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Abstract—Different image textures manifest themselves by dissimilarity in both the property values and the
spatial interrelationships of their component texture primitives. We use this fact in a texture discrimination

system.

An image is first segmented into closed regions called units. Then, a set of properties is calculated for each
of the units. The units along with their respective properties constitute the primitives.
The discrimination between texture categories has two parts: the training phase and the classification

phase. The primitives

and the relationships which are obtained from representative training images are used

to develop criteria for the classification phase. During classification, the primitives of the image under test are

first used to assign a unit to one of several cluster types. Then, each primitive is assigned to the most likely
texture class given its cluster type and the cluster types of its spatially adjacent neighbors.
The method is used on three images : a noisy checkerboard, a simulated texture and an aerial photograph.
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1. INTRODUCTION

Texture discrimination, a common capability for the
human vision system, continues to be a difficult
problem for machines. In spite of the fact that a precise
mathematical definition for texture does not currently
exist, many approaches to texture discrimination have
been suggested.

Some of the methods for texture discrimination have
been statistically based!:"> while others used a struc-
tural approach.®® See Haralick'*® for a review of
both approaches.

The reason for texture’s importance hinges around
one of the most important processes in scene analysis:
partitioning an image into meaningful regions. For
homogeneous regions, edge detection can accomplish
this segmentation. Davis'' !’ reviews some techniques
in edge detection.

This paper describes a method for discriminating
between texture classes based on measurements made
on typically small regions determined by an initial
segmentation of the image into homogeneous regions.
Each region and its measurements constitute a primi-
image, the symbolic image, and perhaps some in-
given the values of its measurements and those of its
spatially adjacent neighbors. Some of the criteria
required for the classification phase are obtained by
the analysis of representative samples of texture classes
processed during the training phase.
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2. CLASSIFICATION PHASE

2.1. Ouverview of the classification phase

The structure of the classification phase is shown in
Fig. 1. Image segmentation programs based on the
facet model‘*2+*® are used to process the test image to
obtain the segmented symbolic image, an image
composed of closed regions, with each pixel having the
index number of the region to which it belongs. Each
region in the symbolic image is assigned a sequential
and unique unit number. Then, the region adjacency
graph (RAG), which contains the adjacent unit mem-
bers for any given unit, is generated. Using the test
image, the symbolic image, and aperhaps some in-
termediate images obtained from the image segmen-
tation process, a property list containing a set of
measurements for each unit in the symbolic image is
generated. There are currently 26 properties measured
for each region, which include:

the number of pixels;

the maximum gray level;

the minimum gray level;

the mean;

the variance;

the center of mass;

the sum of row x TOW;

the sum of col x col;

the sum of row x g (row, col);
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Fig. 1. Classification phase.
11. the sum of col x g (row, col);
12. the sum of row x col;
13-14. eigenvalues of second moment matrix ;
15. eccentricity;
16. angle;
17 mean radius;
18. variance of radius;
19. the number of boundary pixels;
20. measure of circularity;
21. row partial derivative;
22 column partial derivative;
23, gradient of a region;
24. slope facet error;
25. third moment ;
26. fourth moment.

Using the cluster decision rule parameters calcu-
lated in the training phase, each unit is assigned a
cluster code. The updated property list, the region
adjacency graph and the category decision rule para-
meters are used to calculate the most likely texture
category. Each unit in the symbolic image can then be
replaced with its texture category, resulting in the
classified symbolic image.

The basic idea is illustrated in Fig. 2. An image is
segmented to produce the symbolic image of Fig. 2a.
The units are then numbered sequentially, resulting in
Fig. 2b. The region adjacency graph contains the
adjacency information for each unit. For example, for
unit 9, the region adjacency graph says that the
adjacent units are 6, 7, 8. 11 and 13. The cluster types
for unit 9 and its neighbors are calculated. Then, the
probability that unit 9 belongs to category 1 given the
cluster types of its neighbors is calculated. This is
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Fig. 2. (a) Segmented image. (b) Labeled symbolic image.

repeated for each of the texture categories and unit 9 is
assigned to the most likely category.

22. Classification phase decision theory

After an image has been segmented into units, each
unit is first assigned a cluster tyoe based on its
measured properties and the ideal ciuster types gen-
erated during the training phase. The most likely
texture category is assigned to the unit under test
according to (1) the cluster type of the unit under test
and (2) the cluster types of the spatially adjacent
neighbors to the unit under test. In this section we give
a precise mathematical description of this procedure.

