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Abstract. Statistical, structural, and hybrid techniques for
optical texture analysis are reviewed. Statistical techniques
are categorized further into four approaches: orthogonal trans-
formations, Markovian analysis, mathematical morpholegy, and
gradient analysis. Biomedical images of microscopic and macro-
scopic structures possess biologically relevant and clinically
diagnostic textural information. Technigues discussed in this
paper may be appropriate in pathology, hematology, immunology,
genetics, radiology, and nuclear medicine.

INTRODUCTION

The systematic analysis of visual textures began with the real-
ization that texture perception is the means by which humans
detect the presence and character of a visual surface. Once

the concept of texture was formulated, visual scenes were inter-
preted on the basis of their textural content. Visual scenes
were decomposed into sets of uniform visual textures, gradual
changes in these textures, and textural discontinuities. Per-
ception experiments then led to descriptive definitions of
textures (45,73).

Quantitative measures of textural informaticn became available
with the advent of automatic image analysis technology (3,33,35,
56,77,96). The instrumentation required to implement optical tex-
analysis is well described in the literature (63,115) and is

not the subject of this paper.
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Although optical texture analysis may require complex and
expensive machines, it may be appropriate for some routine

tasks (e.g., enumeration of metaphase spreads), gquantitative

tasks (e.g., computation of a nuclear chromatin coarseness

index), and complex tasks (e.g., detection of histological changes
associated with alterations to the biochemical environments of
tissues) (62). Automated analysis of biomedical image textures
has already been applied tc a wide variety of biomedical research
problems (52,81). Images of both microscopic and macroscopic

structures have been the subject of these research projects.

The following sections define and survey current approaches to
computerized optical texture analysis. They also illustrate the
application of these techniques to (a) microscopic structure
analysis in pathology, hematology, immunology, and cytogenetics,
and (b) macroscopic structure analysis in radioclogy and nuclear
medicine. The abundant literature concerned with perception
theory, psychophysics of visual textures (see Cooper et al.,
this volume, (14)) and texture modeling and synthesis is signi-
ficant although it is beyond the scope of the work discussed in
this review paper.

APPROACHES TO OPTICAL TEXTURE ANALYSIS

The advent of automatic image analysis resulted in two funda-
mentally different approaches to optical texture analysis, the
statistical and the structural. The statistical approach gen-
erates parameters to characterize the stochastic properties of
the spatial distribution of gray levels in an image. The struc-
tural approach is used to analyze visual scenes in terms of the
organization and relationships among its substructures. There
is a need to classify alternative approaches to texture charac-
terization because no general theory yet exists. A survey of the
representative literature regarding optical texture analysis is
presented below and organized according to the statistical,
structural, and hybrid approaches. A thorough review of texture

models and approaches has been presented by Haralick with illus-
trations (35).
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Statistical
orthogonal transformations. Spatial frequency characteristics

of two-dimensional images can be expressed by the autocorrelation
function or by the power spectra of those images. Both may be
calculated digitally and/or implemented in a real-time optical

system.

Kaizer (46) assumed a circularly symmetric autocorrelation
function p, and computed, for each image, the distance d such
that P(d) = 0_1. Subjects ranked images from fine to coarse
in this study and determined a correlation of 0.99 between the
subject rankings and the distance d. These results indicate
that the fineness or coarseness property of textures is related

to the autocorrelation function.

rendaris and Stanley (53,54) used optical techniques to perform
texture analysis on a data base of low altitude photographs.
They illuminated small circular sections of those images and
used the Fraunhoffer diffraction pattern to generate features
for identifying photographic regions. The major discriminations
of concern to these investigators were those of man-made versus
natural scenes. The man-made category was further subdivided

into roads, intersections of roads, buildings, and orchards.

Feature vectors extracted from these diffraction patterns con-
sisted of forty components. Twenty of the components were mean
energy levels in concentric annular rings of the diffraction
pattern, and the other twenty cocmponents were mean enerdy levels
in 9O—wedges of the diffraction pattern. Greater than 90% clas-

sification accuracy was reported using this technique.

