Puttern Recognition, Vol. 10, pp. 223--236.

Pergamon Press Lid. 1978. Printed in Great Britain.

© Pattern

Recognition Society.

STRUCTURAL PATTERN RECOGNITION,
HOMOMORPHISMS, AND ARRANGEMENTS* t

RoBERT M. HARALICK

Department of Electrical Engineering, Department of Computer Science,
University of Kansas, Lawrence, KS 66045, U.S.A.

(Received 28 November 1977; received for publication 3 January 1978)

Abstract — This paper discusses the general supervised pattern discrimination problem from a structural
point of view. We show that both the problem of determining a decision rule and the problem of applying a
decision rule are problems of finding homomorphisms, whether the pattern data structure is an N-tuple as in
statistical pattern recognition, or a string or its generalizations as in syntactic pattern recognition. We then
introduce the concept of an arrangement, which is a labeled N-ary relation, as a more complex pattern data
structure and show how decision rules can be constructed and applied to arrangements using the
homomorphism concept. The methodology suggested in the paper provides a structural pattern recognition

0031-3203,78,0601-0223 $02.00/0

generalization to phrase-structured syntactic pattern recognition.

Pattern inference Grammatical inference
recognition Theory of covers
recognition

1. INTRODUCTION

The purpose of this paper is threefold: (1) To provide a
unified treatment of N-tuple and string pattern re-
cognition which clarifies their common structural
basis; (2) To introduce the arrangement as a pattern
data structure:; and (3) To show how to use the
arrangement in an analogous fashion to the use of N-
tuple and string in structural pattern recognition.

Statistical pattern recognition uses the N-tuple for
the basic data structure of a pattern. Each pattern must
be an ordered list of values and the lists must be the
same length. If the values are real numbers, the concept
of distance yields linear or quadratic decision rules to
determine the category to which an N-tuple should be
assigned,!! D If the values are non-numeric symbols,
then decision rules using cylinder set covers can be
used.“"" 19)

Syntactic pattern recognition uses the string for the
basic data structure of a pattern. Each pattern is called
a sentence and must be the concatenation of symbols
from a given symbol set. If the set of sentences
associated with a category is a finite state language
(those generated by a regular phrase structure gram-
mar), then a decision rule which decides category
assignments can be a finite state automaton.*?

Much work has been done to generalize the string
data structure of phrase structure syntactic pattern
recognition. Data structures of trees,”* arrays,++%21)
plexes,®7:22:26" and webs*#! have all been described.

* Copyright ©® 1977 by The Institute of Electrical and
Electronics Engineers, Inc. Reprinted, with permission, from
Proceedings of the IEEE Computer Society Conference on
Pattern Recognition and Image Processing, 6—8 June 1977,
p- 112.

+ Support for this work was provided by grant AFOSR 77-
3307.

223

PR 103—G

Statistical pattern recognition
Homomorphisms

Syntactic pattern

Relations Arrangements Structural pattern

However, in this paper, when discussing phrase struc-
ture grammar, we will restrict ourselves to strings only.

In structural pattern recognition, each pattern class
is characterized by a unique set of relationships
between the parts of the patterns in the class. The
emphasis is on the combinatorial complexity and
uniqueness which this relational organization can
have. Structural pattern recognition assumes the com-
binatorial complexity is high enough to permit an
almost 1009 correct classification rate. Therefore,
instead of the error rate analysis methods typical of
statistical pattern recognition, structural pattern re-
cognition utilizes what amounts to covering tech-
niques to generate decision rules. The set covering
methodology of Michalski*® or the production rules
of MYCIN®*2" and the grammatical inference pro-
cedures surveyed by Fu and Booth,*® Biermann and
Feldman™ as well as those described by Feldman,®
and Pao ®* are all special cases of the general covering
paridigm which we believe characterizes structural
pattern recognition.

There are four basic problems which structural
pattern recognition faces: (1) the choice of data
structure for the pattern (a design problem); (2) the
translation of the real world measurements to the data
structure of the pattern (a feature extraction problem);
(3) the construction of the decision rule (a generali-
zation problem); and (4) the application of the de-
cision rule (an implementation problem).

In this paper we show that from a structural pattern
recognition perspective, problem (3), the construction
of the decision rule is really a problem expressible in
terms of determining covers by homomorphisms and
determining decision rules, utilizing these covers by
homomorphisms. Once this is understood to be the
same general kind of problem, whether the data
structure for the pattern is an N-tuple, string, or the

224 R. M. HARALICK

string generalizations mentioned earlier, we can na-
turally inquire about the possibilities of structural
pattern recognition with other kinds of data structures.
To this end we introduce the labeled N-ary relation as
a data structure which is more complex than the string
or N-tuple and which includes the N-tuple, the string,
and its generalizations, as special cases. We call the
labeled N-ary relation an arrangement and illustrate
how decision rule construction can take place using
the arrangement as a pattern data structure.

Section 2 discusses how structural pattern recog-
nition is a problem of finding homomorphisms. Sec-
tion 3 illustrates a set covering example using the
structural pattern recognition methodology, while
Section 4 interprets a syntactic grammatical inference
example as one which fits the structural pattern
recognition methodology. Section 5 describes the
arrangement data structure and illustrates its use in a
structural pattern recognition approach.

2. HOMOMORPHISMS AND STRUCTURAL
PATTERN RECOGNITION

In this section we describe how the decision rule
construction problem is a problem of finding homom-
orphisms. The mathematical description given here is
designed to be general enough for all structural pattern
recognition and is written with the aim of unifyingon a
theoretical level all the basic processes involved. Some
of the early ideas which motivated this section can be
found in Haralick.”"*) We begin with some definitions.

Let P be the set of patterns and C be the set of
categories. Let P’ = P be the set of observed patterns.
A training data set is a binary relation T< P’ x C
which pairs observed patterns with their true category
identifications. Typically, the fraction of patterns in P
which are observed is very small. Also each category in
C is associated with at least one observed pattern;
hence T(P")=C so that T is onto. Because we assume
no error in the case of structural pattern recognition, if
an observed pattern is paired to a category, it is paired
to at most one category. That is, T is single-valued;
(p.c)e T and (p,c')e T imply ¢ = ¢'. Given some kind
of structure on the set of patterns P, the decision rule
construction problem is to find a binary relation D,
called the decision rule, which pairs each pattern in P
to categories in C and which is much larger than T';
thus we must have T < D = P x C. Note that we do
not require D to be single-valued.

The structure on the pattern set P is a given
collection of subsets of P which cover it. We denote
such a collection by % ; % is some given subset of the
set of all subsets (the power set) of P. The structure
(P, #) may be a neighborhood space or a topological
space. The partial ordering on P induced by % may be
a lattice, or as emphasized in this paper, % may be the
collection of homomorphic images of elements of P.

