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ABSTRACT

This paper discusses the general supervised pattern discrimination
problem from a structural point of view. We show that the problem of
determining a decision rule as well as the problem of applying a decision
rule is a problem of finding homomorphisms, whether the pattern data struc-
ture is an N-tuple as in statistical pattern recognition, or a string or
its generalizations as in syntactic pattern recognition. We then introduce
the concept of an arrangement, which is a labeled N-ary relation, as a more
complex pattern data structure and show how decision rules can be constructed
and applied to arrangements using the homomorphism concept. The methodology
suggested in the paper provides a structural pattern recognition generaliza-

tion to phrase-structured syntactic pattern recognition.
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l. INTRODUCT I ON

The purpose of this paper is threefold:

(1) To provide a unified treatment of N~-tuple and string
pattern recognition which clarifies their common
structural basis;

(2) To introduce the arrangement as a pattern data structure;

(3) To show how to use the arrangement in an analogous fashion
to the use of N-tuple and string in structural pattern

recognition,

Statistical pattern recognition uses the N-tuple for the basic data
structure of a pattern. Each #attern must be an ordered list of values
and the lists must be the same tength. If the values are real numbers,
the concept of distance yields linear or quadratic decision rules to de-
termine the category to which an N-tuple should be assigned (Fukanaga, 1972).
If the values are non-numeric symbols, then decision rules using cylinder
set covers can be used (Michalski, 1973; Haralick, 1977).

Syntactic pattern recognition uses the string for the basic data
structure of a pattern. Each pattern is called a sentence and must be the
concatenation of symbols from a given symbol set. |If the set of sentences
associated with a category is a finite state language (those generated by
a regular phrase structure grammar), then a decision rule which decides
category assignments can be a finite state automaton (Ginsburg, 1966).

Much work has been done to generalize the string data structure of
phrase structure syntactic pattern recognition. Data structures of trees
(Brainerd, 1969; Donar, 1970) arrays (Kirsch, 1964 ; Dacey, 1970; Milgram and
Rosenfeld, 1971) plexes (Narisimhan, 1966; Feder, 1971; Feder, 1968; Shaw,
1969) and webs (Pfaltz~and Rosenfeld, 1969) have all been described. However,

in this paper, when discussing phrase structure grammar, we will restrict

ourselves to strings only.



In structural pattern recognition, each pattern class is characterized
by a unique set of relationships between the parts of the patterns in the class.
The emphasis is on the combinatorial complexity and uniqueness which this
relational organization can have. Structural pattern recognition assumes the
combinatorial complexity is high enough to permit an almost 100% correct
classification rate. Therefore, instead of the error rate analysis methods
typical of statistical pattern recognition, structural pattern recognition
utilizes what amounts to covering techniques to generate decision rules.

The set covering methodology of Michalski (1973) or the production rules of
MYCIN (Davis et. al., 1977; Shortliffe, 1976) and the grammatical inference
procedures surveyed by Fu and Booth (1975), Biermann and Feldman (1972) and
those described by Biermann and Feldman (1967) and Pao (1969) are all special
cases of the general covering paridigm which we believe characterjzes
structural pattern recognition.

There are four basic problems which structural pattern recognition faces:

(1) The choice of data structure for the pattern (a design problem).

(2) The translation of the real world measurements to the data
structure of the pattern (a feature extraction problem) .

(3) The construction of the decision rule (a generalization probtem) .

(4) The application of the decision rule (an implementation problem).

In this paper we show that from a structural pattern recognition perspective,
problem (3), the construction of the decision rule is really a problem
expressable in terms of determining covers by homomorphisms and determining
decision rules, utilizing these covers by homomorphisms. Once this is under-
stood to be the same general kind of problem, whether the data structure for

the pattern is an N-tuple, string, or the string generalizations mentioned



earlier, we can naturally inquire about the possibilitis of structural
pattern recognition with other kinds of data structures. To this end we
introduce the labeled N-ary relation as a data structure which is more
complex than the string or N-tuple and which inciudes the N-tuple, the
string, and its generalizations, as special cases. We call the labeled
N-ary relation an arrangement and illustrate how decision rule construction
can take place using the arrangement as a pattern data structure.

Section Il discusses how structural pattern recognition is a problem
of finding homomorphisms. Section I1l illustrates a set covering example
using the structural pattern recognition methodclogy, Section 1V interprets
a syntactic grammatical inference example as one which fits the structural
pattern recognition methodology. Section V describes the arrangement data
structure and illustrates its use in a structural pattern recognition

approach.



I'l. HOMOMORPHISMS AND STRUCTURAL PATTERN RECOGNITION

In this section we describe how the decision rule construction problem
is a problem of finding homomorphisms. The mathematical description given
here is designed to be general enough for all structural pattern recognition
and is written with the aim of unifying on a theoretical level all the basic
processes involved. Some of the early ideas which motivated this section can

be found in Haralick (1975). We begin with some definitions.

Let P be the set of patterns and C be the set of categories. Let
P' < P be the set of observed patterns. A training data set is a binary
relation T< P' x C which pairs observed patterns with their true category
identifications. Typically, the fraction of patterns in P which are
observed is very small. Also each category in C is associated with at least
one observed pattern; hence T(P) = C so that T is onto. Because we assume
no error in the case of structural pattern recognition, if an observed pattern
is paired to a category, it is paired to at most one category. That is, T
is single-valued; (p,c) € T and (p,c') € T imply c = c'. Given some kind of
structure on the set of patterns P, the decision rule construction problem
is to find a binary relation D, called the decisjon rule, which pairs each
pattern in P tc categories in C and which is much larger than T; thus we must
have T D g P x C. Note that we do not require D to be single-valued.

The structure on the pattern set P is a given collection of sub-

sets of P which cover it. We denote such a collection by o i gﬂis some
given subset of the set of all subsets (the power set) of P. The structure

(r,¥) may be a neighborhood space or a topological space. The partial ordering

on P induced by szay be a lattice, or as emphasized in this paper,&ﬁmay be
the collection of homomorphic images of elements of P.
The decision rule construction problem is how to assign to some category

patterns which have not been observed. In other words, it is how to generalize



from the training set. In structural pattern recognition, the generalization
takes place through the cover . The decision rule pairs a pattern p ¢ P
with a category c & C when there exists a subset L e X?satisfying the

generalizing conditions

(1) LOYP £ g

(2) pelL (H\P' implies (p,c) ¢ T

The first condition states that generalization can only take place through
a subset L which contains one of the observed patterns. We only generalize
from patterns for which there is some category identification information.
The second cdndftion forces uniquéness: all obserﬁed patterns in L mﬁst
have the same category identification by T. We call a subset L ¢ J?that
satisfies (1) and (2) a generalizing set. In the remainder of this section
we will analyze generalizing sets and illustrate the role which homemorphisms
play.