Suppose that we have a set of D units u;, 4y, ..., Up
For any given unit u;, there is a set of N units which are
spatially adjacent to ;. We denote this set by v(w;) =
(v, (W), vy(u),..., vy(y)}. We first assign u; as
belonging to one of P clusters {R,,..., R} based onits
property measurements and the cluster decision rule
(CDR) obtained from the training phase. Assume, for
simplicity, that CDR (U) returns the cluster number of
the most likely cluster for unit U. Our goalis to assign
u; to the most likely texture category, CAT, given the
cluster type of the unit under test and the cluster types
of the spatially adjacent neighbors of u;. Thus, our rule
is to assign u; to CAT; if

P{CAT, |CDR (u;), CDR (v (u)]}

> P{CAT,|CDR (b, CDR [v(u)]} j#k (1)
Using Bayes rule, (1) can be expressed as
P{CAT;|CDR (u), CDR [v(u;)]}

_ P{CDR[v(u;)]|CDR (), CAT } P{CDR (;), CAT}
P!CDR(u;), CDR [v{1;)]} 2)
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Each term of (2) will now be considered separately in
order to obtain a more mathematically tractable
expression. We assume that the cluster name assign-
ments for neighboring units are uncorrelated con-
ditioned on CDR (u;) and CAT . This is an approxi-
mation to reality. With this assumption the first term
of (2) can be expressed in terms of the product of the
probability density functions of each cluster types as

P{CDR[v(u)]|CDR (), CAT )

=( ) ) [T [P{RL|CDR (), CAT}]™
hyRyo.np/ 1=y (3)

where R, is the g-th cluster type, 1, is the number of
spatially adjacent neighbors whose cluster type is g, N
is the total number of neighbors and P is the number of
cluster types. The multinomial coefficient is calculated
by

N!
)=_——. (4)
n

(' N
nn,...n, nl!nz!...np!

The next term of (2) can be expressed as

P{CDR (), CAT}} = P{CDR (u)|CAT;} P{CAT).
(5)

The denominator of (2) will be identical for all
classes. As a result, it adds no information to the
classification process and can therefore be ignored in
the discriminant function. This results in

P{CAT;|CDR (u;), CDR [v(u)]}
= KP{CDR[v(u)]|CDR(u;),CAT}}
P{CDR(u;)/CAT} P{CAT}} (6)

where K is a constant. Thus equations (1), (3), (4)and
(6) are sufficient to classify unit u,

3. THE TRAINING PHASE

It is clear from the derivation of (6) that some
information is obtained from measurements on the
image under test. while other information must be
determined by training on known images.

In order to classify a unit as a member of a texture
category, the following information is required:

(1). P{CAT}, the a priori probability of category j.
The a priori probability of a texture class can be
obtained in three ways. First, there may be some
texture categories for a given problem which are
known a priori to be more likely than others. Secondly,
this probability may be calculated from the repre-
sentative training data. Lastly, when no information is
available, all categories may be assumed equally likely.
In this last case, the P{CAT} in equation (6)is ignored
and its value is absorbed into the constant K.

(2). P{CDR (u;)|CAT;}, the conditional probability

of cluster CDR (u,) given category j. From some
representative sample images, the number of occur-
rences of each cluster which occur for units known to
be from category j can be counted. The normalized
result is an estimate of this required conditional
probability density function.

(3). P{R,|CDR (u;), CAT}}, the conditional prob-
ability of cluster R, given that a neighbouring region
has cluster type CDR (u;) and category j. This term is
estimated from the training data by calculating the
normalized co-ocurrence matrix''* of cluster types
for category j.

This training phase. shown in Fig. 3, is required in
order to calculate the parameters necessary for the
classification phase, as described in the previous
section. The initial processing for the training phase
parallels that of the classification phase. From a
lraining image we generate a segmented symbolic
image, its region adjacency graph and a region prop-
erty list.

The main difference between the training phase and
the classification phase occurs when the user manually
selects regions from the training image which are
representative samples of each texture category. On
the basis of the user selection, the property list is tagged
so that category index i is associated with all units
manually declared to belong to the training set for
texture class i.

The second training step is clustering. Given all of
the sample units and their measurement property
vectors belonging to a texture class, a minimal span-
ning tree can be generated with the subsequent
clustering resulting in a relatively small number of
cluster types. In other words, a set of prototype clusters
for each class is generated. In the classification phase a
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measurement property vector associated with a unit is
used to assign a unit to one of the clusters, based on a
criterion such as minimum Euclidean distance to the
cluster mean. This constitutes the cluster decision rule.

In the third training step, the property list and the
region adjacency graph are used to generate a co-
occurrence matrix of cluster vs neighboring cluster for
each texture class. The (i, j)-th element of each co-
occurrence matrix is the number of times the adjacent
units in the training data were labeled cluster i and
cluster j for that texture class. Each matrix is then
normalized to provide the conditional probabilities of
cluster type given cluster type and category.

Thus, the cluster decision rule parameters and the
category decision rule parameters, P{CAT,;}P
{R,|CDR(u;), CAT;} and P{CDR (u,)|CAT,}, are
all generated. This is all of the information
required for the classification phase.

4. EXPERIMENTAL RESULTS

In this Section we discuss the application of the
context classifier on three images: a noisy checker-
board pattern, an artificially generated texture and an
aerial photograph. In each case, the goal is to separate
different textures. Of course, the types of textures we
wish to separate depend on the picture content.