The decision rule construction problem is how to
assign to some category patterns which have not been
observed. In other words, it is how to generalize from

the training set. In structural pattern recognition, the
generalization takes place through the cover %, The
decision rule pairs a pattern pe P with a category ce C
when there exists a subset Le % satisfying the gene-
ralizing conditions

(1) LAP #¢
(2) pe LA P implies (p,c)eT.

The first condition states that generalization can only
take place through a subset L which contains one of
the observed patterns. We only generalize from pat-
terns for which there is some category identification
information. The second condition forces uniqueness :
all observed patterns in L must have the same category
identifi ation by T. We call a subset Le.# that
satisfies (1) and (2) a generalizing set. In the remainder
of this section we will analyze generalizing sets and
illustrate the role which homomorphisms play.

We define a restriction of % to be that collection &’
which contains only those members L of the collection
% which satisfy the generalizing conditions (1) and (2).
That is,

¥ ={Le#| (1) LnP # ¢ and

(2) There exists a ceC satisfying
(p,c)eT for every pe Ln P'}.

Associated with % is the natural binary relation
F < P x % which pairs each pattern with each mem-
ber of & to which the pattern belongs.

F={(p,L)eP x ¥|peL}.

Let F’ be the restriction of F to &'; F'= Fn (P
x £'). The members of %’ must be sufficient to allow
generalization to take place using all the information
in the training set. This means that for each observed
pattern, there must exist a consistent subset in %"
containing the observed pattern. Thus we expect that
for each observed pattern p, there exists an Le %’
satisfying (p, L) € F'; hence, F' is defined everywhere on
P,

To show how a decision rule can be constructed
which utilizes the cover ', we need to define a
particular kind of relation composition and a homom-
orphism based on this composition. Let E = 4 x B,
G = A x C,and H < B x D. Thiskind of composition
translates pairs of E through G and H to pairs in C
x D. The translation takes place componentwise. The
first component is translated through G, and the
second component is translated through H.

Definition 1
We denote the composition of E with (G, H) by
E-(G,H) and define E-(G,H) = {(c,d)eC x D| for
some (a,b)e EF, (a,c)€G and (b,d)e H}.
Figure 1 illustrates the composition idea using a
commutative diagram. Notice that if 4 = C and G is
the identity on A, then the resulting composition
corresponds to the usual idea of function composition.
Our natural concept of homomorphism is a

Structural pattern recognition, homomorphisms, and arrangements

F o (G,H)

Fig. 1. Tllustration of the relation composition concept. If
(a,b)e E, and (a,c)e G and (b,d)e H, then the pair (a,b) gets
translated to (¢,d) by the composition of E with (G, H).

structure-preserving mapping from one set to another.
The mapping of structure is achieved by the com-
position just defined.

Definition 2
(G,H) is a homomorphism from E = A x B into
WeC x Difand only if E-(G,H) = W.

In other words, every pair in E must be translated to
some pair in W. However, there may be pairs in W
which are not the translation of any pair in E.

We use the concept of relational composition and
homomorphism in the following way. We define the
inclusion relation I by I = {(p,q)e P x P'|p=gq}.
The association Q between members of %' with
categories of C can then be obtained as the relation
composition of I, with (F/,T): Q =1I,.-(F,T).Qisa
homomorphic image of the inclusion relation Ip. As
illustrated in Fig. 2, this means that a generalizing set L
is paired by Q with a category c if there is an observed
pattern pe P which is a member of L, (p,L)e F’, and
whose true category identification is ¢, (p,c)e T.

The generalizing is taking place through the sets in
', and we must expect that the relationship between a
pattern p and a generalizing set L as determined by F'
must bear a similarity to the relationship of the
pattern p to its category identification (if any) as

Q

Fig. 2. Commutative diagram defining the relation Q by

Q = Ip*(F,T). Also, it should be apparent that under

reasonable conditions, T is the homomorphic image of
F;T=F-(Ip,Q)

225

determined by T. In some sense F' must contain at
least as much information as T does. Given F’ we must
be able to translate it and produce T. In fact, it is the
case that T is the homomorphic image of F’ obtained
with the homomorphism (I, Q). Proposition 1 proves
that Q < Ip. - (F', T) implies F'*(Ip.,Q) = T. Propo-
sition 2 proves the converse and the theorem states
that Q = Ip.* (F',T) implies T = F'+ (Ip,, Q).

Proposition 1. Suppose Q = I,.-(F',T).
F-(Ip,Q)<=T.

Proof. Let (p,c)eF’'+(Ip,Q). Then there exists
(p,L)eF’ such that (p,p)elp and (L,c)eQ. But
(p',p)elp implies p=p'. Since (L,c)eQ and
Q< Ip-(F,T), there exists (q,q)efp such that
(g, L)e F' and (g,c)e T. Since Le.%’, there exists a
¢ eC satisfying (p*,c)e T for every p*e L P'. But
ge L n P so that (g,¢’)e T. But T is single-valued so
that (g,¢)eT and (g,c¢)eT imply ¢ =c" Finally,
(p',L)=(p,L)eF and (p,p)el, imply pe Ln P’ so
that (p,c)eT.

Proposition 2. Suppose
T< F-(Ip,0)

Proof. Let (p,c)e T. Then (p,p)elp,. Also, since F’
is defined everywhere, there exists a L€ %" such that
(p,L)eF'. Hence, (L,c)elp,-(F',T)= Q. Now,
(p,LYeF’, (p,p)elp, and (L,c)eQ imply
(pe)eF'+(Ip,Q). Thus T < F'-(Ip., Q).

Theorem 1. Q = I,.«(F',T)implies T = F'- (I, Q).

Proof. Propositions 1 and 2.

The theorem basically means that once given a
training data relation T and a cover %, the structural
pattern recognition paradigm seeks to determine a
relation F’ which is the inverse homomorphic image of
T. Generalizing means finding inverse homomorphic
images of the training data.

Once the generalizing has been done, it is a simple
matter to construct the decision rule. We need only
translate the relation F' to a relation that pairs
patterns with categories. We do this in the following
way. Let I be the identity on P. We define the decision
rule D as a binary relation from P into C by D
= F'+(I,,Q). Whereas the training data relation T is
the homomorphic image of F’ under homomorphism
(I, @), the decision rule is the homomorphic image of
F’under the homomorphism (I, Q). The decision rule
pairs a pattern p with a category c if the pattern is in
some generalizing set L which contains an observed
pattern paired with category ¢ by T.

To summarize, the structural pattern recognition
paradigm begins with a cover . on the set of patterns
P.Then using the training data relation T, arelation F'
is determined which pairs patterns to generalizing
sets in the cover .#. This relation F’ is an inverse
homomorphic image of the training data relation. The
decision rule D is constructed as a homomorphic
image of F'.

In Sections 3 and 4 we explain N-tuple and string
structural decision rule construction in terms of these
kinds of homomorphisms. In Section 5 we introduce
the arrangement data structure for a pattern and

Then

Ip+(F,T)= Q. Then

226

illustrate how decision rules for it, too, can follow the
same structural pattern recognition paradigm.

