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ABSTRACT

The table look-up rule problem can be described by the ques-
tion: what 15 & good way for the table to represent the decision
regions in the N-dimensional measurement space. This paper
describes a quickly implementable table look-up rule based on
Ashby's representation of sets in his constraint analysis. A
decision region for category c¢ in the N-dimensional measurement
space is considered to be the intersection of the Inverse projec-
tions of the decision regions determined for category c by Bayes
rules in smailer dimensional projection spaces. Error bounds for
this composite decision rule are derived: any entry in the con-
fusion matrix for the composite decision rule is bounded above by
the minimum of that entry taken over all the confusion matrices of
the Bayes decision rules in the smaller dimensional projection
spaces. ‘

' On simulated BGaussian Data, probability of error with the

table look-up rule is comparable to the optimum Bayes rule.
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1. INTRODUCTION

In the simple Bayes approach to pattern discrimination, a

pattern measurement d [s assigned to category c*x only if
P(c|d} > P(c|d) for every ceC.

There are two distinct ways of implementing this assignment pro-
cess: in the usual case, we take the pattern measurements to be
vectors and for each category ¢, we estimate the conditional
density P(d]c) assuming a convenient multivariate form for P(d]c).
When a measurement d arrives for assignment, we plug it into the

formula for P{d|c)} and assign it to category c* where
P(d]c*}P(c*} > P(d|c)P(c), for every ceC.

The only memory storage needed for this implementation process is
far the parameters (mean and covariance) for each density. How-
ever, since a density must be computed each time a measurement
needs to be assigned, the implementation tends to be compute-
bound., This is a serious disadvantage for pattern discrimination
using remotely sensed data because the number of measurements
tends to be so high.

The other possible implementation procedure is to store the
decision rule itself rather than the densities. Define R{d) to be
the category the decision rule assigns to‘measurement d. For a

Bayes rule,
R{d) = c¢* if and only if(*) Plc*|d) z_P(cld) for every czC.

Now when a measurement d arrives for assignment, we use d as an
address to the table R and look-up the category assignment. When

this method is implemented directly, memory storage is needed

(*)Throughout the rest of this paper the phrase "if and only if"
will be abbreviated "iff''.
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for the entire measurement space. This is a lot of memory
especial ly when the dimension of measurement space gets to be
above 4 or 5. Also a lot of computer processing time is needed
to set up the table since the decision rule needs to be applied
to each possibie measurement to determine its assignment, How-
ever, since the category assignment is retrieved immediately by
only an address calculation, the implementation tends to be fast.
This is a clear advantage for pattern discrimination using re-
motely sensed data.

in this paper we explore the various ways a table look-up
rule can be impiemented and suggest a new implementation based

on Ashby's technique of constraint anaiysis.

2. THE DIRECT TABLE LOOK-UP RULE

Brooner, Haralick and Dinstein (1971) used a table look-up
(discrete Bayes rule) approach on high altitude multiband photo-
graphy flown over imperial Valley, California to determine crop
types. Their approach to the storage problem was to perform an
equal probability quantizing from the original 64 digitized grey
levels to ten quantized levels for each of the three bands:
green, red, and near infrared. Then after the conditionatl
probabilities were empirically estimated, they used a Bayes rule
to assign a category to each of the 103 possible quantized vectors
in the 3-dimensional measurement space. Those vectors which
occurred too few times in the training set for any category were
deferred assignment. Figure | illustrates the decision regions
associated with such a table look-up discrete Bayes decision rule.
Notice how the quantized multispectral measurement vectors can be
used as an address in the 3-dimensional table to look-up the
corresponding category assignment.

The rather direct approach employed by Brooner et al. has
the disadvantage of requiring a rather smaill number of quantized
levels. Furthermore, it cannot be used with measurement vectors

of dimensions greater than four: for if the number of quantized



QO] TN B B o=

Alfalfa

- Barley

- Safflour

= Sugar Beet
- Lettuce

- Onion

- Pasture

- Bare Soil

-~

DECISION RULE BOUNDARIES Eii\
R\
-
Il

used by: Discrete Bayes Rule N
o

DATA:

7T
777
7
7
Vv

Raw, Equal Space Quantized

7
i
Vi
;7
AV
i
i

7
7
Vi
7
7
Wiy
L
£
i Vi
L 77

iy
Wit avi

i

/
777 ST
77
7
7
777
7
77
777
777
f_'-’f
/7
7
777777

]
[~
K
N NONEARNY ~
I ™ ™. -
I~ I - o
o P b
ML L] N
M
~ EARNE ™~
NN NN
Nk .
N )
LI
~ ™~
I~ . :]
[~

\

FIG. 1

Viewed as an expanded cube, each dimension representing the
spectral region of the three muitiband images whose density
values have been quantized to ten equally spaced levels, this
sketch depicts the decision rule boundaries for each land-use
category used by the discrete Bayes rule.
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levels is about 10, then the curse of dimensionality forces the
number of possible quantized vectors to an unreasénahly large
size. '

Recognizing the grey level precision restriction forced by
the quantizing coarsening effect, Eppler, Helmke, end Evans (157})
suggest a way to maintain greater guantizing precision by defining
a quantization rule for each category-measurement dimension as
follows:

1. fix a category and a measurement dimension component;

2. determine the set of all measurement patterns which would be
assigned by the decision rule to the fixed category;

1. examine all the measurement patterns in this set and determine
the minimum and maximum grey levels for the fixed measurement
component;

4. construct the quantizing rule for the fixed category and mea-
surement dimension pair by dividing the range between the minimum
and maximum grey levels into equal spaced quantizing intervals,

This multiple quantizing rule in effect determines for each
category a rectangular parallelepiped in measurement space which
tontains ail the measurement patterns assigned to it. Then as
shown in Figure 2, the equai interval gquantizing lays a grid over
the rectangular parallelepiped. HNotice how for a fixed number of
quantizing levels, the use of multiple quantizing rules in each
band allows greater grey level guantizing precision compared to
the single quantization rule for each band.

A binary table for each category can be constructed by asso-
ciating each entry of the table with one corresponding ceti in the
gridded rectangular parallelepiped. Then define the entry to be a
binary 1 if the decision rule assigns a majority of the measure-
ment patterns in the corresponding cell to the specified category;
otherwise, define the entry to be a binary 0.

The binary tables are used in the implementation of the
multiple quantization rule table look-up in the following way.
QOrder the categories in some meaningful manner such as by prior

probability. Quantize the multispectral measurement pattern using
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This illustrates how quantizing can be done differently for each
category thereby enabling more accurate classification by the
following table look-up rule: (1) quantize the measurement by
the quantizing rule for category one, (2) use the quantized
measurement as an address in a table and test if the entry is a
binary one or binary zero, (3} if it is a binary one assign the
measurement to category one; if it is a binary zero, repeat the
procedure for categary two.

the quantization rule for category <. Use the quantized pattern
as an address to look up the entry in the binary table for cate-
gory to determine whether or not the prestored decision rule
would assign the pattern to category €. If the decision rule
makes the assignment to category C the entry would be a binary |
and, all is finished. |f the decision rule does not make the
assignment to category Cy the entry would be a binary 0 and the
process would repeat in a similar manner with the quantization
rule and table for the next category.

Formally, this kind of table look-up can be described as
follows. Let D be measurement space, the set of all possible
N-tuple measurements. Let ¢ be the set of categories. For each

category cel, let Dc be the quantized (discrete and finite)
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measurement space for category ¢. Let 4. be the guantizing rule

for category ¢;

q.: D-*DC

Mote that a. could quantize some of the components of the N-tuple
d to one possible value, in effect excluding that component from
consideration.

Let Tc be the decision rule assignment for category c;

Tc: DC+{0,I},
where

T_{q_{d))

1 iff P{c|q_ (d)} > P{c'|q. (d})) for every c'el
c - c

0 otherwise.

Then a measurement d is assigned to category ¢ if Tc(qc(d)) = 1.
One advantage to this form of the table look-up decision rule
is the flexibility to use different subsets of bands for each
category look-up table and thereby take full advantage of the
feature selecting capability to define an optimal subset of bands
to discriminate one category from all the others. A disadvantage
to this form of the table look-up decision rule is the large
amount of computational work required to determine the rectangular
parallelepipeds for each category and the still large amount of
memory storage required (about 5,000 8-bit bytes per category).
Shlien (1975) used a table look-up approach by storing in the
tabie only the category assignments for measurement vectors which
requently occur. He used a hashing function to map the measure-
ment vector into the table and reported that if the table is kept
at no more than 75% full two distinct vectors are not likely to
map to the same table address. Collisions were treated by using
the independent double hashing technique described by Amble and
Knuth {1974). Shiien indicated that most of the time about 6C00
vectors in the table accounted for about 90% of the vectors

occurring in an ERTS scene.
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3. THE INDIRECT TABLE LOOK-UPF RULE

The limitation of the direct approach to the table look-up
rule is memory storage. |If only some assumptions could be made
about the shape of the decision regions or some assumptions about
the way a decision region can be represented, or some assumption
about the form of the conditional probabilities; perhaps there
could be some reduction in storage space associated with the
table lTook-up rule.