Figure 4 illustrates the experiment for the noisy
checkerboard. The upper left corner shows the original
image. There are two classes we would like to separate::
the first class contains the larger squares and the
second class contains the smaller squares. After
smoothing to reduce noise, a gradient operator and
threshold were used to obtain the edges. The edges
defining the closed regions of the symbolic image are
shown in the lower left corner of Fig. 4. The training
consisted of choosing some large squares for one class

|
|

Fig. 4. Application of the context classifier on a noisy checkerboard image. Upper left, original image ; lower
left, symbolic image ; upper right, classification result.

3
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Fig. 5. Application of the context classifier on an artificial texture. Upper left. original image ; upper right,
symbolic image ; lower right, classification result.
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and some small squares for the other. Each unit of the
symbolic image is then classsified. The upper right
corner of Fig. 4 shows the classification results. It is
clear that the class of larger squares was separated
from the class of smaller squares, with the exception of
some units where the two classes meet. These units
were rejected by the classifier, Rejection occurs when
(1) a unit’s properties are grossly dissimilar to the
prototype cluster types for all textures clategories or
(2) when the probability of the most likely texture class
is below a threshold,

The rejected areas between the large squares and
small squares in the classified picture resulted from an
inadequate edge/region determination. The failure of
the gradient method to segment this picture under-

Fig. 7. Application of the context classifier on a
(symbolic) image. Detected edges

scored the necessity to use more sophisticated edge
detection schemes.

Another artificial texture is shown in the upper left
corner of Fig. 5. Next to the texture is its segmentation,
(its symbolic image) and below the symbolic image is
the classification result. In the training phase, we chose
one piece of each texture as its representative sample.
During classification, the background of the rightmost
texture (which was all one unit) was rejected. This
resulted because the training set’s background was
significantly different from the background of the
untrained region for that class and was therefore
considered grossly dissimilar,

The last image, shown in Fig. 6,is an aerial image of
2 complex urban area. The results of the image

OXD NI mwny
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n aerial image of a complex urban area, Segmented
are overlaid onto the original Image.
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segmentation are shown in Fig. 7 where the edges are
overlaid onto the original image. Two texture classes
are sought: large buildings and small buildings.
Examples from the training regions for the classes are
shown in Fig. 8 and Fig. 9, respectively, where the
detected edges are overlaid on top of the original
image. We see an excellent correspondence between
the detected edges and the original image using a new
edge detection procedure which will be discussed in
another paper. The results from the classification
phase are shown in Fig, 10, where dark grey repr-
esents large buildings, light gray indicates small
buildings and white is a rejection. The results show
that most of the smaller buildings were classified

Ro~NALD LuMia er al,

correctly and many of the nonbuildings (roads, parks)
were justly rejected. Some of the larger buildings are
correctly classified while others are not. Several units
were erroneously classified as large buildings. This
problem is caused by units being assigned to cluster
types which are not sufficiently similar. The Euclidean
distance classifier for cluster types needs to be modified
to overcome this deficiency.

The computer used for this work wasa VAX 11/780,
which was run on a time share basis but dedicated to
image processing. The system consisted of
1.75 MBytes of RAM and 900 MBytes of disk storage.
The emphasis was placed on writing programs which
worked, rather than creating programs which ran in

Fig. 8. Application of the context classifier on an aerial image of a complex urban area. Example of a training
region for large buildings. Selected edges are overlaid onto the original image.

Fig.9. Application of the context classifier on an aerial image of a complex urban area. Example of a training
region for small buildings. Detected edges are overlaid onto the original image.
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Fig 10. Application of the context classifier on an aerialimage of a complex urbun area. Classification result.
Dark gray, large buildings; light gray, small buildings: white, rejected.

Table 1. Processing times for the context classifier

Noisy Artificial Aerial
checkerboard texture photograph
(sec) (sec) (hr: min)
Training 1867.4 4260.2 3145
Classification 246.3 1881.7 17:22

the most efficient manner. Consequently, a large
amount of processing time could eventually be re-
covered by rewriting the programs. The processing
times for training and classification for each of the
images are shown in Table 1.

5. CONCLUSION

The segmenting procedure used in our experiments
was extremely simple : it was a connected components
labeling algorithm performed on non-edge pixels. The
fact that this technique worked as well as it did isnota
strength for the connected components technique. It is
a strength for the edge finding technique. More work is
needed to determine optimal ways to clean edges and
close gaps. The resulting segmentation should then be
an input to a region grower process so that small
regions can merge with similar neighbouring regions, if
there are any.

Buildings are recognizable by their shape: square
corners and straight line sides. They are also recogniz-
able by their context: industrial area, suburban area,
etc. Our experiments made no attempt to identify
buildings by the shape alone. Such techniques need to
be explored.

Our experiments did try to identify the context, not
by identification of the texture in an arbitrary square
window, but by using a region-co-occurrence-based

approach that used no predetermined artificial boun-
daries. More work is needed to make this kind of
approach more computationally efficient and to give it
a higher degree of identification accuracy.
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