3. N-TUPLE PATTERN DISCRIMINATION
USING COVERS

In this section we give an example of the con-
struction of a decision rule using the structural pattern
recognition technique of Section 2. We show how &
can be defined as the homomorphic image of elements
of P, where the structure preserved by the homomor-
phism relates to a pseudo-metric on the power set of P.
Then we show the comparison between this technique
and the Michalski covering technique,*7-2® which is a
top down version of the Quine—McCluskey technique
for minimization of Boolean variables!¢2% for non-
Boolean variables. Haralick'** gives a description of
some of the covering ideas discussed in this section.

We begin our discussion with definitions for Car-
tesian products, metrics, cylinder operators, and
homomorphisms.

Definition 3

LetJ = {js,j3...-.Jy} bealinearly ordered finite set
whose elements satisfy j, <j,.q, n=1,...,N—1.
Then, we define the Cartesian product with respect to
an indexing set J of a selected group of sets
DyDy..;Dgby x Dy =Dy, x ... x D,

JjeJt

Definition 4
A real valued function p defined on P x P is a metric
if and only if

(1) p(x,y) = 0 with equality if and only if x = y
(non-negativity)

(2) p(x,) = p(y,x) (symmetry)

() plx,y) < p(x,y) + p(¥,2).
(triangular inequality)

The pair (P, p) is called a metric space.
A function p which satisfies the weakened condition

(1) p(x,y) = 0 and x = y implies p(x,y) =0
(2) p(x,y) = p(y,x)

is called a pseudo-metric.
When the set of patterns P is a Cartesian product set

x D, a natural metric p can be defined on P which
jed
counts the number of components in which two
patterns differ.
Proposition 3. Let p be a function defined on (y D;)
iel

X (Z D:) given by p((xla' 8 'st)# (yla “ --syN})
= #{iel|x; # y;}. Then p is a metric on y D,

el

Proof. Clearly p satisfies the non-negativity and

symmetry conditions. To show the triangular in-
equality, let (z,,...,zy)e x D;. Then

iel

R. M. HaraALICK

p(xgs ooy Xy (V155 V0D
= #{iel|x; # y;}
= # ({iejjxi # Yo Vi # 20y X # 24
o {"qui # Vo Vi # 2 X = 24}
wliellx; # y, yi=z;, x; # 2}
o {fEler # Voo Vi = Zip X = 2}
Since {iel|x; # y, y; = 2, x; = z;} = ¢, we may union
the first two sets and the first and third sets to obtain
#{iel|x; # y;}
= #({ie][xﬁ‘:y, ViFEZ} U {iElei:’éyi’ X #2})
< #(iel|y#z} o {iel|x;#z})
< #({iel|y#z} + {iel|x;#z;}).
Therefore,

p0egs -y Xy), (V1o oa W)
< p((Gegs o5 Xn), (2155 20))
+ p((Z1 -5 28) (V1o e os Vi)
It is easy to verify that the function p’ defined by
p'(A, B) = min min p(x, y),
xed yeB

is a pseudo metric on the power set 2(x D,).

iel
Functions which are distance decreasing function on a
metric or pseudo-metric space are called contraction
mappings, and for us contraction mappings are play-
ing the role of homomorphisms.

Definition 5

Let (P', p') be a metric or pseudo-metric space. Let h:
P' - P satisfy p'(x, y) = p'(h(x), h(y)). Then A is called

Xz

o

S——

mSs)

AR\

5

Fig. 3. Tllustration of the projection and inverse projection
operators for two subsets Sy and §, of D, x D,.

T'm S,

m'mS,

Structural pattern recognition, homomorphisms, and arrangements 227

a contractionmapping on P', and for our application we
call h a homomorphism.

Corresponding to the natural metric p on a Car-
tesian product set ,(D,, there is a natural class of

functions from the power set 97’(x D)) to 2(x D) that

we call cylinder operators. The cyhnder operator
extends any set to a neighborhood which contains it.
The extension is achieved by taking each N-tuple in the
set and letting designated coordinates run free.

Definition 6
Let J < I. The cylinder operator ¥, from #(x D;)to

iel
P(x D)) is defined by

iel

¥(4) = {(y1>--- xy)EA,

x; =y, forall jeJ}.

The subset ¥,{A) is called the J-cylinder set of A. The
order of the cylinder set or the order of the cylinder
operator is the number #J. See Fig. 3 for an example
of some order 1 cylinder sets.

Proposition 4. Let J = I. The cylinder operator ¥,
is a homomorphism on #(x D).

Proof. Let A Beé’f‘(x D) Since 4 € ¥,(A4) and
B < ¥,(B), min mm p(x,y) < min min p(x,y).

xe¥,(4) ye'V,(B xed yeB

Hence, by definition of p’, p "(W,(A), ¥,(B)) < p'(4,B);
and this makes ¥; a homomorphism.

For structural pattern recognition with N-tuples,
the collection % can be defined as containing all

images of elements of the Cartesian product pattern set
P = y D, by any cylinder operator having order less

iel

than or equal to some convenient constant .

¥ ={Lc P|L =Y¥,({p}) for some peP = y D

iel

,¥y)€ x Dy|forsome (x,,...,
iel

and J = I satisfying #J < k}.

Once the collection & is defined, the decision rule D
can be determined by D= F'+(I;, Q) where Q
= I+ (F’,T), T is the training data relation, and F" is
the relation which pairs elements of p to generalizing
subsets in %,

We next illustrate this structural pattern recognition
technique by an example.

We let pattern space or measurement space P be D,
x D, x D, x D, where

D, ={xyz}
D =123}
D3 = {A,B,R,S}
Da = {‘Iaﬁ:y}-

We take & to be the set of all order 1 cylinder sets
of P.

= {L < P|forsome peP,
L=Y,(p),j=12734}

Let the set of categories be C =
observed patterns P’ be

{0,1} and the set of

P' = {(z,3,R,®),(y,3,5,0),(z,3,R.), (3.3, B, f)
(ZJ ZSSia}'l (Z’B’B"}')! (ZBZl S’ﬁ)? (293’A’y)}'

The training data relation T < P’ x C is given in the
table below. ‘

Pattern Category

(2,3,R, %)
(»,3,5,%)
(z,3,R,B)
(y.3,B,8)
{z,2,8,%)
(z,3,B,y)
(2,2,5,8)
(z,3,4,7)

—_—— O OO O

The order 1 cylinder sets which have non-empty
intersection with patterns in P’ are shown in the
following list where * means any legal value.

Zakk, Yrrr, * 2%k, *kDrok, kkd%, xxBx,

sk Row, weaeSok, s, wokkff, xany,

Of these order 1 cylinder sets, those which are
generalizing sets (involve only patterns from one
category) are paxx, x2wk, ¥x R, sx A%, xx#y.

Notice that it is the case that each pattern in P’
belongs to at least one of these cylinder sets. Hence the
relation F' € P x #'is, in fact, defined everywhere on
P'. F' is given by the table below.