Bledsoe and Browning (1959) suggested the following way to
approximate the form of the joint probabilities without making a
parametric assumption. Let M functions hl""’hM be selected
which map the N-dimensional measurement space to smaller K-
l,...,FM
tively. Because of the discreteness and small dimensionality of

dimensional discrete and finite feature spaces F respec-
feature space Fm’ it is possible to store in tables all the joint
probabilities Pm(c,f) of a feature FsFm and a category ceC. To
assign a category to a measurement d, the M features h](d),...,
hM(d) are determined and for each category c, the feature hm(d)
is used as an address to retrieve the probability Pm(c,hm(d)).

Then an assignment is made to category ¢* only if

M M
mzle(cﬂ,hm(d}) 3_m£le(c,hm(d)) for every ceC.

This method is similar to the probability product approximations
of Lewis (1959) and the more general product approximations of Ku
and Kullback {1969).

Eppler (1974) introduces a table look-up rule which compared
to Eppler et. al {1971) enables memory storage to be reduced by
five times and decision rule assignment to be decreased by two
times. Instead of prestoring in tables a quantized measurement
space image of the decision rule, he suggests a systematic way of
storing in tables the boundaries or end-points for each region in
measurement space satisfying a regularity condition and having all

its measurement patterns assigned to the same category.
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lLet Dq =0, xD, x...x DN be quantized measurement space.

1 2

subset RED, x D, x...x Dy is a regular region iff there exist
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A

i 2
constants L‘ and H] and functions LZ’ L3, vy LN’ H2, H3,
Hg, Lt Dy x Dy x...x D _ =), H oo Dy x Dy xe.x D _j+l-=.=)
such that

LN(XI’XZ""'XN-I} < Ry ﬁ_HN(x],xz,..

*N-1

11

From the definition of a regular region, it is easy to see

how the boundary tabie look-up decision ruie can be impiemented.

Let d = (d],..., dN) be the measurement pattern to be assigned a

category. To determine if d lies within a regular region R

associated with category ¢ we look up the numbers L

and H

1

and

test to see if dI lies between L] and H]. If so, we look up the

number Lz(d]) and "2(d|) and so on. [f all the tests are satis-

fied, the decision rule can assign measurement pattern d to cate-

gory c¢. If one of the tests fails, tests for the regular region

corresponding to the next category can be made.

The memory reduction in this kind of table look-up rule is

achieved by only storing boundary or end-points of decision

regions and the speed-up is obtained by achleving classification

most of the time by only using the one or two dimensional tables

whose addresses are easier to compute than the three or more

dimensional tables required by the direct table look-up decision

rule. However, the price paid for these advantages is the

regularity condition Tmposed on the decision regions for each

category. This reqularity condition is stronger tham set con-

nectedness but weaker than set convexity. (See Figure 3.)

Ancther approach to the table look-up rule can be based on

Ashby's (1964) technique of constraint analysis. Ashby suggests
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Example showing that Example of a nonconvex set
convex sets are regular which is regular

Example of a nonconvex set
which is not regular

FIG. 3

This figure illustrates the relationship between set convexity
and regularity.

representing in an approximate way subsets of Cartesian product
sets by their projections on various smaller dimensional spaces.
Thus, a subset of a Cartesian product set can be approximated by
the larger set formed as the intersection of the inverse projec-
tions of the projections of the subset onto the smailer dimen-
sional spaces. Using this idea for two-dimensional spaces we can
formulate the following kind of table look-up rule.