Cutrona, Leith, Palermo, and Porcello (19) present a review of
optical processing methods for computing the Fourier transform.
Goodman (29), Preston (80), and Shulman (94) also present in their
books comprehensive reviews of Fourier optics. Swanlund (100)
discusses the hardware specifications for a system using optical

techniques to perform texture analysis.
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Gramenopolous (30) used a digital Fourier transform technigue

to analyze aerial images. He examined subimages of 32 x 32
pixels and determined that for an (ERTS) image over Phoenix,
spatial frequencies between 3.5 and 5.9 cycles/km contained most
of the information required to discriminate among terrain types.
An overall classification accuracy of 87% was achieved using
image categories of clouds, water, desert, farms, mountain,
urban, river bed, and cloud shadows. Horning and Smith (41)
used a similar apprecach to interpret aerial multispectral

scanner imagery .

Bajscy (5,6) and Bajscy and Lieberman (7,8) computed the two-
dimensional power spectra of a matrix of square image windows.
They expressed the power spectrum in a polar coordinate system
of radius (r) versus angle (a). As expected, they determined
that directional textures tend to have peaks in the power
spectrum along a line orthogonal to the principle direction of
the texture. Blob-like textures tend to have peaks in the power
spectrum at radii (r) comparable to the sizes of the blobs. This
work also shows that texture gradients can be measured by deter-
mining the trends of relative maxima of radii (r) and angles (a)
as a function of the position of the image window whose power
spectrum is being analyzed. For example, if the power peaks
along the radial direction tend to shift towards larger values

of r, the image surface is more finely textured.

In general, features based on Fourier power spectra have been
shown to perform more poorly than features based on second order
gray level statistics (see Markovian analysis) or those based on
first order statistics of gray level differences (see Gradient anal-
ysis) (113). Presence of aperture effects has been hypothesized
to account for part of the unfavorable performance by Fourier
features compared to space-domain gray level statistics (22),
although experimental results indicate that this effect, if

present, is minimal.

Transforms other than the Fourier transform can be used for

texture analysis. Kirvida (47) compared the fast Fourier,
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Hadamard, and Slant transforms for textural features on aerial

images of Minnesota. Five classes (i.e., hardwood trees, coni-

fers, open space, city, and water) were studied using 8 x 8 sub-
images. A 74% correct classification rate was obtained using
only spectral information. This rate increased to 98.5% when |
textural information was alsc included in the analysis. These
researchers repcrted no significant difference in the clas-

sification accuracy as a function of which transform was employed. |

Pratt (75) and Pratt, Faugeras, and Gagalowitz (76) suggest
measuring texture by the coeifficients of the linear filter
required to decorrelate an image and by the first four moments
of the gray level distribution of the decorrelated image. They

have shown promising preliminary results.

The linear dependence which one image pixel has on another is
well-known and can be measured by the autocorrelation function.
This linear dependence is exploited by the autoregression texture
characterization and synthesis model developed by McCormick and
Jayaramamurthy (60) to synthesize textures. McCormick and
Jayaramamurthy used the Box and Jenkins (13) time series sea-
sonal analysis method to estimate the parameters of a given
texture. These estimated parameters and a given set of starting
values were then used to illustrate that the synthesized texture
was close in appearance to the given texture. Deguchi and
Morishita (21), Tou, Kao, and Chang (107), and Tou and Chang

(105) used similar techniques.

The autoregressive model for texture synthesis begins with a
randomly generated noise image. Then, given any sequence of

K synthesized gray level values in its immediately past neigh-
borhood, the next gray level value can be synthesized as a
linear combinaticn of those values plus a linear combination of
the previous L random noise values. The coefficients of these
linear combinaticns are the parameters of the model. Texture
analysis work based on this model requires the identification

of these coefficient values from a given texture image.