We define a restriction of ¥ to be that collection &' which contains
only those members L of the collection ¥ which satisfy the generalizing

conditions (1) and (2). That is,

Lr=tel] (1) L' ¢ ¢ and

(2) There exists a c € C satisfying (p,c) e T
for every p e L PH k.

Associated with J& is the natural binary relation F= P x ¥ which pairs

each pattern with each member of Ee,to which the pattern belongs.

F={(p,L) e P x %ZI p & L}



Let F' be the restriction of F to .ﬁi'; F' = F(F\(P X 3@’). The
members of &2‘ must be sufficient to allow generalization to take plate
using all the information in the training set. This means that for each
observed pattern, there must exist a consistent subset in fz' containing
the observed pattern. Thus we expect that for each obserQed pattern p,
there exists an L e &i_satisfying {p,L) € F'; hence, F' is defined everywhere
on P',

To show how a decision rule can be constructed which utilizes the cover

/', we need to define a particular kind of relation composition and a
v

homomorphism based on this composition. Let E< A x B, Gz A x C, and

H= B x D. This kind of composition translates pairs of E through G and

H to pairs in C x D. The translation takes place componentwise. The first
component is translated through G and the second component is translated

through H.

Definition 1

We denote the composition of E with (G,H) by E o (G,H) and define

Eo(G,H) = {(c,d) e C x D | for some (a,b) ¢ F, (a,c) e G and (b,d) & H}.

Figure 1 illustrates the composition idea using a commutative diagram.
Notice that if A=C and G is the identity on A, then the resulting compo-
sition corresponds to the usual idea of function composition.

Our natural concept of homomorphism is a structure-preserving mapping
from one set to another. The mapping of structure is achieved by the
éomposition just defined.

Definition 2

(G,H) is a homomorphism from ESAxBintoWsC xD if and only if

E o(G,H) < W.
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F o (G,H)

N

Figure 1 illustrates the relation composition concept.
I'f (a,b) ¢ E, and (a,c) & G and (b,d) e H,
then the pair (a,b) gets translated to (c,d)
by the composition of E with (G,H).



In other words, every pair in E must be translated to some pair in W.
However, there may be pairs in W which are not the translation of any pair
in E. |

We use the concept of relational composition and homomorphism in the
following way. We define the inclusion relation !P' by iP' = {(p,q) € P x P! [
P = ql. The association Q between members of ,ii' with categories of C can
then be obtained as the relation composition of lpr with (F',T): Q= Iy o (Fr.T),
Q is a homomorphic image of the inclusion refation [P" As illustrated in
Figure 2,_this means that a generalizing set L is paired by Q with a category
c if there is an observed pattern P e P which is a member of L, {p,L) ¢ FlL,
and whose true category identification is c, (p,c) e T.

The generalizing is taking place through the sets in 132' and we must
expect that the relationship between a pattern p and a generalizing set L
as determined by F' must bear a relationship to the relationship of the
pattern p to its category identification (if any) as determined by T. In
some sense F' must contain at least as much information as T does. Given
F' we must be able to translate it and produce T. In fact, it is the case
that T is the homomorphic image of F' obtained with the homomorphism (EP,,Q).
Proposition 1 proves that Q = p o (F',T) implies F'o (IP,,Q)<; T. Proposition
2 proves the converse and the theorem states that Q = lP' O(F’,T) implies

T=Flo(1,,,0.
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F! ‘

Figure 2 is a commutative diagram defining the
relation Q by Q = ip! o (F' 00 Alss,
it should be apparent that under
reasonable conditions, T is the homo-
morphic image of F'; T = F'o (IP"Q)'



Proposition 1: Suppose Q < lp o (F',T). Then F! °(|Pa,Q) & T,

Proof: Let (p,c) ¢ F! O(IPJ,Q). Then there exists (p',L) € F' such that
(p',p) e l51 and (L,e) € Q. But (p',p) ¢ jP' implies p = p'. Since (L,c) e Q
and Q =i, o (F',T), there exists (q,q) e l'pi such that (q,L) e F' and

(g,¢) e T. Since L €', there exists a ¢' & C satisfying (p*,c') ¢ T

for every p* ¢ L{ \P'. But qe Ll P so that (g,c') e T. But T is

single-valued so that (q,c') ¢ T and (g,c) e T imply ¢ = ¢!, Finally,

(p',L) = (p,L) £ F and (p,p) e Ipy imply p e L{\P' so that [p.2) & T.

Proposition 2: Suppose IP' o (F',T) = Q. Then T F'o (iP,,Q).
Proof: Let (p,c) ¢ T. Then (p,p) ¢ ]P" Also, since F' is defined
everywhere, there exists a L e;%& such that (p,L) e F'. Hence,

(Lie) e 1,00 (F',T) Q. Now, (p,L) & F', (p,p) ¢ lpis and (L,c) e Q

imply (p,c) e F'o (15,,0). Thus T F' o (1p0,0).

Theorem 1: Q = IP' o (F',T) implies T = F! O(IP,,Q).

Proof: Propositions 1 and 2.

10



The theorem basically means that once given a training data relation T
and a cover &ﬂ, the structural pattern recognition paradigm seeks to deter-
mine a relation F' which is the inverse homomorphic image of T. Generalizing
means finding inverse homomorphic images of the training data.

Once the generalizing has.been done, it is a simple matter to construct
the decision rule. We need only translate the relation F' to a relation that
pairs patterns with categories. We do this in the following way. Let IP
be the identity on P. We define the decisjon rule D as a binary relation
from P into C by D = F' o (IP,Q). Whereas the training data relation T is
the homomorphic image of F' under homomorphism (IP,,Q), the decisicn rule
is the homomorphic image of F' under the homomorphism (JP,Q). The decision
rule pairs a pattern p with a category ¢ if the pattern is in some generalizing
set L which contains an observed pattern paired with category c by T.

