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proaches to Texture

ROBERT M. HARALICK, sENIOR MEMBER, IEEE

Abstract—In this survey we review the image processing literature on
the various approaches and models investigators have used for texture.
These include statistical approaches of autocorrelation function, optical
transforms, digital transforms, textural edgeness, structural element,
gay tome cooccurrence, run lengths, and autoregressive models. We
discuss and generalize some structural approaches to texture based on
more complex primitives than gray tone. We conclude with some
structuzal-statistical generalizations which apply the statistical tech-
niques to the structural primitives.

I. INTRODUCTION

EXTURE is an important characteristic for the analysis
Tof many types of images. It can be seen in all images

from multispectral scanner images obtained from air-
craft or satellite platforms (which the remote sensing com-
munity analyzes) to microscopic images of cell cultures or
tissue samples (which the biomedical community analyzes).
Despite its importance and ubiquity in image data, a formal
approach or precise definition of texture does not exist. The
texture discrimination techniques are, for the most part,
ad hoc. In this paper, we survey, unify, and generalize some
of the extraction techniques and models which investigators
have been using to measure textural properties.

The image texture we consider is nonfigurative and cellular.
We think of this kind of texture as an organized area phe-
nomena. When it is decomposable, it has two basic dimensions
on which it may be described. The first dimension is for
describing the primitives out of which the image texture is
composed, and the second dimension is for the description
of the spatial dependence or interaction between the primitives
of an image texture. The first dimension is concerned with
tonal primitives or local properties, and the second dimension is
concerned with the spatial organization of the tonal primitives.

Tonal primitives are regions with tonal properties. The tonal
primitive can be described in terms such as the average tone, or
maximum and minimum tone of its region. The region is a
maximally connected set of pixels having a given tonal prop-
erty. The tonal region can be evaluated in terms of its area
and shape. The tonal primitive includes both its gray tone and
tonal region properties.

An image texture is described by the number and types of its
primitives and the spatial organization or layout of its primi-
tives. The spatial organization may be random, may have a
pairwise dependence of one primitive on a neighboring primi-
tive, or may have a dependence of n primitives at a time. The
dependence may be structural, probabilistic, or functional
(like a linear dependence).

Image texture can be qualitatively evaluated as having one
or more of the properties of fineness, coarseness, smoothness,
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granulation, randomness, lineation, or being motled, irregu-
lar, or hummocky. FEach of these adjectives translates into
some property of the tonal primitives and the spatial inter-
action between the tonal primitives. Unfortunately, few
experiments have been done attempting to map semantic
meaning into precise properties of tonal primitives and their
spatial distributional properties.

To objectively use the tone and textural pattern elements,
the concepts of tonal and textural feature must be explicitly
defined. With an explicit definition, we discover that tone
and texture are not independent concepts. They bear an
inextricable relationship to one another very much like the
relation between a particle and a wave. There really is noth-
ing that is solely particle or soley wave. Whatever exists
has both particle and wave properties and depending on the
situation, the particle or wave properties may predominate.
Similarly, in the image context, tone and texture are always
there, although at times one property can dominate the
other and we tend to speak of onmly tone or only texture.
Hence, when we make an explicit definition of tone and
texture, we are not defining two concepts: we are defining
one tone-texture concept.

The basic interrelationships in the tone-texture concept are
the following. When a small-area patch of an image has little
variation of tonal primitives, the dominant property of that
area is tone. When a small-area patch has wide variation of
tonal primitives, the dominant property of that area is texture.
Crucial in this distinction are the size of the small-area patch,
the relative sizes and types of tonal primitives, and the number
and placement or arrangement of the distinguishable primi-
tives. As the number of distinguishable tonal primitives de-
creases, the tonal properties will predominate. In fact, when -
the small-area patch is only the size of one resolution cell,
so that there is only one discrete feature, the only property
present is simple gray tone. As the number of distinguishable
tonal primitives increases within the small-area patch, the
texture property will dominate. When the spatial pattern in
the tonal primitives is random and the gray tone varation
between primitives is wide, a fine texture results. As the
spatial pattern becomes more definite and the tonal regions
involve more and more resolution cells, a coarser texture
results [64].