158 N.J. Pressman et al.

Markovian analysis. Textural features can also be calculated

from a gray level spatial cocccurrence matrix. Markovian anal-

ysis2 uses such matrices to characterize the probabilistic
relationships among the gray levels of neighborlng3 pixels.
The cooccurrence matrix of an image I is defined as follows.
Suppose that the integer image intensities lie in the range
[O0,M=-1]. Then the value of the (l,j)th

the M x M cooccurrence matrix is the number of pairs of neigh-

position, G(i,3j), of
boring resolution cells (pixels) having gray levels 1 and j,
respectively. The cooccurrence matrix can be normalized by
dividing each entry by the sum of all of the entries in the
matrix. Conditional probability matrices can alsc be used for
textural feature extraction with the advantage that these
matrices are not affected by changes in the gray level histogram
of an image, only by changes in the topological relationships

of gray levels within the image.

Apparently Julesz (44) was the first to use cooccurrence statis-

tics in visual human texture discrimination experiments. Darling

and Joseph (20) used statistics obtained from nearest-neighbor
gray-level transition probability matrices to measure texture

using spatial intensity dependence in satellite images. Bartels

and Wied (11), Bartels, Bahr, and Wied (10) and Wied, Bahr, and
Bartels (114) used one-dimensional cooccurrence statistics for

the analysis of cervical cells. Rosenfeld and Troy (89),

Haralick (33) and Haralick, Shanmugan, and Dinstein (38) suggested

the use of spatial dependence matrices for arbitrary distances

and directions. Galloway (27) used gray level run length statis-

tics to measure texture. These statistics are computable from

cooccurrence matrices assuming that an image was generated by a

Markov process. Chen and Pavlidis (16) used the cooccurrence

2 ; . 5 ; ; ;
Markovian analysis is a term which refers to use of statistical

estimates of gray-level spatial dependencies to characterize
textured images. The term does not imply the existence of a
well-defined underlying statistical process although this
technique has been applied to image data generated by Markov
processes.

3 Neighboring pixels are not recessarily defined as only the

four or eight closest neighbors.
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matrix in conjunction with a split and merge algorithm to
segment an image at textural boundaries. Tou and Chang (106)
used statistics from the cooccurrence matrix, followed by a
principal components eigen vector dimensicnality reduction
scheme (Karhunen-Loeve expansion) to reduce the dimensionality

of the classification problems.

Statistics which Haralick, Shanmugan, and Dinstein (38) computed
from such cooccurrence matrices have been used to analyze textures
in satellite images (37). An 89% classification accuracy was
obtained. Additional applications of this technigque include the
analysis of microscopic images (36), pulmonary radiographs (17),
and cervical cell, leukocyte, and lymph node tissue section
images (78,79).

Haralick (34) illustrates a way to use cococcurrence matrices to
generate an image in which the value at each resolution cell is
a measure of the texture in the resolution cell's neighborhood.
All of these studies produced reasonable results on different
textures. Connors and Harlow (18) concluded that this spatial
gray level dependence technique is more powerful than spatial
frequency (power spectra), gray level difference (gradient), and

gray level run length methods (27) of texture gquantitation.

McCormick and Jayaramamurthy (61) and Read and Jayaramamurthy
(84) analyze and synthesize textures using optimum sets of gray
level strings ("interval covering appreoach"). This memory-
intensive technique is not appropriate for images with a large
number of gray levels.

Mathematical morphology. A structural element and filtering

approach to texture analysis of binary images was proposed by
Matheron (58) and Serra and Verchery (83).

requires the definition of a structural element (i.e., a set

This approach

of pixels constituting a specific shape such as a line or square)
and the generaticn of binary images which result from the trans-
lation of the structural element through the image and the erosion

of image features (i.e., contiguous pixels having the wvalue 1)
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by the structural element. The textural features can be obtained
from the new binary images by counting the number of pixels
having the value 1. This mathematical morphology approach

of Serra and Matheron is the basis of the Leitz Texture Analyser
(TAS) (69,70,91). A broad spectrum of applications has been
found for this guantitative analysis of microstructures method
in materials science and biology. (112)

Watson summarizes this

approach to texture analysis.