Let Dq = D] X D2 X o...X DN be quantized measurement space, C
be the set of categories, and JC{1,2,..., N} x {1,2,..., N} be
an index set for the selected two-dimensional spaces. Let the
probability threshold o be given. Let (i,j)ed; for each {xl,xz)
eDi x Dj define the set Sij(xl'xz} of categories having the
highest conditional probabilities given (x],xz) by

Sij(xl’xz) = {ceC[P(c|xi,x2) i-aij)} .
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where aij is the largest number which satisfies

Z P(cix]xz) >

S
E 1] (xy,x,)

Given that components i and j of the measurement pattern take the
vaiues (x],xz), Sij{xl’xz is the set of likely categories.

The sets of Sij’ (i,j)ed, can be represented in the computer
by tables. In the (i,j}th table Sij the (x],xz)th entry contains
the set of all categories of sufficiently high conditional
probabilities given the marginal measurements (x],xz) from meas-
urement components | and j, respectively. This set of categories
is easily represented by a one word table entry: a set containing
categories €y c7, CB’ and Cig for example, would be represented
by a word having bits 1, 7, 9, and 12 on and all other bits off.

The decision region R{c) containing the set of all measure-
ment patterns to be assigned to category c can be defined from the
Sij sets by

Ric} = {(d],dz,...,dN)EDI x Dy x...x DNI

{c}= N S..(d.,d.)}
G.pes

This kind of a table look-up rule can be implemented by using
successive pairs of components (defined by the index set J) of
the (quantized) measurement patterns as addresses in the just
mentioned two-dimensional tables. The set intersection

required by the definition of the decision region R{c) is imple-
mented by taking the Boolean AND of the words obtained from the
table look-ups for the measurement to be assigned a category.
Note that this Boolean operation makes full use of the natural
parallel compute capability the computer has on bits of a word.
If the kth bit is the only bit which remains on in the resulting
word, then the measurement pattern is assigned to category -
If there is more than one bit on or no bits are on, then the meas-

urement pattern is deferred its assignment (reserved decision}.
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Thus we see that this form of a table look-up rule utiiizes
a set of "loose" Bayes rules in the lower dimensional projection
spaces and intersects the resulting multiple category assignment
sets to obtain a category assignment for the measurement pattern
in the full measurement space.

Because of the naturail effect which the category prior
probabilities have on the category assignments produced by a
Bayes rule it is possible for a measurement pattern to be the most
probable pattern for one category yet be assigned by the Bayes
rule to another category having much higher prior probability.
This effect will be pronounced in the table look-up rule just
described because the elimination of such a category assignment
from the set of possible categories by one table look-up will
completely eliminate it from consideration because of the Boolean
AND or set intersection operation. However, by using an appro-
priate combination of maximum likelihood and Bayes rule, something
can be done about this.

For any pair (i,j) of measurement components, fixed category
c, and probability threshold R, we can construct the set of Tij(c)
having the most probable pairs of measurement values from compo-

nents i and j arising from category ¢. The set Tij(c] is defined

by:
Tij(c) = {(xl,xz)eDi X DJIF(x],x2|c) z_sij(c)} ,
where Bij(c) is the largest number which satisfies
:E: P(x],lec) =3 .
(xl,xz)eTij(c)

Tables which can be addressed by (quantized) measurement compo-
nents can be constructed by combining the sij and Ti' sets.

Define Qij(x],xz) by:

Qij(x],xz) = {cecl(xl’XZ)ETij(C)}LJSij(x!’XZ)
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The set Qij(x],xz) contains all the categories whose respective
conditional probabilities given measurement values (x],xz) of
components i and j are sufficiently high (a Bayes rule criteria)
as well as all those categories whose more probable measurement
values for components 1 and j respectively are (xi,xz) {a maximum
likelihood criteria). A decision region R{c} containing all the
(quantized} measurement patterns can then be defined as before

using the Qij sets:

Rie) = {(d.,d,,...,d YeD, x D,...x D |{c} = n Q..(d.,d.)}
1°°2 N 2 N (i,0)ed ijrit]

A majority vote version of this kind of table look-up rule
can be defined by assigning a measurement to the category most
frequently selected in the lower dimensional spaces.

Re} = {(dl,dz,...,d")eD! x D, x...x 0|
- .o ,
¥ {(I,J)EchaQij(di,dj)} > 4 ({i,Jled]c sQiJ.(di,dJ.)

for every c'eC - {c}}} .