In summary, to characterize texture, we must characterize
the tonal primitive properties as well as the spatial interrela-
tionships between them. This implies that texture-tone is
really a two-layered structure, the first layer having to do with
specifying the local properties which manifest themselves in
tonal primitives and the second layer having to do with spec-
ifying the organization among the tonal primitives. We,
therefore, would expect that methods designed to characterize
texture would have parts devoted to analyzing each of these
aspects of texture. In the review of the work done to date, we
will discover that each of the existing methods tends to

0018-9219/79/0500-0786%00.75 © 1979 IEEE



HARALICK: APPROACHES TO TEXTURE

emphasize one or the other aspect and tends not to treat each
aspect equally.

II. Review or THE LITERATURE ON TEXTURE MODELS

There have been eight statistical approaches to the measure-
ment and characterization of image texture: autocorrelation
functions, optical transforms, digital transforms, textural
edgeness, structural elements, spatial gray tone cooccurrence
probabilities, gray tone run lengths, and autoregressive models.
An early review of some of these approaches is given by
Hawkins [36]. The first three of these approaches are related
in that they all measure spatial frequency directly or indirectly.
Spatial frequency is related to texture because fine textures
are rich in high spatial frequencies while coarse textures are
rich in low spatial frequencies.

An alternative to viewing texture as spatial frequency distri-
bution is to view texture as amount of edge per unit area.
Coarse textures have a small number of edges per unit area.
Fine textures have a high number of edges per unit area.

The structural element approach of Serra [78] and Matheron
[49] uses a matching procedure to detect the spatial regularity
of shapes called structural elements in a binary image. When
the structural elements themselves are single resolution cells,
the information provided by this approach is the autocorrela-
tion function of the binary image. By using larger and more
complex shapes, a more generalized autocorrelation can be
computed.

The gray tone spatial dependence approach characterizes

texture by the cooccurrence of its gray tones. Coarse textures

are those for which the distribution changes only slightly with
distance and fine textures are those for which the distribution
changes rapidly with distance.

The gray level run length approach characterizes coarse
textures as having many pixels in a constant gray tone run and
fine textures as having few pixels in a constant gray tone run.

The autoregressive model is a way to use linear estimates
of a pixel’s gray tone given the gray tones in a neighborhood
containing it in order to characterize texture. For coarse
textures, the coefficients will all be similar. For fine textures,
the coefficients will have wide variation.

The power of the spatial frequency approach to texture is
the familiarity we have with these concepts. However, one of
the inherent problems is in regard to gray tone calibration of
the image. The procedures are not invariant under even a
monotonic transformation of gray tone. To compensate for
this, probability quantizing can be employed. But the price
paid for the invariance of the quantized images under mono-
tonic gray tone transformations is the resulting loss of gray
tone precision in the quantized image. Weszka, Dyer, and
Rosenfeld [92] compare the effectiveness of some of these
techniques for terrain classification. They conclude that
spatial frequency approaches perform significantly poorer than
the other approaches.

The power of the structural element approach is that it
emphasizes the shape aspects of the tonal primitives. Its
weakness is that it can only do so for binary images.

The power of the cooccurrence approach is that it charac-
terizes the spatial interrelationships of the gray tones in a
textural pattern and can do so in a way that is invariant
under monotonic gray tone transformations. Its weakness
is that it does not capture the shape aspects of the tonal
primitives. Hence, it is not likely to work well for textures
composed of large-area primitives.
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The power of the autoregression linear estimator approach
is that it is easy to use the estimator in a mode which synthesizes
textures from any initially given linear estimator. . In this
sense, the autoregressive approach is sufficient to capture
everything about a texture. Its weakness-isthat the textures it
can characterize are likely to consist mostly of microtextures.

A. The Autocorrelation Function and Texture

From one point of view, texture relates to the spatial size of
the tonal primitives on an image. Tonal primitives of larger
size are indicative of coarser textures; tonal primitives of
smaller size are indicative of finer textures. The autocorrela-
tion function is a feature which tells about the size of the
tonal primitives.

We describe the autocorrelation function with the help of
a thought experiment. Consider two image transparencies
which are exact copies of one another. Overlay one trans-
parency on top of the other and with a uniform source of
light, measure the average light transmitted through the double
transparency. Now, translate one transparency relative to the
other and measure only the average light transmitted through
the portion of the image where one transparency overlaps the
other. A graph of these measurements as a function of the
(x, ¥) translated positions and normalized with respect to the
(0, 0) translation depicts the two-dimensional autocorrelation
function of the image transparency.