More precisely, let H be defined as a given structural element.

H(i,J)

lation of all of the pixels of H by the distance x=i, y=3; no
Let F be defined as a

Then the erosion of F by the

The translate of H is referred to as H(i,j). is the trans-
rotation or shape distortion occurs.
binary image object (i.e., blob4).

structural element H,

written F6H, is defined as

FOH = {(m,n) |H(m,n)CF}.

The eroded image J cbtained by eroding F with structural element
H is a binary image whose pixels take the value 1 for all resolu-
tion cells in FOH. The number of pixels in image J is propor-
ticnal to its area. Theoretical properties of the mathematical
morphelogy operator "erosion" are presented by Matheron (59),
Serra (92), and Lantuejoul (50).
Textural properties can be obtained from the erosion process
by appropriately parameterizing the structural element (H) and
determining the number of elements of the erosion as a function

of the parameter's wvalue.

Gradient analysis.

Thurston (88)

Rosenfeld and Troy (89)

regard texture in terms of the amount of "edge"

and Rosenfeld and

per unit image area. An edge can be detected by a variety of
local mathematical operators which essentially measure some

approximation to the gradient of the image intensity function.

4 A blob is a set of contiguous pixels with the value 1 in a
binary image, exclusively surrounded by pixels with the value O.
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Rosenfeld and Thurston used the Roberts gradient5 and then

computed, as a measure of texture for any image window, the
average value of the Roberts gradient taken over all of the
Sutton and Hall (99)

by measuring the gradient as a function of the distance between

pixels in the window. extend this concept

pixels. An 80% classification accuracy was achieved by applying
this textural measure in a pulmonary disease identification

experiment.

(108) who first smoothed

the image using 3 x 3 neighborhoods,

Related approaches include Triendl
then applied a 3 x 3 digital
Laplacian operator, and finally smoothed the image with an 11 x
11 window. The resulting texture parameters obtained from the
frequency filtered image were used as a discriminatory textural
feature. Hsu (42) determined edgeness by computing gradient-
based measures Ifor the intensities in a neighborhood of pixels.
The deviation of the intensities in the neighborhood from both
the intensity of the central pixel and from the average intensity
of the neighborhood was computed. The histeogram of a gradient
image was used to generate textural parameters by Landeweerd and
(49)

leukocytes.

Gelsema to measure texture properties in the nuclei of
Rosenfeld (85)

proportional to the edge per unit area of the original image.

generates an image whose intensity is

This transformed image is then further processed by gradient

transformations prior to textural feature extraction.

Many heuristic approaches to texture analysis have been devised
and implemented. Frequently these technigues are not well
understood and, consequently, they are difficult to classify
into one of the four statistical approaches described above.
For example, mosaic texture models tessellate a picture into
regions and assign a gray level to the region according to a
specified probability density function (90). Among the kinds
(66), Johnson-Mehl
and Bombing Model (101).

of mosaic models are the Occupancy Model

Model (28), Poisson Line Model (65),

The Roberts gradient is defined as the sum of (a) the magnitude
of the difference of the gray values of diagonally neighboring
pixels and (b) the magnitude of the difference of the gray values
of the neighboring two pixels on the orthogonal diagonal.
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The mosaic texture models seem readily adaptable to numerical
analysis. Their properties seemamenable tomathematical analysis

although their visual interpretation is not as well understood.

Structural

Pure structural models of texture presume that textures consist
of primitives which appear in quasi-periodic spatial arrangements.
Descriptions of these primitives and their placement rules can

be used to describe textures (87). The identification and
location of a particular primitive in an image may be prob-
abilistically related to the identification and distribution
of primitives in its neighborhood.