3.1 Sequential Table Look-up Rules

The table look-up rule, as other kinds of rules, can also be
used in a sequential decision tree procedure in the following way.
Each level of the sequential procedure produces a tentative cate-
gory assignment and the tentative category assignments of level
n become an additional dimension of measurement space for layer
n+l. Hence measurement space grows by an added dimension each
successive level. For all possible distinctions at each level,
the sequential procedure is constrained to use the same feature
set. Feature sets of different levels, however, can be different.

For each level a feature selection is performed on the meas-
urement space defined for the level in order to determine the
optimum measurement space dimensions. The selected measurement

space dimensions are then used in a table look-up rule whose
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category assignments become an added dimension in measurement
space for the next level.
Mathematically what happens is this. Let the level 1

decision rule fl be an ordinary table look-up rule. Suppose -

level 1,...level £-1 decision rules f]""'fz-l have already
been defined. Define the levei £ decision rule in iterative way.
Let NE_] be the dimension of measurement space 01_] for the

(2-1)th level. Define Nﬁ' the dimension of measurement space Dz
for the 2th level by Ng = NE-] +1 and measurement space Dl by

b ={(d yeo.d d, )| (6, ... ,d Jeb

3 1 Ny TN 1 N,
and

d, =Ff, . (d,....d )}.
NE B-1"71 NR—I

The feature selection procedure then uses the measurement space DR
to produce the feature index set JR_EE {1,... N} x {1,...,N} as

the index set which selects the features. Using a table look-up
rule with Jpv as described earlier, the decision rule f2 is the
determined. Figure & shows the decision tree for this sequential
rule.

A disadvantage to the sequential rule as just described is
that measurement space gets bigger each successive layer. One
way of elimipating this problem as well as reducing the computa-
tional complexity is to only use successive layers if the assign-
ment of the previous layer reserved judgement. Let the level |
decision rule f] be an ordinary table look-up rule. Suppose level
lyea., level L-1 decision rules fl""fl-l have already been
defined. Empirically determine the category marginal distribu-
tions over only those data points assigned reserved judgement by
decision rule fl-l' Use a feature selection procedure on these
marginal distributions and determine decision rule fl using the
feature selected components and the category marginal distribu-
tions. A data peoint d is assigned to category c* if and only if

for some level L > 1,
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Measurement Space D,

Set of Categories C = 1Cqy, Cy, ... C,}, Where Cq is a Reserved Decision,
FIG. &

This figure illustrates one way of defining a sequential decision
rule by augmenting measurement space by the category classifica-
tion of the previous layer: The figure shows a 2-layered surface.

fz(d) =c» 2=1,...,L-1

and
fL{d) = e .

The tree structure for this decisien rule is illustrated in

Figure 5.

4. MISIDENTIFICATION ERROR BOUNDS

Because the table look-up rule based on tables in a smaller
dimensional space than measurement space must necessarily glve
results which are less optimum than a Bayes rule, it is desirable
to determine bounds on the misidentification error. To do this
easily we will change our perspective slightly and think of the
decision rule in the smaller dimensional space as its induced
decision rule in the full measurement space. lgnoring for the
moment the relationship between conditional probabiilities and the
decision rule definition, we will think of a decision rule as a

partition in measurement space.
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FlG. 5

This figure illustrates the tree structure for the sequential
decision rule which uses each successive layer only to resolve,
if possible, reserved decisions of the previous layer.

Suppose N different decision rules with no reserved decision
regions are determined for measurement space D. Each decision
rule can be characterized by the partition generated by its
decision regions. Let {Hnl'HnZ""’HnK} be the partition asso-

ciated with the nth decision rule. The cell Hn of the nth

partition is the region of all those measuremen:s assigned by the
nth decision rule to the kth category.

A composite decision rule (of the table look-up form) can be
constructed from the N given decision rules in the following way:
a measurement is assigned to the kth category if each and every
of the decision rules assigns it to the kth category; if for any
measurement a unanimous decision is not possible, then assignment
for the measurement is reserved.

Let decision region Hk of the composite decision rule be the
set of all measurements assigned to the kth category and decision
region H0 be the set of all reserved decisions. Then, by defini-

tion,



TABLE LOOK-UFP RULE 1179

N
Kk = r__\l ]Tnk, k-],2, ,K N
K
T =D-U & .
o k=1 ke

Lemma | establishes: (1) upper bounds by category, for the
probability of correct identification and the probability of mis-
identification; (2) lower bounds, by category, for the probability
of reserving judgement and for the sum of misidentification
probability and reserved judgement probability. The bounds are in
terms of the correct identification and error rates in the con-
fusion matrix for each of the N given decision rules.