Let I(u,v) denote the transmission of an image transparency
at position (u,v). We assume that outside some bounded
rectangular region 0Ku <L, and 0<v<L, the image
transmission is zero. Let (x, y) denote the x-transiation and
y-translation, respectively. The autocorrelation function for
the image transparency d is formally defined by:

1 OO
(x,y)= fl(u,v)l(u+x,v+y)du dv
P e e Ly - D JJ
L
ffﬂ(u,u)dudu Ix| <Ly and Iyl <L,.
LyLy JJ

If the tonal primitives on the image are relatively large, then
the autocorrelation will drop off slowly with distance. If the
tonal primitives are small, then the autocorrelation will drop
off quickly with distance. To the extent that the tonal primi-
tives are spatially periodic, the autocorrelation function will
drop off and rise again in a periodic manner. The relationship
between the autocorrelation function and the power spectral
density function is well known: they are Fourier transforms
of one another [95].

The tonal primitive in the autocorrelation model is the gray
tone. The spatial organization is characterized by the correla-
tion coefficient which is a measure of the linear dependence
one pixel has on another.

An experiment was carried out by Kaizer [41] to see if the
autocorrelation function had any relationship to the texture
which photointerpreters see in images. He used a series of
seven aerial photographs of an Arctic region (see Fig. 1) and
determined the autocorrelation function of the images with
a spatial correlator which worked in a manner similar to the
one envisioned in our thought experiment. Kaizer assumed
the autocorrelation function was circularly symmetric and
computed it only as a function of radial distance. Then for
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Fig. 1. Some of the image textures used by Kaizer in his autocorrelation
experiment [41].

each image, he found the distance d such that the autocorrela-
tion function p at d took the value 1/e: p(d) = 1/e.

Kaizer then asked 20 subjects to rank the seven images on a
scale from fine detail to coarse detail. He correlated the rank-
ings with the distances corresponding to the (1/e)th value of
the autocorrelation function. He found a correlation coef-
ficient of 0.99. This established that at least for his data set;
the autocorrelation function and the subjects were measuring
the same kind of textural features.

Kaizer noticed, however, that even though there was a high
degree of correlation between p~'(1/e) and subject rankings,
some subjects put first what p~'(1/e) put fifth. Upon further
investigation, he discovered that a relatively flat background
(indicative of low frequency or coarse texture) can be inter-
preted as a fine textured or coarse textured area. This phe-
nomena is not unusual and actually points out a fundamental
characteristic of texture: it cannot be analyzed without a
reference frame of tonal primitive being stated or implied.
For any smooth gray-tone surface, there exists a scale such
that when the surface is examined, it has no texture. Then as
resolution increases, it takes on a fine texture and then a
coarse texture. In Kaizer’s situation, the resolution of his

spatial correlator was not good enough to pick up the fine
texture which some of his subjects did in an area which had
a weak but fine texture.

B. Optical Processing Methods and Texture

Edward O’Neill’s [61] article on spatial filtering introduced
the engineering community to the fact that optical systems
can perform filtering of the kind used in communication
systems. In the case of the optical systems, however, the
filtering is two-dimensional. The basis for the filtering capa-
bility of optical systems lies in the fact that the light ampli-
tude distributions at the front and back focal planes of a lens
are Fourier transforms of one another. The light distribution
produced by the lens is more commonly known as the Fraun-
hofer diffraction pattern. Thus optical methods facilitate
two-dimensional frequency analysis of images.

The paper by Cutrona et al. [12] provides a good review of
optical processing methods for the interested reader. More
recent books by Goodman [22], Preston [66], and Shulman
[81] comprehensively survey the area.

In this section, we describe the experiments done by Lendaris
and Stanley, and others using optical processing methods on
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aerial or satellite imagery. Lendaris and Stanley [45], [46]
illuminated small circular sections of low-altitude aerial
photography and used the Fraunhofer diffraction pattern
as features for identifying the sections. The circular sections
represented a circular area on the ground of 750 ft. The
major category distinction they were interested in making
was man-made versus nonman-made. They further subdivided
the man-made category into roads, road intersections, build-
ings, and orchards.

The pattern vectors they used from the diffraction pattern
consisted of 40 components. Twenty components were
averages of the energy in annular rings of the diffraction pat-
tern and 20 were averages of the energy in 9° wedges of the
diffraction pattern. They obtained over 90 percent identifica-
tion accuracy.

Egbert et al. [17] used an optical processing system to
examine the texture on LANDSAT imagery over Kansas.
They used circular areas corresponding to a ground diameter
of about 23 mi and looked at the diffraction patterns for the
areas when they were snow covered and when they were not
snow covered. They used a Recognition System diffraction
pattern sampling unit having 32 sector wedges and 32 annular
rings to sample and measure the diffraction patterns. They
were able to interpret the resulting angular orientation graphs
in terms of dominant drainage patterns and roads, but were
not able to interpret the spatial frequency graphs which all
seem to have had the same character: the higher the spatial
frequency, the less the energy in that frequency band.