Carlucci (15) suggests a texture model using primitives of line
segments, open polygons, and closed polygons in which the place-
ment rules are given syntactically in a graph-like language.
zZucker (116,117) conceives of a real texture to be the distortion
of an ideal texture. The underlying ideal texture may be repre-
sented by a regular graph in which each node is connected to its
neighbors in an identical fashion. Each node corresponds to a
cell in a tessellation of the plane. The underlying ideal texture
is transformed by distorting the primitive at each node to make a
less periodic and less deterministic texture. Zucker's model

is more 0of a competence based model than a performance model.

Lu and Fu (57) give a tree grammar syntactic approach for
texture analysis. They divide a texture into small (compared

to the image dimension) sqguare windows (9 % 9). The spatial
structure of the pixels in each window is expressed in a tree
structure. The assignment of gray values to each pixel is
given by the rules of a stochastic tree grammar. Finally,
special consideration is given to the placement of windows with
respect to each other to preserve the coherence between windows.
Lu and Fu illustrate the power of their technigque with both
texture synthesis and analysis experiments. Tsai and Fu (109)
use syntactic techniques and algorithms (e.g., direction
detectors, rotational grammars, optimum window size inferrence
algorithms) to segment and recognize agricultural area photographs

which are markedly textured.
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These structural approaches, alternatively referred to as
syntactic pattern recognition techniques, have received increas-
ing attention in recent years although most biomedical texture
analysis research has concentrated historically on statistical
approaches (Fu, this volume). Structural techniques may be
appropriate for segmenting complex multitextured biomedical
images (e.g., tissue section images), characterizing their
quasi-repetitative patterns, and generating synthetic images of

similar appearance.

Eybrid

Tsuji and Tomita (110) and Tomita, Yachida, and Tsuji (103)
describe a combined statistical/structural approach to texture
analysis. First, a scene is segmented into elementary regions
based on some gray level spatial distribution property such as
uniformity. These regions are operationally defined as the
primitives. Associated with each primitive is a list of proper-
ties such as size, shape, and color. A freguency histogram of
these properties of all primitives in the scene can be produced.
If the scene can be decomposed into two or more regions of
homogenecus texture, then the histogram will be multimodal. In
this case each primitive in the scene can be assigned the appro-
priate modal value in the histogram. A region growing-cleaning
process on the assigned primitive values yields homogeneous
textural regions. This technigque is appropriate for scene

segmentation.

A complete segmentation may not result if populations in the
histogram of the primitives' properties are ncot well separated.
In this case, the entire process can be repeated using the
homogeneously textured region segments identified earlier.

The procedure may not work at all if each of the texture regions
consists of mixtures of more than one type of primitive.
Resolution of this problem may indicate the use of cooccurrence
matrices of primitive properties.

Zucker, Rosenfeld, and Davis (118) used a form of this technique

by filtering a scene with a spot detector. Non-maxima pixels
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on the filtered scene were deleted. If a scene has many different
homogeneously textured regions, the histogram of the relative-
maximum spot detector filtered scene will be multimodal. As-
signing the maxima to their respective modes and region growing-

cleaning then produces segmented scenes.

The idea of the constant gray level regions of Tsuji and Tomita
or the spots of Zucker can be generalized to regions which are
peaks, pits, ridges, ravines, hillsides, passes, breaks, flats,
and slopes. (72,104) .

Rosenfeld and Troy (89) suggest the number of extrema per unit
area as a texture measure. They suggest defining extrema in

one dimension (along a horizontal scan line) in the following
way: in any row of pixels, a pixel i is a relative minimum
(maximum) if its neighboring gray levels do not have smaller
(larger) values. Thus, the interior of any constant gray level
sequence of pixels is considered simultaneously as a relative
minimum and relative maximum, regardless of whether the constant
gray level sequence is just a plateau on the way down or on the
way up from a relative extremum. Ledley (51) also suggests
computing the number of extrema per unit area as a texture

measure.

The algorithm employed by Rosenfeld and Troy centers a square
window around each relative maxima or minima pixel and counts
the number of relative maxima or minima pixels within that window.
A texture image is then created to correspond to a defocused
image of the number of relative extrema per unit area within

these windows.