To summarize, the structural pattern recognition paradigm begins with a
cover - on the set of patterns P. Then using the training data relation T
a relation F' is determined which pairs patterns to generalizing sets in the
cover Eﬁ-. This relation F' is an inverse homomorphic image of the training
data relation. The decision rule D is constructed as a homomorphic image of
Fr.

In Sections Il and IV we explain N-tuple and string structural decision
rule construction in terms of these kinds of homomorphisms. In Section V we
introduce the arrangement data structure for a pattern and illustrate how

decision rules for it, too, can follow the same structural pattern recognition

paradigm.



I11. N-TUPLE PATTERN DISCRIMINATION USING COVERS

In this section we give an example of the construction of a decision
rule using the structural pattern recognition technique of Section ||. We
show how §£ can be defined as the homomorphic image of elements of P, where
the structure preserved by the homomorphism relates to a pseudo metric on the
power set of P. Then we show the comparison'between this technique and the
Michalski covering technique (Michalski; 1969, 1971, 1973, 1974) which is a
top down version of the Quine-McCluskey technique for minimization of Booiean
variables (Quine, 1955; McCluskey, 1956) for non-Boolean variab]es; Haralick

(1977) gives a description of some of the covering ideas discussed in this

section.

We begin our discussion with definitions for Cartesian products, metrics,

cylinder operators, and homomorphisms.

Definition 3

Let J = {jl’jZ""’jN}‘be a linearly ordered finite set whose elements

satisfy jn < jn+l’ n=1,...,N-1. Then, we define the Cartesian product with

respect to an indexing set J of a selected group of sets
D]’DZ""’DK by jéJ Dj = Dj] X Dj2 X ... X DJN.

Definition 4

A real valued function p defined on P x P is a metric if and only if

(1) o(x,y) > 0 with equality if and only if x = v (non-negativity)
(2) px,y) = oly,x) (symmetry)
(3) px,y) < plx,y) +o(y,2) (triangular inequality)



The pair (P,p) is called a metric space.

A function p which satisfies the weakened condition

(1) p(x,y) >0 and x =y impiies p(x,y) = 0

(2)  olx,y) = ply,x)

is called a pseudo-metric.

When the set of patterns P is a Cartesian product set .X D., a natural

jed 7]

metric p can be defined on P which counts the number of components in which

two patterns differ.

Proposition 3: Let p be a function defined on (iéI Di) % (iél Di) given by

p((x],...,xN), {y],...,yN)) =#{iel | x; # yi}. Then p is a metric on

iel 7i°

Proof: Clearly ;5 satisfies the non-negativity and symmetry conditions. To

show the triangular inequality, let (z],...,zN] e ;X7 D;. Then

D((x],---,xN), (y],...,yN)) = #{i el | x; #y.}

= #({i e I | X, # Yis ¥ # 2.5 X, # zi} kv){i eI | x; # Yio ¥V # Zi, X, = Zi}
(_){i e I | X, # Yir ¥ = 2p x, # zi} ku){i e I | X, # Yo ¥i =250 ¥, = Zi}

Since {i e I | X, # Vi ¥i T 2 X, = zi} = ¢, we may union the first two sets

and the first and third sets to obtain

#Hliel] x; Fyil=4({i el | x. #y, y; # Zi} Qu){i e 1| X; # ¥, X, # z.1)

<#Lierq | y; # z;} K_) {iel] x; # z;1)
< #{ieq | Y # Zi} + {i g1 | X, # ZT})



Therefore,

p((xi"“’xN)’ (Y";"7YN}) iﬁ)((x]"‘"xN)’ (Z],-..,ZN)) +p((215"':ZN)’ (y],'

It is easy to verify that the function o' defined by

p'(A,B) = min min p(x,y)
xeA vyeB

50(.:( D.).

is a pseudo metric on the power set %7 D,
£

Functions which are distance decreasing function on a metric or pseuao-
metric space are called contraction mappings and for us contraction mappings

are playing the role of homomorphisms.

Definition &5

Let (P',p') be a metric or pseudo-metric space. Let h: P' > p' satisfy

p'(x,y) > p'(h(x),h(y)). Then h is called a contraction mapping on P' and

for our application we call h a homomorphism.

Corresponding to the natural metric p on a Cartesian product set _XI D.,
£
there is a natural class of functions from the power set CP(igl D;) to
Gb{iél Di) that we call cylinder operators. The cylinder operator extends

any set to a neighborhood which contains it. The extension is achieved by

taking each N-tuple in the set and letting designated coordinates run free.

Definition 6

Let J = I. The cylinder operator WJ from (5“(

X1 0) to By 0))

is defined by

14



WJ(A) = {(y],...,YN) € iél Di | For some (Xl""’XN) e A,

x. =vy. for all j e J}
s yJ all j e

The subset ?J(A) is called the J-cylinder set of A. The order of the cylinder

set or the order of the cylinder operator is the number #J. See Figure 3 for

an example of some order 1 cylinder sets.

h-»—)(]

;<’-—
}

TN So

T S

N ) b —

8 8
+ 1

Figure 3 illustrates the projection and inverse

15

projecction operators for two subsets

S0 and S] of D] x DZ'



Proposition 4: Let J = I. The cylinder operator ¥J is a homomorphism

on (% 0,).

Proof: Let A,B ¢ iﬁs(iél Di)' Since A = WJ(A) and B < WJ(B},

min min p{x,y) < min min p(x,y). Hence, by definition of o',

X, & WJ(A) Y € ?J(B) xeA yebB

p’(WJ{A), WJ(B)) < 0'(A,B); and this makes ¥, a homomorphism.



o/

For structural pattern recognition with N-tuples, the collection 3 can
be defined as containing all images of elements of the Cartesian product
pattern set P = TéI Di by any cylinder operator having order less than or

equal to some convenient constant k.

Jg ={LgpP | L= ¥J({p}) for scme p ¢ P = EZI DT and J = [

satisfying #J < k}

Once the collection Je is defined, the decision rule D can be determined
by D= F'o (iP,Q) where Q = Ipe © (F',T), T is the training data relation, and
F' is the relation which pairs elements of p to generalizing subsets in &Ef.

We next illustrate this structural pattern recognition technique by an
example.