Let C = {cl, cz,.,.,cK} be the set of categories. Denote
by Pc(ck) the probability of the composite decision ruie cirrectly
identifying a unit whose true category identification is ¢, by
Pe(ck) the probability of the composite decision rule misidenti~
fying a unit whose true category identification is ck. and by
Pr(ck) the probability of the composite decision rule reserving
judgement on a unit whose true category identification is ck.
Denote by Pg(ck) the probability of the nth decision rule
correctly assigning a unit whose true category identification is
ck, and by PZ(ck,cj) the probability of the nth decision rule
incorrectly assigning a unit whose true category identification

. k
is ¢ to category ¢d. The lemma states:

k . n, k
Pc(c ) < min Pc(c Yy,
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K .
Pr(ck) i_P(ck) - :E: m;n PZ(ck,cJ) .

i=t n=l,...,N

It is also possible to use the error characteristics of a
Bayes rule in the smailer dimensional spaces to determine error
bounds on the Bayes rule in full measurement space. Lemma 2

gives the upper bound

Z min {P(d,ci}, P(d.cj)}
deD

F?r the ?robability Pe(ci:cj) of a Bayes rule confusing categories
¢c' and ¢!. Lemma 3 notes that when measurement space is trans-
formed in any way by a mapping ¢, then the upper bound of Lemma 2
for the confusion error of the Bayes rule in the transformed

space must increase. Lemma 4 states that if ¢],...,¢N are trans-
I""'DN
tively, then the error bound of Lemma 2 for the probability of a

formations of measurement space D to spaces D respec-

Bayes rule confusing category ¢' and ¢! itself can be bounded by

. . i J

min Ez mn{PMnm ), ”dWC}}

_ d D
a=l,...,N "n 'n

so that the total probability of error or a Bayes rule in measure-

ment space D can be bounded by

K-1 K . .
Z z min Z min {P(dn,c'), P(dn,cj)} .

i=1 j=i+l n=i,...,N anDn
Lemma 1: Let {Hnl""’:nk}' n=},...,N be given partitions of
measurement space D. Define a new partition {Ho, |,...,]‘IK} by
N
I[k = 2 an
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Then,

n
n=i,...,N
K .
k . n, k j
Pe(c ) < :S m;n PE(C '),
=t __
ek n=1, N
P (M) + 7 (cX) > max i P (K, cd)
a r sy e » ’
- j=1
n=1,...,N #k
P (ck) > P(ck) - : min P"(ck cj)
r - jzz n e ’
= -1, 0N

Proof: By definition,

P (eX) =

t
o
—
[~
(4]
=
—

§=1
j#k
P = ST Pl
dell
o
n, k oy k
Pe(c ,c') = Ei P{d,c”) ,
dell .
nj
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deﬂnk
Then,
P (") = P, = T P e min Y Pid,cX)
C 2: ’ n :
dell N _ ell K
k de N Moy n=1, N n
n=1
< min P
n=tl, .M
Ky _ w Ky _ k
P (") = Z z Pld,c") = > 3 P(d,c")
j=1 del, =1 N
j#e j#k de N,
n=1
K K .
k , n, k j
< min P{d,c"} = min P (e ,c”)
3w g
3% n= ) ==, N
Tk n=1,...,N nj Tk n=1, s

K k K k p(d.c¥)
P e P () =S T P s Y el
i=1 dell, der_

v
o
~
2]
=
—
1
3

o =
3
-]
—_
o
o
=
A
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Lemma 2: Let Pe(c':cJ) be the probability that categories c¢' and
¢! are confused by a Bayes decision rule in measurement space D.

Then

Plclscd) « 3 min (pd,), pld,d))
deD

Proof: Without Tess of generality, we assume that P{c'|d)
# P(c)|d) when i#j. Let A, = {dep|P(c']d) > P{c|d), for every cl.