Mitchell, Myers, and Boyne (63) suggest the extrema idea of
Rosenfeld and Troy and additionally propcse to use true extrema
and to operate on a smoothed image to eliminate extrema due to
noise (67). Ehrich and Foith (23,24) use a relational tree

to characterize the structure of relative extrema.
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Two properties can be associated with every extrema in the one-
dimensional case: height and width. The height of a maxima can
be defined as the difference between the value of the maxima and
the highest adjacent minima. The width of a maxima is the
distance between its two adjacent minima. Apostolico, Caianiello,
Fischetti, and Vitulano (2) use two-dimensional histograms of

such features.

In two dimensions, the relative height of a relative maxima is
the difference between its value and that of the highest adjoin-
ing relative minima. Its size is defined by the constituent
number of pixels in this "mountain range". 1Its shape can be
characterized by features such as elongation, circularity,

and symmetry. Elongation can be defined as the ratio of the
larger to the smaller eigen value of the 2 x 2 second moment
matrix obtained from the (x,y) coordinates of the border pixels
(4,25). Circularity can be defined as the ratio of the stan-
dard deviation to the mean of the radii from the region's center
to its border (34). The symmetric axis feature can be determined
by thinning the region down its skeleton and counting the numbers
of pixels in the skeleton. The direction of the elongation or

the direction cf the symmetric axis may also be measured.

Osman and Sauker (71) use the mean and variance of the height

of mountains or the depth of valleys as properties of primitives.
Tsuji and Tomita (110) use size. Histograms and statistics of
histograms of these primitive properties are all potential

measures for textures.

Hanson, Riseman, and Nagin (32) have suggested measuring prop-
erties of macrotexture by constructing a cooccurrence matrix of

primitive versus primitive and using statistics similar to those

used in the Markovian analysis.

BIOLOGICAL APPLICATIONS

Coherent optical processing of cervical cytology samples has been
performed using a specially designed Fourier spectrum analyzer

and a solid state optical detector array (48). The performance
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of this exfoliative cytology automated screening system protype
was disappointing since a 1% false negative and 10% false positive
error rate was obtained using atypical samples with a 1%

probability of occurrence of malignant cells.

Gray level transition probability matrices have been used in the
TICAS program (11) to detect small changes and differences in
the chromatin distribution patterns of cells. This Markovian
analysis technique enabled the investigators to follow changes
in mouse thoracic-duct lymphocytes as a function of exposure to
increasing doses of ionizing radiation. Arguments have been
presented that this technique may allow one to describe the
texture of cell nuclei with a greater sensitivity than available
by human perception. Results of other experiments (7%) show
that Markov parameters achieve high rates of correct classifi-
cation for cervical cell and lymph-nocde tissue-section appli-
cations and moderate rates for leukocyte discrimination appli-
cations. Flow microflucrometric systems have been used suc-
cessfully to reduce the number of cells which require processing
by these computationally intensive algorithms (26). Encouraging re-
sults were also achieved using Markovian analysis in a study which
correlated computer gradings of cell populations from breast
cancers with the subjective morphological gradings from trained

human diagnosticians (40).

Many researchers attempt to assess the significance of optical
texture analysis in exfoliative cervical cytology (74). Tanaka
determined that reliable automatic assessment of cytologic
samples requires the measurement of chromatin patterns (102).
Gradient analysis techniques were tested on four classes of

200 cervical cells (i.e., basal, metaplastic, dysplastic, and
carcinoma in situ) (1). A greater than 90% correct classi-
fication rate was obtained using features such as the variance
of the histograms of Laplacian filtered images. The authors
concluded that texture of the nuclei of Pap-stained cells is

a significant discriminatory feature.
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Mathematical morphology techniques have also been applied to
cervical cytology (64). Results of this work (97) are encour-
aging although the overall system performance cannot be

assessed yet. Commercially available instruments (e.g., Cambridge-
IMANCO Quantimet) have successfully used a similar technique

to detect and enumerate metaphase spreads for cytogenetic

applications.