We let pattern space or measurement space P be DI x D, x D, x Dh where

2 3

D] = {X,Y,Z}
D2 = {1,2,3}
D3 = {A,B,R,S}
D4 = {Q:B:Y}

We take Qflto be the set of all order 1 cylinder sets of P.
AZ,= {LcP | for some peP, L= WJ(p), J=1,2,3.4):

Let the set of categories be C = {0,1} and the set of observed patterns P'

be

P' = {(z,3,R,a), (v,3,5,a), (z,3,R,8), (y,3,8,8)

(2,2,8,0) 5 (2,3:8:9), (2,2,5,8), (2,3,84)}



The training data relation TS P' x C is given in the table below.

Pattern ! Category
(z,3,R,a) 0
£¥.3 /Sa) 0
(28,5, B} 0
(v,3,8,8) 0
(2.2 5,8 1
k2o 1 Byy) 1
(2,258 8 1
(z,3,A,y) 1

The order 1 cylinder sets which have non-empty intersection with patterns

in P' are shown in the following list where * means any legal value.
I P n SR B N als ol al e o3 adeake  Jada A U P e I e pe Y e adads . Ly I L et I
Z¥Hk, ydAk Dk K3k REAR | KRBk ARRE, RASH kikg fdkdeR | edity

Of these order 1 cylinder sets, those which are generalizing sets (involve only
patterns from one category) are yk¥sk Rk FERK REAK Rky
Notice that it is the case that each pattern in P' belongs to at least

| ') - -
one of these cylinder sets. Hence the relation F'e P x ci;' is, in fact,

4B Hhed, SUErgWRERe eh PP. T s given by the table below..
F

Pattern Cylinder Set
(z,3,R,a) Rk

(s 3:8,0) y sk
(z,3,R,R) K% R
(y,3,8,8) ik
(z:2B:) %A%
(2,3,B,Y) Hidy
(2,2,5,8) D%k
(z,3,A,Y) KAk koky

18



The relation Q between the cylinder sets and the categories is

defined by Q = IP‘ o (F',T). Q is given in the table below.

Cylinder Set ; Category
y 0
%2 %% 1
%R 0
HE A 1
iy 1

The decision rule D which is a binary relation from the patterns to

I

the categories is defined by D = F' O(IP,Q). Hence

bl

D = ool i = = —— = *
{{p,c) e P xC f if c 0, then p (pl’pZ’pB’ph) Yy or p3 R

ifc

1l

1, then P, =2, or Py = A, or Py = v}

A measurement space picture of D appears in the Karnaugh map of Figure 4.
Notice that there may be patterns which are assigned no categories, patterns
which are assigned to only one category, and patterns which are assigned to
more than one category. Of course, training patterns are assigned uniquely
to one category as required.

The relationship of this technique to the covering technique of Michalski
is straightforward. First we define a cover of 3 set SO against a set S] and
then an order n cover of S0 against S

T

Definition 7

3
A cover of SO against S] is any set 5£,of cylinder sets satisfying

So = (UL =55, where S? means the complement of set S,.

1
L &

The definition implies that if a collection of cylinder sets is to

be a cover, its set theoretic union must completely cover the set SO and

it must not cover any of the set S]. 19



Definition 8

An order n cover of SO against Si is any collection C of cylinder sets

satisfying

(1) Ut=s,
Led

(2) Ot 57
Lef

(3) Lef implies the order of L is less than or equal to n.

The covering technique requires the determination of a near minimal order cover
of SO against SI' As stated in Theorem 2, to construct a cover #2 we need
only consider cylinder sets L satisfying L(ﬂ\S] = & and L(F\SO # ¢. Then
of.those cylinder sets satisfying these conditions we successively select

those from lower order to higher order which cover patterns in SO not already

previously covered by those sets selected (Haralick, 1977).

20



Theorem 2: Let 3€n = {L [ L is a eylinder set of order < B, L(ﬁ\S] =0

and Lf\so £0}. Ifs. <

0 U L
Lsiz1

then ;f; is a cover of Sy against S

Proof: By hypothesis, U L <S. and the order of Ls<;fn is less than or

equal to n. Since LE;%En implies L f‘\S] = @, we must have L < s¢ But

1

this is true for all Leﬁf%. Hence K{l L E;S?. Therefore, SEn is a
Le L
n

cover of SO against SI'

21



The requirement that L(ﬁ\so # ¢ is our requirement that generalization
can be made only through sets containing some observed patterns. The require-
ment that L(—q\SI = ¢ is our requirement that sets in ﬁi‘ must be generalizing
sets so that all observed patterns in an L ¢ &1"have the same category
identification. For the example problem, an order 1 cover of S0 against S}
is determined by **R¥ and ys##%, exactly the pair of cylinder sets associated
with category 0 by the relation Q.

The same result of associating **R* and y¥*% with category 0 could be
obtained using a generalized version of the iterative Quine McCluskey technique.
However, for large pattern sets of high dimensional order, that grouping
technique is likely to involve more memory and computation time than beginning
with order 1 cylinder sets and then going successively to order k cylinder
sets where k is the smallest constant which makes the generalizing subsets

cover the pattern set.

22



Key: /j;;/’ Category 0

\\}:\ Category |
>%§§§/ Both categories
e

Figure 4 shows a generalized Karnaugh map for the decision rule.
Those areas hatched singly are patterns assigned to
only one category. Those mean not hatched are not
assigned to any category. Those areas which are doubly
hatched are assigned to both categories.

23



IV. STRING PATTERN DISCRIMINATION USING GRAMMATICAL INFERENCE

Determining decision rules when patterns are strings involves using more
algebraic structure than for the case when patterns are N-tuples. In
this section we put the syntactic grammatical inference methods for regular

grammars into the structural perspective established in Section Il. We will

show (1) how an incompletely specified finite state acceptor can be con-
structed from the training data relation and (2) how the col]ection.gi can
consist of the equivalence classes of the input monoids of any acceptors
which by a specified type of homomorphism is a homomorphic image of the

acceptor constructed from the training data relation. Then we illustrate

this method by a simple syntactic pattern recognition example. The ideas

in this section are motivated by Fu (1974), Fu and Booth (1975), Biermann

and Feldman (1967, 1972), and Pao (1969).

Lol

We begin with some notation and definitions. Let © be the set of
characters which can make up pattern strings. Let I* be the set of all
strings of characters from I. The set of patterns P is £%, an infinite set
even if ¥ is finite. As is well known, £* is the free monoid generated by
L under the string concatenation operation. Let I*! < I* be the set of
observed patterns and C = {1,2,...,K} be the set of K recognition categories.
We assume all patterns in Z*' are of finite length. The training data rela-
tion T is a subset of I#' x C; To< o#' x C.