F
Pattern Cylinder set
(z,3,R,a) xR
(»,3,5,2) VExk
(z,3,R,B) xxRx
(».3,8,8) yrxx
(z,2,D,0) C 2
(Za 3a Bs '}’) k&Y
(z,2,5,8) w2 %k
(z,3,A,7) ser A x, wokxy

The relation Q between the cylinder sets and the
categories is defined by Q = I~ (F', T). Q is given in
the table below.

Q
Cylinder set Category
Yhkx 0
2ok 1
**R* 0
sk A x 1
k) 1

228

o -
ity
T o

3 | o]

Iy Wwho
~
R

“»n W
~
=

a B ylae B y|a
A B V3

s+ Category O
W Category |
S Both categories

Fig. 4. A generalized Karnaugh map for the decision rule.

Those areas hatched singly are patterns assigned to only one

category. Those mean not hatched are not assigned to any

category. Those areas which are doubly hatched are assigned
to both categories.

The decision rule D which is a binary relation from
the patterns to the categories is defined by D
= F'-(Ip, Q). Hence

D={(p,e)eP x C|
if ¢=0, then p=(p;,p,,ps,p4)=y or pa=R;
if c=1, then p,=2, or p;=4, or p,=y}.

A measurement space picture of D appears in the
Karnaugh map of Fig. 4. Notice that there may be
patterns which are assigned no categories, patterns
which are assigned to only one category, and patterns
which are assigned to more than one category. Of
course, training patterns are assigned uniquely to one
category as required.

The relationship of this technique to the covering
technique of Michalski is straightforward. First we
define a cover of a set S, against a set S, and then an
order n cover of S, against S,.

Definition 7

A cover of S, against S, is any set % of cylinder sets
satisfying So € | < $9, where S means the com-

Le¥
plement of set §,.

The definition implies that if a collection of cylinder
sets is to be a cover, its set theoretic union must
completely cover the set S, and it must not cover any of
the set §,.

Definition 8

Another order n cover of S, against S, is any
collection C of cylinder sets satisfying

1 YL=s,

Ley
@ ULess

Leg

R. M. HARALICK

(3) Le# implies the order of L is less than or equal
to n.

The covering technique requires the determination of a
near minimal order cover of S, against §,. As stated in
Theorem 2, to construct a cover %, we need only
consider cylinder sets L satisfying L n Si=¢and L
N 8o # ¢. Then of those cylinder sets satisfying these
conditions, we successively select those from lower
order to higher order which cover patterns in So not
already previously covered by those sets selected™#).
Theorem2. Let &, = {L|Lis a cylinder set of order
smLlnS =dandLnS, # ¢} 1fS; < |) Lthen

. . Le#,
&, is a cover of S, against §,. c

Proof. By hypothesis, |) Lc S, and the order of
Ley

Le.#,is less than or equal to n. Since L e &, implies L
N 8y = ¢, we must have L = §5. But this is true for all
Le#, Hence) L < S9.Therefore, &, is a cover of
S, against §,. et

The requirement that L 1 S, # ¢ is our requirement
that generalization can be made only through sets
containing some observed patterns. The requirement
that LN §, = ¢ is our requirement that sets in %"
must be generalizing sets so that all observed patterns
inan Le %" have the same category identification. For
the example problem, an order 1 cover of o against §,
is determined by =xRx* and y###, exactly the pair of
cylinder sets associated with category 0 by the relation
0.
The same result of associating *+Rx and y++# with
category 0 could be obtained using a generalized
version of the iterative Quine-McCluskey technique.
However, for large pattern sets of high dimensional
order, that grouping technique is likely to involve
more memory and computation time than beginning
with order 1 cylinder sets and then going successively
to order k cylinder sets where k is the smallest constant
which makes the generalizing subsets cover the pattern
set.

4. STRING PATTERN DISCRIMINATION
USING GRAMMATICAL INFERENCE

Determining decision rules when patterns are
strings involves using more algebraic structure than
for the case when patterns are N-tuples. In this section
we put the syntactic grammatical inference methods
for regular grammars into the structural perspective
established in Section 2. We will show first how an
incompletely specified finite state acceptor can be
constructed from the training data relation, and
second how the collection .% can consist of the
equivalence classes of the input monoids of any
acceptors, which by a specified type of homomorphism
is a homomorphic image of the acceptor constructed
from the training data relation. Then we illustrate this
method by a simple syntactic pattern recognition
example. The ideas in this section are motivated by

Structural pattern recognition, homomorphisms, and arrangements

Fu,® Fu and Booth,*® Biermann and Feldman,
and Pao.??

We begin with some notation and definitions. Let £
be the set of characters which can make up pattern
strings. Let Z* be the set of all strings of characters
from T. The set of patterns P is £*, an infinite set even if
T is finite. As is well known, Z* is the free monoid
generated by T under the string concatenation oper-
ation. Let Z* = Z* be the set of observed patterns and
C={1,2,...,K} be the set of K recognition cate-
gories. We assume all patterns in Z*' are of finite
length. The training data relation T is a subset of Z*
wis T x O

We desire to define % a collection of subsets of *.
However, the infiniteness of £* makes it difficult to
define such a collection directly. Our technique will be
to define the collection .# indirectly via finite state
acceptors for the observed strings in Z*'. A K-category
acceptor is essentially an automaton which starting
from a designated starting state will transit by a string
o e T* to a terminal state associated with the category
of o.

Definition 9

A finite state acceptor o for K categories is a (K
+ 4)-tuple o = (S,%,8,50,A4y,..., Ag), where S is a
finite set of states, § = (S x) x S is the transition
relation, s, S is the starting state, and A4, S, k
—1,..., K are mutually exclusive subsets of terminal
states associated with categories 1,. .., K, respectively.
Hence, i #j implies A;n A; = ¢. When 6 is defined
everywhere on S x Z, & is said to be completely
specified. Otherwise o is incompletely specified. When
§ is single-valued, &/ is said to be deterministic.
Otherwise « is said to be nondeterministic. If there is a
category k such that a string ¢ € £* can reach a state in
A, by the transition relation &, then o is said to be
accepted by category k. Otherwise it is rejected.

A finite state acceptor can be constructed im-
mediately from the training data relation T. If s is the
starting state and (0,05 ... 0y, k)€ T is the first string
category pair in T, then we define the transition
relation & to include (s;_,055), i=1,..., N and we
make A, include sy. Then we take the next string
category pair in T and do the same thing beginning
with s, and following with the next not yet used state in
place of s,. The resulting K-category finite state
acceptor will be incompletely specified and non-
deterministic in general. The acceptor can easily be
made deterministic by iteratively merging pairs of
states r and ¢ if (s, @, 7)€ 6 and (s, 0, 1) € 6. The grammar
associated with this finite state acceptor is known as
the canocial definite finite state grammar."*®

The acceptor constructed as above will correctly
associate each observed pattern string in Z*' with its
correct category identification. However, strings notin
=* will be rejected. Grammatical inference is con-
cerned with generalizing the constructed finite state
acceptor so that it can accept many more strings than

229

those initially observed. The basis of grammatical
inference for regular grammars is the merging or
combining of states in the initial K-category finite state
acceptor,®® or non-terminals in the production rules
of the grammar.® These are two essentially equivalent
processes, and we will concentrate on the state merging
technique. The rule for merging states is that two states
can be combined if under some input, their successors
can be combined and the resulting acceptor is de-
terministic and acceptor states associated with
different categories never get combined.