Since Pe(c':cJ) is the joint probability that a unit whose true

category identification is c' is assigned to categary <l or a

J

unit whose true category identification is ¢’ is assigned to

i
category ¢ , we must have

Pe(ci:cj} = Z P(d,C‘j) + Z P(d.Ci) .
dEA; dEAJ

Let B;, = {ded|P(c'|d) > P(c!|d) . Certainly, Bij > A, and
B,. > A,. Hence,
Jr— 1
P j i
Pe(c i) < :E: Pld,c”) + :E: Pld,e') .
deB. . deB.,
(] JI
Now notice that if deBij, then P(d,cd) = min {P{d,c'),
P(d,c)) and if dgrsJ.i P{d,cd) = min {P{d,c?), P(d,c')}. Also
notice that B, ,UB.. = D and B, ,N1B,., = @. Hence,
IJ JI IJ JI

| A

Pe(cj:cj) Z P(d,cj) + Z P(d,ci)
dEBij diji

S min (Pd,c'), Pld,ci}}
deD
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1 K
Lemma 3: Let D be measurement space and £ = {¢ ,...,c } be the
set of categories. Let a probability function P be given on
D x . Let a mapping ¢:0+D' be given which induces a probability

function on D'. Then,
> min {P(d,c'), Pld,e)} < 3 min {Pldr,e"), Pld',e!)} .
deD d'eD’

Proof: First notice that since ¢ is a mapping, {¢_](d')|

d'eD'} is a partition of D. Alse, since D is discrete,

Pd',c) = D Pl{dc} .
dey! (¢*)

Hence,

:E: min {P(d,ci) ,P(d,cj)} = :E: :E: min {P(d,ci) ,P(d,cj)}

deD d'eD' dep~1{d")
< :E: min { :E: P(d,ci),
d'eD’ des¢ 1 (d")
> e

min {P(dlsci)9 P(d'scj)}

| A

d'eD!

Lemma 4: Let D be measurement space and C = {cl,...,cK} be the
set of categories. Let a probability function P be given on

D x C. Let N mappings ¢n:D+Dn, n=1,2,...N be given. Then an
upper bound on the probability of error, Pe’ for a Bayes rule in

0 can be given by:

K .
. . i j
Pe < E : min 2 min {P(dn,c Y, P(dn,c 3
i=1 j=i+l d_eb
n=i,...,N "n 'n
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Proof: 8y a previous lemma, we know that for each mapping
:E: min (P(d,c'), P(d,c}} < :E: min {P(dn.c'), P(dn,cJ)}
deD d €D

non

Certainlty it must then be true for the mapping giving the smallest

right-hand side. Hence,

Z min {P(d,ci), P(d,c-j}} < min Z min {P(dn,.ci},

n
ded n=i,...,N dnsDn
i
P{dn,c .
Now by definition,
K=1 K ..
E Z P, fe':ed)

i=1 j=i+l

where P (c':cJ) is the probability that a Bayes rule will confuse
categories ¢ and cJ. By a previous lemma, Pe(c':cJ} is bounded

above by

3 min {pld,c'), Pld,cd)} .
deDd

Therefore,

-1 X K-
R0 EXCIUES 519 3 oL X R R

=l j=i+] i=1 j=i+l deD

-1 K . s
LD LI DN G OGO FLICINCS
‘o) et n
b=l g=ie e 94ty
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5. RESULTS

To illustrate the table look-up technigue, we prepared a
simslated data set consisting of two normally distributed cate-
gories each with 1250 3-dimensional vectors whose components

were integer-valued between 0 and 31. The mean vectors were

10 Th
M] = 18 Hz = ”l
12 18

for categories one and two, respectively.
Each category had the same covariance matrix

)}(’.‘ ; ?‘)

2 1 4

Making the actual mean and covariance matrices exactly as re-
quired when the data vectors are integer valued is not that easy.

The actuail mean vectors were

10.03 15.03
M] =117.97 Mz ={14.01
12.00 18.00

Category one had covariance matrix

4,1312 .9895 1.9529
.9895 5.0481 .9287
1.9529 .9287 4, 1064
Category two had covariance matrix
§.1235 1.0281 2.0&32
1.0281 5.2657 1.0966
2.0432 1.0966 4.1791

Figure 6 shows range plots of category one against category
two. Each plot shows the actual range of the centrai 95% of the
probability.

The Mahalanobis distance between the categories is

2 -1
rg = (M - #,) > (M, - M,) = 16.2143 .