We desire to define &LLa collection of subsets of I*. However, the
infiniteness of I* makes it difficult to define such a collection directly.
Our technique will be to define the collection ﬁéJindirectly via finite state
acceptors for the observed strings in I*'. A K-category acceptor is essentially
an automaton which starting from a designated starting state will transit

by a string o € I* to a terminal state associated with the category of a.

24



Definition 9

A finite state acceptor [{ for K categories is a (K+h)-tuple

(L = (S,E,S,SO,A],...,AK) where S is a finite set of states,s < (S x ) xS
is the transition relation, S € S is the starting state, and Akr; Sy k= Fuwa: K
are mutually exclusive subsets of terminal states associated with categories

1,...,K, respectively; hence, i # j implies Aifr\\Aj = ¢. Wwhen § is defined

everywhere on S x £, (I is said to be completely specified. Otherwise (L is

incompletely specified. When § is single-valued, C{,is said to be deterministic.

Otherwise (s is said to be nondeterministic. If there is a category k such

that a string ¢ € 2* can reach a state in Ak by the transition relation §,
then ¢ is said to be accepted by category k. Otherwise it is rejected.
A finite state acceptor can be constructed immediately from the training

data relation 7. |If sy s the starting state and (g]c k) €T is

g wEy
the first string category pair in T, then we define the transition relation §
to include (Si_],Ui,S]}, i =1,...,N and we make Ak include S Then we

take the next string category pair in T and do the same thing beginning with

So and following with the next not vet used state in place of Sy- The resulting
K-category finite state acceptor will be incompletely specified and non-
deterministic in general. The acceptor can easily be made deterministic by
iteratively merging pairs of states r and t if (s,o,r) € 6§ and (s,0,t) ¢ 6.

The grammar associated with this finite state acceptor is known as the

conocial definite finite state grammar (Fu and Booth, 1975).

The acceptor constructed as above will correctly associate each observed
pattern string in I*' with jts correct category identification. However,
strings not in I*' will be rejected. Grammatical inference is concerned with
generalizing the constructed finite state acceptor so that it can accept
many more strings than those initially observed. The basis of grammatical
inference for regular grammars is the merging or combining of states in the

initial K-category finite state acceptor (Pao,i969 ), or non-terminals in the
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production rules of the grammar (Feldman, 1969). These are two essentially
equivalent processes and wé will concentrate on the state merging technique.
The rule for merging states is that two states can be combined if under some
input, their successors can be combined and the resulting acceptor is

deterministic and acceptor states associated with different categories never

get combined.

We can view the combining of states of S as being done by a function
h: S = W. |If for some w ¢ W there exists 5,8 £ § satisfying his) = w= H(s").
Then we say states s and s' are combined by h. Of course, not all pairs of
states can be combined if the resulting acceptor is to be deterministic. The
resulting acceptor will be deterministic if and only if the combining function
is transition preserving. A function is transition preserving if and only
if when it combines two states which have successors under a string o e I%,

then it must also combine the successors.

Definition 10

let § = (S xZ) xSand h: S+W. h is called a transition preserving
function of § if and only if (51,6,52) e 8, (si,o,sé) €8, w = h(s]),

W, = h(sz), and w, = h(si) imply W, = h(si).

The following proposition states that the resulting acceptor is deterministic

if and only if the combining function is transition preserving.
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Proposition 5: Let § = (S x L) x S and h: S + W. Define y = (W x ) x W by

y = {(wl,c,wz) e WxZ xW/| there exists 125, € S such that (s],d,sz) e 6
and w, = h(s]) and w, = h(sz}}.
Then h is a transition preserving function of § if and only if v is single-

valued.

Proof: Suppose h is transition preserving and (WI’U’WZ) £ v and (wl,a,wﬁ) £ Y.

Then there exists 1,5, € § such that (51,0,52) e 8, w = h(s]), Wy = h(sz)

: t I | 1 - { [
and there exists S1»5, € S such that (51,0,52) B s W h(sl) and Wy h(sé).

Since h is transition preserving, (sl,é,sz) e 8§, (s!,o,s)) e 8, Wy = h(s]) =

'] 3
h(s{) and w, = h(sz) imply W, = h(sé}. Hence, W, = Wé making v single-valued.
Suppose y is single-valued and (51,0,52) g 6, (si,o,sé) e 8, "y = h(sl) o

h(si) and w, = h(sz}. Let W, = h(s!). Then by definition of Y (w],c,wz) ey

2 2

and (w},c,wé) €Y. Since y is single-valued, Wo = wy. This makes h a

transition preserving function of §.
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Functions which are transition preserving and do not combine terminal
states associated with different categories not only ensure that the
resulting acceptor will be single-valued, they ensure that the entire tran-

sition structure is preserved. Such functions are called homomorphisms.

Definition 11

~ ol
{ = =
Let C (S,E,é,SO,A],...,AK) and O (T,E,y,tO,Bl,...,BK) be two
K-category finite state acceptors. A function h: S -+ T is a homomorphism

from (L into fi if and oniy if

(1) (s],o,sz) e & and h(sz) = v, imply there exists a Wy E W
)

such that (w],c,wz) e vy and w, = h(s

1 1
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Proposition 6: Let (L= (S,Z,S,SO,A],...,AK) be a finite state acceptor for

K categories. Let h: S - W be an onto transition preserving function

which satisfies i # j implies h(AE)(’\ h(AJ) = ¢. Definey = (W x I) x W by

y = {(w],o,wz) e Wx I xW | there exists S1sS5 € S such that

e 6},

Wy = h(sl), Wy = h(sz) and (51,0,52)

Then &5 = (W,Z,v,h(sy) ,h(A)),...,h(A)) Ts a deterministic Finite state

acceptor which is a homomorphic image of ([ .

4
Proof: By proposition 5, y is single-valued making L deterministic. Let

(S],G,Sz) e § and h(sz) = w,. Let Wy = h{s}). Then (51,0,52) £ 8§, h(sz) = vy,
and h(s]) = w, imply by definition of y that (W],U,WZ) e y. Finally, by
hypothesis i # | implies h(Ai)(’\ h(Aj) = ¢. Thus Ei#is a deterministic
finite state acceptor.