Tissue section images are complex pictorial scenes, whose
deccomposition and analysis are some of the most difficult tasks
for image analysis due to the presence of diffuse boundaries,
three-dimensional structures, non-stoichiometric staining with
a large dynamic range of optical densities, huge variations in
the sampling and preparation methods, etc. However, the bio-
logical and clinical significance of tissues is justification
for their study by objective techniques (12,82). 1In addition,
this application may be appropriate to develop syntactic
pattern recognition techniques and to test structural and hybrid
texture analysis concepts.

Differential leukocyte counting was a major thrust of biomedical
image analysis a decade ago (83). The topological arrangement
gray levels in cell nuclei was already considered at that time (43).
Current research using optical texture analysis to recognize and
discriminate among leukocyte classes (31,111) span Markovian
analysis, gradient analysis (39), and mathematical morphology
(55) statistical techniques. Immunological applications for
texture analysis have also been successfully demonstrated such
as the discrimination between T and B cell lymphocytes and the
further subclassification of T cells by computerized micro-
photometry (Olsen, Anderson, and Bartels, personal communication,
(9)). Notable by its general absence is the application of
structural and hybrid approaches to guantitative cytopathology
and hematology.

Applications of texture analysis in radiology and nuclear medicine

historically include the analysis of patients with pulmonary
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interstitial disease (e.g., pneumoconiosis) involving abnormal-
ities in the pulmonary blood vessels, lymphatics, and connective
tissue (86,95), and the analysis of mammograms (Kimme-Smith,
Frankl, and Sklansky, personal communication, (298)). The accom-
panying rib edge detection problems and point calcification
problems may be better resolved by pattern recognition techniques

other than texture analysis.

DISCUSSION AND CONCLUSIONS

Optical textures result from the spatial variation of gray levels
within images. The quantitative characterization of biomedical

image textures may generate biclogical and clinical information

which is useful in performing routine, quantitative and/or complex

image analysis tasks by humans or machines. However, the objec-
tive and guantitative measurement of image textures is a non-

trivial feature extraction problem.

The orthogonal transformation approach is appealing because
spatial frequency data may be extracted instantaneously using
coherent optical processing systems. Unfortunately, features
based on the Fourier power spectra data have resulted in poorer
image classification accuracies than features from alternative
approaches. In contrast, Markovian parameters result in
encouraging rates of correct classification of images although
this technique may be computationally intensive. The mathe-
matical morphology approach benefits from the availability of
commercial instruments to implement functions and automatically
compute texture parameters. However, the sparse distribution
of these machines in biomedical research laboratories prevents
reviewers from accurately assessing the potential of this tech-
nique in biology and medicine. The gradient analysis approach,
mathematically similar to Markovian analysis, also yields en-

couraging results.

Structural and hybrid approaches to texture analysis presume the
existence of primitives which appear in guasi-periodic spatial
arrangements. They describe the character and placement rules

of these primitives. These approaches may be particularly
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appropriate for processing (e.g., segmenting) and characterizing
complex multitextured scenes although little work has been per-
formed using these techniques on biomedical images in contrast

to the use of statistical techniques.

Biomedical applications for texture analysis span many disci-
plines. Studies in exfoliative cytology, differential leukocyte
counting, and T and B cell lymphocyte differentiation are proto-
typic examples of the use of optical texture analysis to study
microscopic structures. Studies in pulmonary radiology and
mammography are examples of the use of these technigues to study

macroscopic structures.

Imaging techniques in addition to optical microscopy and pro-
jection radiography, may warrant the application of computerized
optical texture analysis. These new applications include
electron microscopy for the interpretation of microscopic struc-
tures (e.g., analysis of physical surface properties of cell
nuclei) and ultrasonography and tomography for the interpre-
tation of macroscopic structures (e.g., analysis of radionuclide

liver images) .
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