We can view the combining of states of S as being
done by a function h: S — W. If for some we W there
exists s, ¥ €S satisfying h(s) = w = h(s'). Then we say
states s and s' are combined by h. Of course, not all
pairs of states can be combined if the resulting acceptor
is to be deterministic. The resulting acceptor will be
deterministic if, and only if, the combining function is
transition preserving. A function is transition preserv-
ing if, and only if, when it combines two states which
have successors under a string o € £*, then it must also
combine the successors.

Definition 10

Let 5 (SxZ)x S and h: S> W. h is called a
transition preserving function of & if and only if
(84,0,5.)€8, (s1,0,83)€d, wy=h(s;), wy=hl(s;),
and wy = h(s}) imply wj = h(s}).

The following proposition states that the resulting
acceptor is deterministic if, and only if, the combining
function is transition preserving.

Proposition 5. Let 6= (SxZ)x S and h: S—-W.
Definey = (W x Z) x Wbyy = {(w,o,w,)eW x X
x W | there exists s,, s, €S such that (s,,,s,)€ 6 and
wy = h(s,) and w, = h(s;)}.

Then his a transition preserving function of é if, and
only if, v is single-valued.

Proof. Suppose h is transition preserving and
(wy,0,w,)ey and (wy,0,w,)€y. Then there exists sy,
s, €S such that (s, 0,5,) €8, w, = h(s,), w, = h(s;) and
there exists s}, s, € S such that (s}, 0,57) €8, w; = h(s})
and wj = h(s). Since h is transition preserving,
(51,0,85)€6, (s},0,55)€d, wy = h(s;) = h(s}) and w,
= h(s,) imply w, = h(s;). Hence, w, = w, making y
single-valued.

Suppose y is single-valued and (sy,0,5;)€9,
(51,0,85)€ 8, w; = h(s,) = h(s})and w, = h(s,). Let w,
= h(sy). Then by definition of y(w,o,w;)ey and
(wy,0,wh)€y. Since y is single-valued, w, = w). This
makes h a transition preserving function of 4.

Functions which are transition preserving and do
not combine terminal states associated with different
categories not only ensure that the resulting acceptor
will be single-valued, but also ensure that the entire
transition structure is preserved. Such functions are
called homomorphisms.

230

Definition 11

Letof = (8,%,6,50,A1,..., Ag)and B = (T, Z, y,t,,
By, ..., Bg) be two K-category finite state acceptors. A
function h: § — T is a homomorphism from .« into &
if, and only if,

(1) (s;,0,5;)€d and h(s,) = w, imply there exists a

w, € W such that (wy,0,w,)ey and w, = h(s,)

(2) 1o = h(so)

() By=h(d), k=1,...,K.

Proposition 6. Let &/ =(S,%,6,5,Ay,...,4g) be a
finite state acceptor for K categories. Let h: S— W be
an onto transition preserving function which satisfies
i+ j implies h(A4,) h(4;) = ¢. Define y < (W x X)
x W by y={(w,0,w,)e W x = x W| there exists
$1,5,€8 such that w, =h(s;), w,=Hh(s,) and
(51,0,8,)€6}. Then & = (W,Z,y,h(s,), h(A,),,
h(Ag)) is a deterministic finite state acceptor which is a
homomorphic image of /.

Progf. By proposition 5, y is single-valued making f3
deterministic. Let (s, 0,5,)ed and h(s,) = w,. Let w,
= h(s;). Then (s, 0,5,)€4, h(sy) = w,, and h(s;) = w,
imply by definition of y that (w,, o, w;)ey. Finally, by
hypothesis i#j implies h(4,)Nh(A4;)=¢. Thus Bis a
deterministic finite state acceptor.

To show fis a homomorphic image of B, suppose
that (s,,0,5,)€d and h(s,) = w,. Let w; = h(s;). Then
by definition of v, (wy, 0, w,)ey. Therefore, h satisfies
conditions (1), (2), and (3) of the definition and h is a
homomorphism from .o¢ into 4. Since his onto W, 4 is
the homomorphic image of .« under h.

The importance of combining states by a homomor-
phism is apparent when we consider that the strings
accepted by any category of the homomorphic image
acceptor must include those accepted by the cor-
responding category of the original acceptor, Thus to
generalize the set of pattern strings accepted by any
finite state acceptor, we need only find a homomor-
phism which combines states in a transition preserving
manner. The following proposition proves than the set
of pattern strings accepted by a homomorphic image
acceptor is at least as large as the set of pattern strings
accepted by the original acceptor.

Proposition 7. Let h be a finite state acceptor
homomorphism from & = (S, X, 5,5, 4, . .., Ag) to
=(T,Z,y,t,By,..., Bg). Suppose for some oeX*,
(50,9,5,)€ & and for some ke {1,...,K}, s;€ A;. Then
there exists ¢,€T such that (¢, 0, ty)ey and t eB,.

Proof. Let t;=h(s;). Since ty=h(t,) and
(50,0, 57)€ 6 and his a homomorphism from .+ into #,
(to,0,t;)ey. Since h a homomorphism implies B,
= h(4,) and s € 4, we must have ¢, = h(s;)e B,.

With this knowledge about finite state acceptors
and their homomorphisms, we are ready to under-
stand how the cover % of £* can be constructed. It is
well known that associated with each finite state
acceptor is a partition of £* having the property that
two strings are in the same cell of the partition if their
state transitions are identical (Proposition 8). It is also
true that the cells of such a partition are a homomor-

R. M. HARALICK

phic image of Z* (Propositions 9 and 10). Thus, we can
define & to contain all the cells from all partitions of
X* determined by finite state acceptors, which are
defined everywhere homomorphic images of the finite
state acceptors determined by the training data re-
lation. We can, if we wish, restrict the number or kind
of homomorphisms. % can consist of all the cells from
all partitions of Z* determined by homomorphisms in
a specified class of the homomorphisms on the original
finite state acceptor. Because the finite state acceptor
homomorphism was defined not to combine terminal
states associated with different categories, the re-
striction %" of . is in this instance equal to #.

Proposition 8. Let 6= (S x £) x S. Define R
= {(a,b)eZ* x T*|(s,a,t)e if and only if (5,b,t)€d}.
Then R is an equivalence relation on T*.

Proof. R is reflexive, symmetric, and transitive.

Proposition 9. Let § < (S x) x §. Define R
= {(a,b)eEZ* x Z*|(s,a,t)ed if, and only if
(s,b,t)e6}. Let [a] designate the equivalence class for
the element a. Then the equivalence classes of R form a
monoid under the binary operation defined by
[a] -[5] = [ab].