To show ﬁifin a homomorphic image of sz, suppose that (s],c,sz) e 6
and h(sz) = Wy Lok by = h(si). Then by definition of v, (w],o,wz) g %,
Therefore, h satisfies conditions (1), (2), and (3) of the definition and

Y A .
h is a homomorphism from CLJnto {. Since h is onto W, Eg;is the homomorphic

image of leunder h.
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The importance of combining states by a homomorphism is apparent when
we consider that the strings accepted by any category of the homomorphic
image acceptor must include those accepted by the corresponding cateqgory of
the original acceptor. Thus to generalize the set of pattern strings accepted
by any finite state acceptor, we need only find a homomorphism which combines
states in a transition preserving manner. The following proposition proves
that the set of pattern strings accepted by a homomorphic image acceptor is
at least as large as the set of pattern strings accepted by the original

acceptor.
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Proposition 7: Let h be a finite state acceptor homomorphism from

R (S22 8,80 Ay geresbe) B0 Hus (T,Z,7,t5,B;,..-,B,). Suppose

for some ¢ ¢ &%, (SO,U,SF) € § and for some k ¢ {1,...,K}, s. € A

f k*

Then there exists te € T such that (tO,U,tF) e vy and t B

¢ € B.
Proof: Let te = h(SF)' Since tg = h(to) and (SO,U,Sf) e § and h is a
homomorphism from ({_into é&, (to,c,tf) e Y. Since h a homomorphism

implies B, = h(Ak) and s e A s we must have t. = h(sf) e B

f k*
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With this knowledge about finite state acceptors and their homomorphisms,
we are ready to understand how the cover Jz,of I* can be constructed. It is
well known that associated with each finite state acceptor is a partition of
Z* having the property that two strings are in the same cell of the partition
if their state transitions are identical (Proposition 8). It is also true
that the cells of such a partition are a homomorphic image of I* (Propositions

9 and 10). Thus, we can define + to contain all the cells from all partitions

of Z% determined by finite state acceptors which are defined everywhére homo-
morphic images of tﬁe finite state acceptors determined by the training data
relation. We can, if we wish, restrict the number or kind of homomorphisms.
églcan consist of all the cells from all partitions of I* determined by
homomorphisms in a specified class of the homomorphisms on the original finite
state acceptor. Because the finite state acceptor homomorphism was defined not
to combine terminal states associated with different categories, the restriction

¥ ' of ¥ is in this instance equal to £..
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Proposition 8: Let 6§ < (S x ) x S. Define

R= {(a,b) € £* x I* | (s,a,t) € 8§ if and only if (s,b,t) e &}.

Then R is an equivalence relation on &¥.

Proof: R is reflexive, symmetric, and transitive.
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Proposition 9: Let § = (S x &) x S. Define

R= {(a,b) e 2% x £* | (s,a,t) e § if and only if (s,b,t) e §}. Let fad
designate the equivalence class for the element a. Then the equivalence

classes of R form a monoid under the bindary operation defined by [a] - [b] = [ab].

Proof: First, the operation is well defined since if a' ¢ [a] and b' ¢ [b]

we must have a'b' e [ab]l. To prove this, let a' e [a] and b' ¢ [b]. Then
(s,a,r) e § if and only if (s,b,r) ¢ 6 and (r,a',t) ¢ & if and only if

(r,b',t) e 6. Notice that (s,ab,t) ¢ § implies there exists a r ¢ S satisfying
(s,a,r) € 6§ and (r,b,t) € 6. Since (s,a,r) & & implies (s,a',r) & & and
(r,b,t) e & implies (r,b't) e 6 , we have (s,a',r) ¢ & and (r,b',t) ¢ s.

But (s,a',r) ¢ 6 and (r,b',t) ¢ & implies (s,a',b',t) e §. Thus (5,ab,t)
implies (s,a'b',t) e 6. A similar argument shows the converse. Therefore,
(s,ab,t) € 8 if and only if (s,a'b',t) ¢ § so that a'b' ¢ [ab].

Second, the operaticn is associative since

([a] « [b]) - [c]

([ab]) « [c] = [(ab)c]
[a(bc)] = [a] - ([bc])
= [a] - ([b] - [c])

Finally, the identity is [A] since

[al - [a]
[A] - [a]

[ax]

[xa]

[a] and

[a]
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Proposition 10: Let 6§ < (S x Z) x S. Define

(s,a,t) e 8 if and only if (s,b,t) e &}

R = {(a,b) ¢ &% x z*
Let é; be the set of equivalence classes of R and [0] designates the equiva-

lence class for . Then the function h: 5% = Q;.defihedaby hiag) = [o] is a

homomorphism from the monoid %% into the monoid Ei :

Proof: h(ab) = [ab] = [a] - [b] = h(a) - h(b)
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We next illustrate this structural pattern recognition technique by
an example. We let I = {A,B,)A}, where A is the null character and we let

the pattern space be I*. The set of observed patterns I*' is given by

L*' = {A,AB, BA, BBA, AAA, ABA, ABAA, AA, B, A, ABAB}

We suppose there are two recognition categories C = {0,1} and the data

training relation Tg £%' x C is given in the table below.

Pattern Category

A
AB
BA
BBA
AAA
ABA
ABAA
AA

B

A
ABAB

et ek OO OO0 OO

The state diagram for a deterministic finite state acceptor which can
be derived directly from the training data reiation T is shown in Figure 5.
We will construct the cover gz-of I* by putting into ¥ the equivalence
classes of the input monoids for two out of the 17 defined everywhere finite
state acceptors which are homomorphic images of the original one.

The two homomorphisms and the homomorphic image acceptors are shown
in Figure 6. The equivalence classes of the input monoids for these two
homomorphic image acceptors are listed in Figure 7 . The square bracket
designates the equivalence class of the pattern string inside. The subscript

on the bracket specifies whether the equivalence class is for homomorphic
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B
M,
A .
)
q‘l_}; i
L
| 96 !

designates category O terminal states

Key:

/ \ designates category 1 terminal states

(:::) designates a non-terminal state

Figure 5 shows a state diagram for the finite state acceptor determined
by the data training relation.
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Homomorphism 1 Homomorphic Image 1 Homomorphism 2 Homomorphic Image 2

9 | "o 90 | %0
91N ré\iu_g__—%%/gix 91 L5
95 | to Al 5,//;1?‘ jA,B 92 13
3113 il M %3 | %0
9 |2 ! 95 | %0
96 |2 96 |1
97 173 % |78
9 %2 98 1%
99 | M2 99 | %
90172 90(%2
1% 91)%0

Figure 6 shows two homomorphisms and their homomorphic images of the
finite state acceptor determined by the training data
relations (see Figure 5).
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image acceptor 1 or 2. The notation of Figure 7 also gives for each
equivalence class a regular expression denoting the set of its pattern
strings. To simplify the terms in the regular expression, equivalence
class names whose regular expressions have been previously defined are used
in place of those regular expressions when it is convenient to do so.