TABLE LCQOK-UP RULE 1187

BAND 1
() B B S — 1
CATOZ U 1
' I T B I I L T L L LA I LA A
5609 9.369 13.1531 17.1594
BAND 2
CATOZ  1emmmmme s 1
CATOL e 1
LTI I I I T 1 100111
8 103 13.1155 17.1344 22.1531

BAND 3
CATOD  Bommmmmmommmmmmom oo 1
CATO2 Lo 1
11111 I T T L F
I 1 1 1
6. 750 11.500 16.500 21500
FIG. &

This figure shows range plots of category one with category two
for each of the three components of the data vector. 95% of the
probability is contained within the specified range.

The probability of correct classification for category one or two

is given by Anderson {1958).

r 2
° X dx = .9778 .

i
— e

YZn

g
éu..‘I
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UNKWN
ONE

TOTAL
#ERR
%ERR

UNKWN
ONE

TOTAL
#ERR
%ERR

UNKWN
ONE

TOTAL
#ERR
%ERR

CONTINGENCY TABLE FOR TEST QNT - &4 TEST BY3 - 1

COL = ASSIGN CAT

R DEC ONE

0
1151
87
1238
87

7

oOOoOCOoOCc o O

CONTINGENCY TABLE FOR
COL = ASSIGN CAT

R DEC ONE

0
1200
124
1324
124
9

oOoCcCoo0oOo0oQ O

CONTINGENCY TABLE FOR
COL = ASSIGN CAT

R OEC ONE

0
1212
30
1242
30

2

(oo B e B oo B o B 0 o

ROW
WO TOTAL
0 o]
99 1250
1163 1250
1262 2500
99 186
8 7
{a)
TEST QNT
ROW
TWO TOTAL
0 0
50 1250
1126 1250
1176 2500
50 174
4 6
(b)
TEST QNT
ROW
TWO TOTAL
0 0
38 1250
1220 1250
1258 2500
38 68
3 2
{c)
FIG. 7

= TRUE CAT

#ERR %ERR

0 0

99 8

87 7

186 7

- b TEST BY4 - 1
= TRUE CAT

#ERR %ERR

0 0

50 4

124 10

174 7

~ L TEST BYS - 1
= TRUE CAT

#ERR %ERR

0 0

38 3

30 2

68 2

HARALICK

#sD

oo o0

#s0

[o= 2 o Bt o o]

%S0

oo

This figure shows contingency tables for the table look-up rule
using individual component pairs (1,2}, (1,3), (2,3) respectively
with parameters a = 4 and g = 0.
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Using the method of Loftsgaarden and Quesenberry (1965) to
estimate the required bivariate conditional probability functions
we can compute the table look-up rules for a = .4 and B = 0.

Figure 7 shows three contingency tables for the table took-
up rule using compenents (1,2), {1,3) and (2,3) respectively.
Figure 8 shows the contingency tablie for the intersection table
look-up rule using all three component pairs.

The correct identification accuracy was 99% which is actually
higher than that expected for a Gaussian classifier. However,
there were 361 reserved decisions, 1h4.44%. HNotice, that as
required by the error bound calculation, the entries in the con-
tingency tables of Figure 8 are less than the entries for the
tables of Figure 7.

The real test for any classifier is the results on actual
data. We have been successfully using the table look-up classi-
fier regularly for making land use maps from the LANDSAT imagery.

We have also found a way of handling the reserve decisions by

CONTINGENCY TABLE FOR TEST QNT - 4 TEST BY1 - 1

COL = ASSIGN CAT ROW = TRUE CAT

R DEC ONE WO TOTAL #ERR ZERR #SD
UNKWN 0 0 0 0 0 0 0
ONE 168 1082 0 1250 0 Q 0
TWO 193 6 1051 1250 6 | 0
TOTAL 361 1088 1051 25060 & 0 0
#ERR 0 6 0 6
ZERR 0 1 0 a

FiG. 8

This figure shows the contingency table using all three component
pairs (1,2), (1,3), (2,3). Note that as required each entry in
the table is smaller than or equal to the minimum of the corre-
sponding entries in the contingency tables resulting from classi-
fication using the individual component pairs shown in Figure 7.
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changing the reserve decision to the category assignment of the
nearest resolution cell having a category assignment generated by
the table ltook-up. So for image data, there is a lot of spatial
information which can be used to help make good decisions, and
the reserve decision inherent in this kind of table look-up is

no drawback.
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