Proof. First, the operation is well defined since if
a'e[a] and b’ e [b] we must have a'b’ € [ab]. To prove
this, let '€ [a] and b’ e[b]. Then (s, a,7) € 6 if and only
if (s,b,r)eé and (r,a',t)ed if and only if (r,b',t)ed.
Notice that (s,ab,t)ed implies there exists a reS
satisfying (s,a,r)ed and (r,b,t)ed. Since (s,q, ryed
implies (s,a’,r)e é and (r, b, t) € & implies (r, b', t)e b, we
have (s,a’,r)ed and (r,b',1)eé. But (s,a, r)eéd and
(r,b',t)e d implies (s,a’,b’,¢)ed. Thus (s,ab,t) implies
(s,a'b’,t)ed. A similar argument shows the converse.
Therefore, (s, ab, t)e § if and only if (s, a'b’, t)€d so that
a'b’'e[ab].

Second, the operation is associative since

([a] -[8])+ [c] = ([ab]) - [c] = [(ab)c]
= [albe)] = [a] - ([bc])
= [a]-([&] - [e]).

Finally, the identify is [1] since
[a]-[A] = [a4] = [a]

and
[4]-[a] = [Aa] = [a] .

Proposition 10. Let 6 = (S x £) x S. Define R
= {(a,b)eZ* x T*|(s,a,t)ed if, and only if,
(s,b,t)e d}. Let & be the set of equivalence classes of R
and [o] designates the equivalence class for o. Then the
function h: Z* — & defined by h(g) = [] is a2 homo-
morphism from the monoid £* into the monoid &.

Proof. hiab) = [ab] = [a] -[b] = h{a) - h(b).

We nextillustrate this structural pattern recognition
technique by an example. Welet £ = {4, B, A}, where 4
is the null string, and we let the pattern space be Z*,
The set of observed patterns Z* is given by

I* = {A, AB, BA, BBA, AAA, ABA,
ABAA, AA, B, 1, ABAB]}.

Structural pattern recognition, homomorphisms, and arrangements 231

We suppose there are two recognition categories C
= {0, 1} and the data training relation T = Z¥ x Cis
given in the table below.

Pattern Category

A
ABAB

S

L

b
—_—_——_——,—o o0 0Cc o0

The state diagram for a deterministic finite state
acceptor which can be derived directly from the
training data relation T is shown in Fig. 5. We will
construct the cover & of ¥ by putting into % the
equivalence classes of the input monoids for two out of
the 17 defined everywhere finite state acceptors, which
are homomorphic images of the original one.

The two homomorphisms and the homomorphic
image acceptors are shown in Fig. 6. The equivalence
classes of the input monoids for these two homomor-
phic image acceptors are listed in Fig. 7. The square
bracket designates the equivalence class of the pattern
string inside. The subscript on the bracket specifies
whether the equivalence class is for homomorphic
image acceptor 1 or 2. The notation of Fig. 7 also gives
for each equivalence class a regular expression denot-

Homomorphism | Homomorphic Image |

9% | "o
A5
9 "2
93 |3
9 "2
a |,
% |"2
a7 |r3
g |"2
ag |y
0| 2
913

I:] Designates category O ferminal states

A Designates category | terminal states

O Designates a non-terminal state

Fig. 5. A state diagram for the finite state acceptor de-
termined by the data training relation.

ing the set of its pattern strings. To simplify the terms in

the regular expression, equivalence class names whose

regular expressions have been previously defined are

used in place of those regular expressions when it is

convenient to do so.

With the exception of equivalence classes, [BB];,
[ABB],,[4A4B],, [BAB),,[BABA),,[ABABA], and
[BBAB]j,, all the equivalence classes have non-empty
intersection with the observed pattern string set.
Furthermore, each equivalence class having non-
empty intersection with the observed pattern string set
is a generalizing set because it contains observed

Homomorphism 2 Homomorphic Image 2

9 | %o
a |5
9 |52
a3 | 5o
|5
as | sp
9 |3
a; | 5o
98 |1
q9 52
910 %2
911%0

Fig. 6. Two homomorphisms and their homomorphic images of the finite state acceptor determined by the
training data relations (see Fig. 5).

232 R. M. HARALICK

pattern strings from only one category. The relation The relation Q pairing generalizing sets and cate-
F'= Z* x %', which pairs observed pattern strings gories is defined by @ = Iz o (F', T). Q is given in the
with generalizing sets, is given by the table below. following table.
B’ Q
Pattern Covering set Covering set Category
4 [(4]s, (4], [1
AB [4B],, [4B], (4], 0
B4 [BA],, [BA], [B], 1
BBA [BA],, [BBA], [AB], 0
AdA [BA],, [4], [44], 1
ABA [BA],, [4BA], [BA], 0
AAA [BA),, [AB], [BAB], 1
A4 [44],, (2], [4]; 1
B [B,, [B]. [4]; 0
A (4w [A]; [B]. 1
ABAB [BAB],, [ABAB], [4B], 0
(BA], 0
[ABA], 0
[ABAB], 1
(BBA], 0
B, =
The decision rule D, which is a binary relation
[Al; = A from the patterns to the categories, is defined by

(8], = B(BB)*
(e8], = [8],[8],
[aB], = A[B],

[ABB], = AB[B]]-

]
[AAI‘ = AA(BB)=*
[ARB], = [AA],B
[Bal, = ([AB]] + (8], + [BB], + [AA]}) A(A* + B(A + B))*
(eaB], = [BA], [B]
[x]

(A

2 = (AA)=*

5 = A(AR) *

(8], = [al, B(([A], BIAL, BIAL,) + [a],)*
[AB], = [Al, [8],
[eAl, = [B], [Al,

[6AB], = [eA], (8],

{BABA]2 = [BaB], [Al,

(aAl, = [as], [Al,

[aBas], = [aBa], [B],

[ABABA], = [ABAB], [A]

(881, = [A], (8], ([B], + [A],[B],[B],) ((B + (AA)*)%[A],[B], A*[B],)*
+ [81, (8], + [A],[8],[8],)

(eBAl, = [BBI, [Al,

[BBAa]2 = [BBA]2 B A%

Fig. 7. The equivalence classes and their corresponding regular expressions of the input monoid for the two
finite state acceptors of Fig. 6.

Structural pattern recognition, homomorphisms, and arrangements

D = F'- (Ig+, Q). We therefore can write D as a set of all
string category pairs satisfying certain conditions.

D = {(o,c)eZ* x C|
if ¢ =0, then oe[A4],,[4B],,[BA],,

[4]2.[4B],.[BA],,
[4BA],, [BBA],

if ¢ =1, then oe[4],,[B],,[44],,[BAB],,
[’1]2’ [B]Zs [ABAB]2}'

Because not all the equivalence classes are guaranteed
to have observed patterns, the equivalence classes
missing in the specification of D can cause some
pattern strings in Z* to be paired with no category.
Since the equivalence classes determined from different
homomorphisms can overlap, it is also possible for D
to pair some pattern strings with more than one
category.