With the exception of equivalence classes, [BB}], [ABB]], {AAB]],
[BAB]Z, [BABA]Z, [ABABA]2 and [BBAB]Z, all the equivalence classes have
non-empty intersection with the observed pattern string set. Furthermore,
each equivalence class having non-empty intersection with the observed
pattern string set is a generalizing set because they contain observed
pattern strings from only one category. The relation F'c< %' x 3
which pairs observed pattern strings with generalizing sets is given by

the table below.

Pattern i Covering Set
A [Al,, [Al,

AB [AB],, [AB],
BA {BA]] , [BA]2
BBA [BA]], [BBA]2
AAA [BAI,, [Al,
ABA [BA],, [ABA],
AAA [BA}], [AB]2
AA [AAl,, [Al,

B [B]], [812

A (AT, [A],
ABAB [BAB]], [ABAB]2
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[A], = &

[Al, = A

[8], = B(BB)*
(B8], = [B],[B],

[A8], = Al8],

|

[ABB]] = AB[B]T

[AA], = AA(BB)*

i
[AAB]i = [AA]IB
[BA]] = ([AB]] + [B]] + [BB]] + [AA}T) A(A* + B(A + B))*

[BAB]] = {BA]] [B]]

[A]2 = (AA)*
[Al, = A(AA)*
(81, = [, B(([A], B[Al, B[AL,) + [x],)*

[48], = [Al, [8],

[8A1, = (8], [Al,

[BAB], = [BA], [BI],

[BABA]2 = [BAB]2 [A]

2
[ABA]2 = [AB]2 [A]2
[ABAB]2 = [ABA]2 {8]2
[ABABA]2 = [ABAB]2 [A]

(B8], = [Al,[B], ([BI, + [A],[B],[B],) ((B + (AA)*)*[A], [B] A% [B],)*
+ [8l, (IB], + [Al,[B],[B],)
[BBAl, = [BB], [A],

[BBAB]2 = [BBA]2 B A%

Figure 7 lists the equivalence classes and their corresponding regular
expressions of the input monoid for the two finite state
acceptors of Figure 6. :
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The relation Q pairing generalizing sets and categories is defined

by @ = I, o(F',T). Q is given in the following table.

Ik
Q

Covering Set | Category
[2], 1
[A], 0
[8], 1
[ABI, 0
[AAT, 1
[BA], 0
[BAB], 1
(A, 1
[Al, 0
(8], 1
[AB], 0
BAl, 0
[ABA], 0
[ABAB], 1
[BBA], 0

The decision rule D which is a binary relation from the patterns to
the categories is defined by D = F! O(IE*’ Q). We therefore can write D as

a set of all string category pairs satisfying certain conditions.

D={MJ)EH%’IFc=O,mmoe[MP[Mh,BMP[MT[%b,
[BA],, [ABAL,, [BBA],
wc=1,mmoe[up[mp£Mh,mmh,
[],, [Bl,, [ABAB],}.
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Because not all the equivalence classes are guaranteed to have observed
patterns, the equiva]ence.classes missing in the specification of D can
cause some pattern strings in I* to be paired with no category. Since

the equivalence classes determined from different homomorphisms can overlap,
it is also possible for D to pai} some pattern strings with mere than one
category.

The relationship of the construction of the decision rule to the
grammatical inference techniques of Pao (1969) and Feldman (1967) is
straightforward. These techniques either begin with the finite state
acceptor determined by the training dzta relation or a grammar which pro-
duces only the observed pattern strings. Grammatical inference takes place
by merging the states of the finite state acceptors as we have illustrated
or by merging non-terminals of the grammar. Because of the natural iso-
morphism between finite state acceptors and reguiar grammars, these two
merging techniques amount to the same basic process even though the merging

of non-terminals can lead to non-deterministic finite state acceptors.
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V. ARRANGEMENT PATTERN DISCRIMINATION

In this section we introduce the arrangement (Haralick, 1977) as a pattern

data structure and illustrate how it can be used just like the string and

N-tuple in a structural pattern recognition approach.

V.1 The Arrangement

Let A be the set of elements whose arrangement is being described. Each
group of related elements from A is given a label from the label set L.

Let R be the labeled N-ary relation which consists of labeled N-tuples of

related elements from A.

Definition 12

A simple order-N arrangement is a triple (R,A,L) where R < AV x L.

We can use R to specify the arrangement (R,A,L) when the sets A and L are
understood.

An N-tuple is a special case of an order 1 arrangement. To see this,
suppése (x},...,xN) is the N-tuple. Take L to be the labei set having

integers for labels. Define the set A = {x .,xN} and the relation

1%
Rz AxLbyR={(ae,0) 6 AxlL | X, = al. A string is really just an
N-tuple with variable length so it, too, is a special case of an order-1
arrangement.

We define a general arrangement as a coordinated set of arrangements

having the same label set. This concept allows relationships of different

orders on the same set to be handled together.
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Definition 13

A general arrangement is a set of simple arrangements, each simple

arrangement being of different order, being defined on the same set, and
having the same label set. |If there are K simple arrangements in the
arrangement A, then A = {RI’RZ""’RK; A,L} where e ANk x L,
k2 P (K

Since arrangements are going to serve as our patterns and since we have
illustrated that structural pattern recognition can be viewed as generalizing
through homomorphic images of the observed training patterns, we will need
to define a composition operation and a homomorphism. For this purpose we
will use the same general idea we used in Section Il. The composition of
an arrangement by a binary reiation will produce an arrangement which contains
all the labeled N-tuples of the given arrangement translated component by
component through the binary relation. The only difference between this
composition and that introduced in Section 1l is that in Section Il the trans-
lation could take place using a different binary relation for each of the
compenents of the ordered pairs in the given relation. Here we allow the
given relation to be N-ary and insist that all components get translated the

same way through the binary relation during the composition.

