation Operation

The final stage of the texture synthesis generation is the generation of a
numerie image from the symbolic imsge which is produced by the operations
described in the previous seetions. This is done by transforming the category
symbols of the symbolie image into gray tone values.

The transformation can be performed either in a deterministic manner or
in a random manner. In the former, a table making the correspondence be-
tween category symbols and gray tone values must be set up. In the latter
case, conditional probabilitics of gray tone values given ecach category symbol
must be specified.

Figure 5 shows samples of mother images of texture patterns gencrated from
Texture 9 in Fig. 4 by the deterministic mode. Ry, Ry, and Ry are the applied
transformation rules from the category symbols to gray tone values. These
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Tra. 5. Samples of mother images generated from Texture 9 by various transformation rules.
Mother 1: Generated by Ity = [8, 7, 6, 5, 4, 3, 2, 1]. Mother 2: Gienerated by I, = [4, 3, 2, 1,
1,2, 3, 4]. Mother 3: Generated by Ity = [8,1, 7, 2, 6, 3, 5, 4].

rules are deseribed as veetors
Ry =1[8170,354,3,2, 1],
ks =14,321,1, 2, 3,4],
Ry =18,1,7 20,3, 5, 4].

where cach integer in the dth component, 7 = 1, 2, ..., S indicates the gray
tone value to correspond with category symbol 7. It may be noted that the
mother image generated by the transformation rule

R=T[1,23,...8]

is identical to Texture 9 itself.

Until now we have discussed the generation proeess of a mother image.
Although the first step and the last step of the generation process must be
consistent with a sced distribution operation and a numeric image gencration
operation respectively, operations of sced distribution, skcleton growth, and
muscle growth are applicable repetitively during the intermediate stages. The
texture pattern of a generated image depends on the sequence of operations
and their specified parameters. The variety of generated pattern textures ean
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be expeeled to be quite large. In praetice, a compuler program {o generate
a mother image can be simply constructed by combining these subroutines
in a molecular structure.

3. RELATIVE IMAGE GENERATION

A relative image is defined as a numerie image whose spatial cooceurrcnee
probability matrix is derived from that of the mother image by applying a
probabilistic transformation to the mother image. Let us consider the statistics
of an image generated by a probability transformation from a mother image.
Assume that the spatial cooceurrence probability matrix of the mother image
is P and the probabilistic transformation is specified by the matrix

¢, 1) ... ¢(1,2) ... ¢(1,n)
§ = q(?.:, 1) asq Q(Q; ) R— q(;’-:, n) 1)
g(n, 1) ... ¢n,2) ... g(n', n)

where each ¢(z, 7) is the conditional probability of generating value 7 at a res-
olution ecell in the transformed image when the resolution cell of the mother
image has value 7. The matrix () must satisfy

() ¢(5,7) 20, for 4,7=12..,n
and
(i1) >ql, ) =1 for =12 ..., n
=1

Let P(%, 7), each element of P, be the probability that values ¢ and j oeceur
next to each other on the mother image, and let »(k, &) be the probability that
values k& and h occur next to cach other on the relative image. Then

1) = X a6, DI 200G, 1)

2
= QTP a

where Qr, & =1, 2, ..., n is the kth column of @ and the superseript T means
the transpose of a matrix. The spatial cooecurrence probability matrix R of
the transformed image has r(k, k) as its entry and is defined as

R = QTPQ. (3)

Thus, the spatial coocecurrence probability matrices of the mother image and
the relative image define a congruence relation associated with the probability
matrix Q.

The oceurrence probability »(F) of a gray tone value % in the transformed
image is the sum of entries on the kth row of R; the occurrence probability
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veetor R of gray tone values is given by

)'(1) [ 1 [ 1°
r (.n) 1 11])
and finally
R=Q'F 4)

where P is the occurrence probability for the mother image. Thus the proba-
bility veetor of the transformed image is provided by applying a linear trans-
formation QT to the oceurrence probability veetor of the mother image.

For generation of a relative image, the matrix () for the transformation is
conveniently described to be

Q=1+ AQ (")
where I is the unit matrix and AQ is
—Agn; Aga ... Adn
A= ‘-\?21 —Ag ... A({En )
Agnl Af[n'.! v _A(‘fnn
and satisfies
® 2 gi; = Agu <1
ij
and
(ii) Agi; > 0.

A relative image is defined to be a transformed image from the mother image
associated the matrix @ such that Ag; =4 = 1,2, ..., n arc constrained to
be small quantities. From (3) and (4), the statisties of the relative image are

R=([+ AQ)"P(I + AQ) = P + AP (7)
where
AP = AQTP + PAQ + AQTPAQ ()
and R ) )
R=I+ aQ)™P =P + AP (9
where
AP = AQTP.

AP and AP are the amounts of the perturbation to the spatial cooccurrence
probability matrix and the oceurrence probability veetor, respectively. When
the Agq; are kept small, AP and AP are constrained to small values also.

A set of relative images can be generated by probability transformations
using various A matrices which are admissible as small perturbations. The
visual distortions of texture patterns gradually increase as Agy;, the (¢, 7)th
entry of AQ, incrcases. By restricting Ag¢i; to small values we can get a set of
texture patterns which are both shape and statistically oriented to the mother
image.
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Figures 6 and 7 are texture images gencrated from Muscle 11 and Skeleton 5,
respectively, by applying probability transformations. The values of AQ for
the transformations are given in the captions. As the diagonal elements in AQ
for transformation become rclatively large, the distortion of the texture pat-
terns from each original image increases.

4. CONCLUSION

A systematic method of generating gray tone texture patterns has been
deseribed. The first step of the procedure is to synthesize a mother image by
a repetitive application of specific operations called seed distribution, skeleton
growth, musele growth, and probability transformation. Combinations of those
operations and their parameters give the texture patterns of synthesized images
a large variety. The second step is to synthesize a sct of textures whose pat-
terns and spatial cooccurrence matrices arc related to those of the mother
image. These are called relative images and are generated by applying specific
probability transformations to the values of the mother image.
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