The relationship of the construction of the decision
rule to the grammatical inference techniques of Pao?®
and Feldman® is straightforward. These techniques
begin with either the finite state acceptor determined
by the training data relation, or a grammar which
produces only the observed pattern strings. Gram-
matical inference takes place by merging the states of
the finite state acceptors as we have illustrated or by
merging non-terminals of the grammar. Because of the
natural isomorphism between finite state acceptors
and regular grammars, these two merging techniques
amount to the same basic process even though the
merging of non-terminals can lead to non-
deterministic finite state acceptors.

5. ARRANGEMENT PATTERN DISCRIMINATION

In this section we introduce the arrangement’® asa
pattern data structure and illustrate how it can be used
just like the string and N-tuple in a structural pattern
recognition approach.

5.1 The arrangement

Let A be the set of elements whose arrangement is
being described. Each group of related elements from
A is given a label from the label set L. Let R be the
labeled N-ary relation which consists of labeled N-
tuples of related elements from A.

Definition 12

A simple order-N arrangement is a triple (R, A4, L)
where R < Ay x L. We can use R to specify the
arrangement (R, A,L) when the sets A and L are
understood.

An N-tuple is a special case of an order 1 arrange-
ment. To see this, suppose (x,, ..., x,) is the N-tuple.
Take L to be the label set having integers for labels.
Define the set A = {x,x,,...,xy} and the relation
R AxLbyR={(x,f)eA x L|x; = a}. A string is
really just an N-tuple with variable length so it, too, is a
special case of an order-1 arrangement.

We define a general arrangement as a coordinated

233

set of arrangements having the same label set. This
concept allows relationships of different orders on the
same set to be handled together.

Definition 13

A general arrangement is a set of simple arrange-
ments, each simple arrangement being of different
order, being defined on the same set, and having the
same label set. If there are K simple arrangments in the
arrangement A4, then A={R,R,,...,Rg; A4,L}
where R, € AM x L k=1,...,K.

Since arrangements are going to serve as our
patterns and since we have illustrated that structural
pattern recognition can be-viewed as generalizing
through homomorphic images of the observed train-
ing patterns, we will need to define a composition
operation and a homomorphism. For this purpose we
will use the same general idea we used in Section 2. The
composition of an arrangement by a binary relation
will produce an arrangement which contains all the
labeled N-tuples of the given arrangement translated
component by component through the binary relation.
The only difference between this composition and that
introduced in Section 2 is that in Section 2 the
translation could take place using a different binary
relation for each of the components of the ordered
pairs in the given relation. Here we allow the given
relation to be N-ary and insist that all components get
translated the same way through the binary relation
during the composition.

Definition 14
Let A = {Ry,...,Rg; A, L} be an arrangement and
H = A x B.The composition of arrangement 4 with H
results in an arrangement B which we define as
A-H=B={S,8,,...,5:; B,L},

where

Sk = {(bl?bls tet bN,"E)l(als LR aNk, E)E Rk
a,.byeH, n=1,...,N,}
The concept of homomorphism introduced in Sec-
tion 2 was that the image of the composition had to be
contained in a given relation. We employ exactly the

same concept here put into the arrangement
perspective.

Definition 15

An arrangement 4 ={R,...,Rg; A,L} is con-

tained in an arrangement D = {T,,..., Ty; A4,L} if
and onlyif R, € T,k = 1,..., K. In this case we write
A< D.

Definition 16

Two arrangements 4 = {Ry,...,Ry; A,L} and B
={S,,...,Sy; B, M} are comparable if the number of
relations in each arrangement is the same (K = N), if
the label sets are the same (M = L), and if the relation
R, has the same order as the relation §,:

(Ry < A™ x L and S, = B™ x L).

234 R. M. HARALICK

Image of Arrangement Image of Arrangement
Combining Function F TO Under Function F T] Under Function F

F]:S""E A]:;ExExK ASEEXEXK
a,b +v vvO vv0
c,d »w wv0 wx0
e > X ww 1 yvO0
fary wwl vwl
w1
xwl
ywl

FZ.S—>F AngxeK AngxeK
a,c,e > v vvO0 vvO0
b,d,f »w wv0 wv0
vwl vwl
wwl ww 1

F3:S+H A3§HxHxK A7ngHxK
a,b »p pp0 ppo
c,d +q qp0 qr0
e,f»>r pql Fp0
qq pql
qql
rql

FL;’S"’G Ahg_:GxGxK AangGxK
a,d,f +v vvQ vv0
b,c,e > w wv0 wv0
vvl ww0
wvl vw(
vvl
wvl

Fig. 8. Illustration of how functions Fy, F,, F3, and F, combine elements of § together and thereby form
homomorphic images A;-Ay of the observed training arrangement.

Definition 17 The definition for the arrangements T, and T, and
Let A={R,,...,Ry; A,L} and B={S,,...,5,; the training relation T are given below.

B, L} be two comparable arrangements, Let H: 4 — B.

The function H is a homomorphism from arrangement T,c8x8xL T, ESRSKL

A to arrangement B if, and only if, 4-H < B.

i o : aa
We will discuss structural pattern recognition using bag Zzg
the simple arrangement for the pattern data structure a0 ced
rather than the general arrangement. We can take the
da0 de0
pattern set P to be the set of all arrangements and the
: X adl eal
collection .% to have members which are sets of bdl 0
arrangements, each of which has the property that it is cdl il
the preimage of a homomorphism to a feature arrange- dd1 bdl
ment associated with the set. The feature arrangements cdl
are homomorphicimages of the observed arrangement ddl
patterns. The restriction of % to %, the relation Q and
. : : : edl
the decision rule D can all be determined as in Section 7d1
2
For our example, we take the category set C to be
{A, B}, the pattern set to be all second order arrange- T
ments on a set § = {a,b,c,d,ef}, with labels K Arrangement patterns Category
= {0, 1}, the observed arrangement patterns to be P’ = p
= {T,, T;}, and the training data relation T < P’ T B
1

x C.

Structural pattern recognition, homomorphisms, and arrangements

Figure § illustrates how four functions which com-
bine elements of S together can form homomorphic
images of the observed training arrangements. We
name the homomorphic image arrangements
A A,, ..., Ag. Notice that arrangements A4, 4,, 45,
and A4 are either identical or isomorphic.

We define the collection % to consist of sets, each of
which contains all arrangements having one of the
feature arrangements for its homomorphic image.

& = {L < P|for every arrangement ReL, there
exists some function f and feature
arrangement B satisfying R-f = B}.
On the basis of the four combining functions chosen
and the 8 feature arrangements they determine, the
collection .% could contain as many as 8 sets. However,
since 4 of the feature arrangements are isomorphic, &
contains only 5 sets of arrangements L,—L defined as
follows:

L, = {Re P|there exists

some function f satisfying R-f= A4}
L, = {ReP|there exists

some function f satisfying R-f = 45}
L, = {Re P|there exists

some function f satisfying R-f= 4}
L, = {Re P|there exists

some function f satisfying R+f= 4}
L, = {Re P|there exists

some function f satisfying R-f = Ag}.