Definition 14

Let A = {RT""’RK; A,L} be an arrangement and H = A x B. The composition

of arrangement A with H results in an arrangement B which we define as

AeH =B = {S],Sz,. ’SK; B,L}, where
S, = {(b],bz,...,ka,R) [ (a],...,aNk,R) e Ry
(a ,bn) e H, n =1, .,Nk}
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The concept of homomorphism introduced in Section Il was that the image
of the composition had to be contained in a given relation. We employ

exactly the same concept here put into the arrangement perspective.

Definition 15

An arrangement A = {R],...,RK; A,L} is contained in an arrangement
D = {T],...,TK; A,L} if and only if Ree Ti» k= 1,...,K. In this case we

write A < D.

Definition 16

Two arrangements A = {R},...,R ; ALY and B = {Si""’SN; B,M} are
comparable if the number of relations in each arrangement is the same (K = N)

the label sets are the same (M = L), and the relation Rk has the same order

as the relation §, :

k
N N
(R, = A k x L and S, < B - x L)
k= k
Definition 17
Let A = {R]""’RK; A,L} and B = {81""’SK; B,L} be two comparable

arrangements. Let H: A - B. The function H is a homomorphism from

arrangement A to arrangement B if and only if A ° H < B.

We will discuss structural pattern recognition using the simple arrange-
ment for the pattern data structure rather than the general arrangement. We
can take the pattern set P to be the set of all arrangements and the collection
éf—to have members which are sets of arrangements each of which has the property
that it is the preimage of a homomorphism to a feature arrangement associated

with the set. The feature arrangements are homomorphic images of the observed
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arrangement patterns. The restriction of b&.to Ja', the relation Q and the
decision rule D can all be determined as in Section 1.

For our example, we take the category set C to be {A,B}, the pattern
set to be all second order arrangements on a set § = {a,b,c,d,e,f}, with
labels K = {0,1}, the observed arrangement patterns to be P' = {TO’T]} and
the training data relation T P x C.

The definition for the arrangements TG and T] and the training relation

T are given below.

T.= S xS x L Tls; S xS xL

0 S
aal aal
ba0 ba0
cal cel
da0 de0
adl eal
bd1 fal
cdl adl
dd1 bdl
cd]
dd1
edl
fdl
T
Arrangement Patterns Category
TO A
T] B
Figure 8 illustrates how four functions which combine elements of §

together can form homomorphic images of the observed training arrangements.
We name the homomorphic image arrangements AI’AZ""’AS' Notice that arrange-
ments A]’AZ’AB’ and A6 are either identical or isomorphic.
We define the collection bﬁ,to consist of sets each of which contains
all arrangements having one of the feature arrangements for its homomorphic

image.
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Image of Arrangement Image of Arrangement

Combining Function F TO Under Function F T1 Under Function F
Fi: S~E Al Ex ExK Ac= E x ExK
a,b = v vv0 vvO0
c,d »w wv0 wx0
e » x w1 yv0
f >y ww 1 vwl

ww |
xw
ywl
FZ: hi=x F Azg_:,FxeK A6ngFxK
a,c,e +~ v vv0 vv0
b,d,f »w wv0 wv0
v vw
ww 1 ww 1
Fi: § =+ H A, = H x H x K A= H xHx K
3 3 7
a,b > p pp0 ppO
c,d > g qp0 gr0
e,f > r pql rpQ
qql Pql
aql
rql
FH: S +G Ahc_:_:GxGxK A8;GxGxK
a,d,f - v vv0 vv0
b,c,e »w wv0 wv0
vv] ww0
wv vw0
vvl
wvl
Figure 8 illustrates how functions FI’FZ’FB’ and Fh combine elements

of § together and thereby form homomorphic images A] through A8 of the

observed training arrangement.
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;£,= {LcP [ for every arrangement R e L, there exists some functjon f

and feature arrangement B satisfying R of = B}

On the basis of the four combining functions chosen and the 8 feature
arrangements they determine, the collection % could contain as many as
L

8 sets. However, since 4 of the feature arrangements are isomorphic, 4L

contains only 5 sets of arrangements L] through L5 defined as follows:

L] = {R e P | there exists some function f satisfying R Of = Ai}
LZ = {R eP { there exists scme function f satisfying Ref = AS}
L3 = {ReP | there exists some function f satisfying Ref = AS}
Lh = {ReP | there exists some function f satisfying Rof = A7}
L5 = {RegP | there exists some function f satisfying Ref = A8}

Because L] contains observed training arrangements for more than one
category, the restriction &' of . consists of only L2 through L5 for its

generalizing sets. The relation F' which pairs arrangement patterns with

generalizing sets is defined by
Flo={(p,1) ePx L' |pel}

The relation Q which pairs generalizing sets with categories is

defined by
Q= I]:)I O{FI)T) = {(LZ,A)J (LS?B)j (Ll‘_!B)! (szg)}

The decision rule D which pairs patterns to categories is defined by

D=F'o(l Q) and can be written as

Pl)-

I

D={(p,c) ePxC | ifc=A, thenpel

2

B, then p ¢ Lg(y)Lu(g)LS}
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VI. CONCLUSIONS

In this paper we have described structural pattern recognition using
a relational algebra. We have suggested that the generalization of the
observed training patterns takes place by the implicit or explicit use
of a restricted cover on the pattern space. The cover is restricted to
insure that only one category will be associated with each set in the
cover. The form of the cover depends on the data structure of the patterns:
cylinder sets for N-tuples, equivalence classes of input monoids for strings.
The cover may be given prior to knowing the pattern training relation or
after knowing the pattern training relation.

In the relational setting which we have described this preccess, the
natural relation F' pairing patterns to sets in the restricted cover to
which they belong is an inverse homomorphic image of the pattern training
relation. The decision rule D which pairs patterns to categories is a
homomorphic image of the relation F'. Not only do homomorphisms enable us
to produce D given the pattern training relation and a cover of the pattern
space, but as suggested for the N-tuple and string patterns, the cover
itself can be defined in terms of homomorphisms on the pattern space. Thus
homomorphisms play an essential role in the construction of structural
pattern recognition decision rules.

Finally, we have illustrated that once structural pattern recognition
is viewed from this perspective, other kinds of relational pattern data
structures can be invented and naturally used. To illustrate this, we
defined an arrangement as a labeled N-ary relation and showed how arrange-
ments can be used as a pattern data structure. In this situation, the pattern

space is the set of all labeled N-ary relations. The sets in the cover are
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defined by selected homomorphic images of the training pattern arrangements.
The decision rule is then a homomorphic image of the relation which pairs

patterns to sets in the restricted cover.
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