Because L; contains observed training arrange-
ments for more than one category, the restriction %" of
% consists of only L,—L; for its generalizing sets. The
relation F' which pairs arrangement patterns with
generalizing sets is defined by

F'={(p,L)eP x #'|peL}.

The relation Q, which pairs generalizing sets with
categories, is defined by

Q = IP' ' (F" T) = {(LZ’A)’ (LSaB)a (L4= B)., (L.“n B)}

The decision rule D, which pairs patterns to categories,
is defined by D = F'- (I, Q) and can be written as

D={(p,c)e PxC|if c=A, then peL,
if e=B, then pe LyuL,ULs}.

6. CONCLUSIONS

In this paper we have described structural pattern
recognition using a relational algebra. We have sug-
gested that the generalization of the observed training
patterns takes place by the implicit or explicit use of a
restricted cover on the pattern space. The cover is
restricted to insure that only one category will be
asociated with each set in the cover. The form of the
cover depends on the data structure of the patterns:
cylinder sets for N-tuples, and equivalence classes of
input monoids for strings. The cover may be given

235

prior to knowing the pattern training relation or after
knowing the pattern training relation.

In the relational setting in which we have described
this process, the natural relation F’ pairing patterns to
sets in the restricted cover to which they belong is an
inverse homomorphic image of the pattern training
relation. The decision rule D, which pairs patterns to
categories, is a homomorphic image of the relation F'.
Not only do homomorphisms enable us to produce D
given the pattern training relation and a cover of the
pattern space, but as suggested for the N-tuple and
string patterns, the cover itself can be defined in terms
of homomorphisms on the pattern space. Thus ho-
momorphisms play an essential role in the con-
struction of structural pattern recognition decision
rules.

Finally, we have illustrated that once structural
pattern recognition is viewed from this perspective,
other kinds of relational pattern data structures can be
invented and naturally used. To illustrate this, we
defined an arrangement as a labeled N-ary relation
and showed how arrangements can be used as a
pattern data structure. In this situation, the pattern
space is the set of all labeled N-ary relations. The sets in
the cover are defined by selected homomorphic images
of the training pattern arrangements. The decision rule
is then a homomorphic image of the relation which
pairs patterns to sets in the restricted cover.

Acknowledgement — I would like to thank Linda G. Shapiro
for the help and ideas she shared with me while I was
preparing the paper and Lynn Ertebati for typing the
manuscript.

REFERENCES

1. A. W. Biermann and J. A. Feldman, On the synthesis of
finite state machines from samples of their behavior,
IEEE Trans. Comput. 21, 592-597 (1972).

2. W. S. Brainerd, Tree generating regular systems, Inf
Control 14, 217-231 (1969).

3. M. F. Dacey, The syntax of a triangle and some other
figures, Pattern Recognition 2, 11-31 (1970).

4. R.Davis, B. Buchanan and E. Shortliffe, Production rules
as a representation for a knowledge-based consultation
program, Art. Intelligence 8, 15-45 (1977).

5. J. E. Donor, Tree acceptors and some of their appli-
cations, J, Comput. Syst. Sci. 4, 406-451 (1970).

6. J. Feder, Plex languages, Inf. Sci. 3, 225-241 (1971).

7. J. Feder, Languages of encoded line patterns, Inf. Control
13, 230-244 (1968).

8. J. A. Feldman, First thoughts on grammatical inference,
Stanford Artificial Intelligence Project Memo 535, Stan-
ford University, Stanford, California (1967).

9. K. S. Fu, Syntactic Methods in Pattern Recognition.
Academic Press, New York, 295 pp (1974).

10. K. S. Fu and T. L. Booth, Grammatical inference:
introduction and survey — I, IEEE Trans Syst., Man,
Cybern. 5, 95-111, January (1975).

11. K. Fukanaga, Introduction to Statistical Pattern Re-
cognition. Academic Press, New York (1972).

12. S. Ginsburg, The Mathematical Theory of Context-Free
Language. McGraw-Hill, New York (1966).

13. R. M. Haralick, The pattern recognition problem from
the perspective of relation theory, Pattern Recognition 7,
67-19 (1975).

236

14.

15.

16.

17.

18.

19.

20.

R. M. HARALICK

R. M. Haralick, Structural pattern recognition, arrange-
ments and theory of covers, IJEEE Conf. on Patiern
Recognition and Image Processing, Troy, New York, June
(1977).

R. A. Kirsch, Computer interpretation of English text
and patterns, IEEE Trans. electron. Comput. 13, 362-376
(1964).

E. J. McCluskey, Jr., Minimization of boolean functions,
Bell System Tech. J. 35, 1417-1444, November (1956).

R. S. Michalski, On the quasi-minimal solution of the
general covering problem, Proc. 5th International Sym-
posium, Yugoslavia, Bled, 8-11 October, 1969.

R. S. Michalski and B. H. McCormick, Interval generali-
zation of switching theory, Proc. 3rd Ann. Houston Conf.
on Computer and System Science, Houston, Texas, pp.
231-226 (1971).

R. S. Michalski, AQVAL/1 — Computer implemental of a
variable-valued logic system VL, and example of its
application to pattern recognition, Int. Jnt Conf. on
Pattern Recognition, Washington, D.C., pp. 3-17 (1973).
R. S. Michalski, Variable-valued logic: System VL,,
Proc. 1974 Int. Symp. on Multiple-Valued Logic, West

21.

22,

23.

24.

25.

26.

27.

Virginia State University, Morgantown, West Virginia,
pp. 323-346 (1974).

D. M. Milgram and A. Rosenfeld, Array automata and
array grammars, IFIP Congr. 71, Booklet TA-2. North-
Holland, Amsterdam, pp. 166-173 (1971).

R. N. Narasimhan, Syntax-directed interpretation of
classes of pictures, Comm. ACM 9, 166-173 (1966).

T. W. Pao, A solution to the syntactical induction-
inference problem for a non-trivial subset of context-free
languages, Interim Technical Report 69-19, Moore
School of Engineering, University of Pennsylvania,
Philadelphia, Pennsylvania (1969).

J. L. Pfaltz and A. Rosenfeld, Web grammars, Proc. 1st
Int. Jnt Conf. on Artificial Intelligence, Washington, D.C.,
May pp. 609-619 (1969).

W. V. Quine, A way to simplify truth function, Am. Math.
Monthly 62, 627-631, November (1955).

A. C. Shaw, A formal picture description scheme as a
basis for a picture processing system, Inf. Control 14,
9-52 (1969).

E. H. Shortliffe, Computer-Based Medical Consultation:
MYCIN. Elsevier, New York, 264 pp. (1976).