Honeywell Systems and Research Division has done work
using optical processing on aerial images to identify species of
trees. Using imagery obtained from Itasca State Park in north-
ern Minnesota, photointerpreters identified five (mixture)
species of trees on the basis of the texture: Upland Hardwoods,
Jack pine overstory/Aspen understory, Aspen overstory/Upland
Hardwoods understory, Red pine overstory/Aspen understory,
and Aspen. They achieved classification accuracy of over 90
percent.

C. Digital Transform Methods and Texture

In the digital transform method of texture analysis, the
digital image is typically divided into a set of nonoverlapping
small square subimages. Suppose the size of the subimage is
n X n resolution cells, then the n? gray tones in the subimage
can be thought of as the n? components of an n2-dimensional
vector. The set of the subimages then constitutes a set of n’-
dimensional vectors. In the transform technique, each of these
vectors is reexpressed in a new coordinate system. The Fourier
transform wuses the sine-cosine basis set. The Hadamard
transform uses the Walsh function basis set, etc. The point
to the transformation is that the basis vectors of the new
coordinate system have an that
spatial frequency or sequency, and since frequency is a close
relative of texture, such transformations can be useful.

The tonal primitive in spatial frequency (sequency) models
is the gray tone. The spatial organization is characterized by
the kind of linear dependence which measures projection
lengths.

Gramenopoulos [23] used a transform technique employing
the sine-cosine basis vectors (and implemented it with the
FFT algorithm) on LANDSAT imagery. He was interested in
the power of texture and spatial pattern to do terrain type
recognition. He used subimages of 32 by 32 resolution cells
and found that on a Phoenix, AZ, LANDSAT image 1049-
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17324-5, spatial frequencies larger than 3.5 cycles/km and
smaller than 5.9 cycles/km contain most of the information
needed to discriminate between terrain types. His terrain
classes were: clouds, water, desert, farms, mountains, urban,
riverbed, and cloud shadows. He achieved an overall identifica-
tion accuracy of 87 percent.

Horning and Smith [37] have done work similar to Gramenop-
oulos, but with aerial multispectral scanner imagery instead of
LANDSAT imagery.

Kirvida and Johnson [43] compared the fast Fourier,
Hadamard, and Slant Transforms for textural features on
LANDSAT imagery over Minnesota. They used 8 X 8 sub-
images and five categories: Hardwoods, Conifers, Open, City,
Water. Using only spectral information, they obtained 74
percent correct identification accuracy. When they added
textural information, they increased their identification
accuracy to 99 percent. They found little difference between
the different transform methods. (See also Kirvida [42].)

Maurer [51] obtained encouraging results classifying crops
from low-altitude color photography on the basis of a one-
dimensional Fourier series taken in a direction orthogonal to
the rows.

Bajcsy and Lieberman [3], [4] divided the image into square
windows and used the two-dimensional power spectrum of
each window. They expressed the power spectrum in a polar
coordinate system of radius r versus angle ¢, treating the
power “Spectrum as two independent one-dimensional func-
tions of 7 and ¢. Directional textures tend to have peaks in
the power spectrum as a function of ¢. Blob-like textures tend
to have peaks in the power spectrum as a function of ».. They
showed that texture gradients can be measured by locating the
trends of relative maxima of r or ¢ as a function of the position
of the window whose power spectrum is being taken.

D. Textural Edgeness

The autocorrelation function, the optical transforms, and
digital transforms basically all reference texture to spatial
frequency. Rosenfeld and Troy [77] and Rosenfeld and
Thurston [76] conceive of texture not in terms of spatial
frequency but in terms of edgeness per unit area. An edge
passing through a resolution cell can be detected by com-
paring the values for local properties obtained in pairs of
nonoverlapping neighborhoods boardering the resolution

cell. To detect microedges, small neighborhoods can be
used. To detect macroedges, large neighborhoods can be
used.

The local property which Rosenfeld and Thurston sug-
gested was the quick Roberts gradient (the sum of the absolute
value of the differences between diagonally opposite neighbor-
ing pixels). Thus a measure of texture for any subimage can
be obtained by computing the Roberts gradient image for
the subimage and from it determining the average value of
the gradient in the subimage.

Sutton and Hall [83] extend Rosenfeld and Thurston’s
idea by making the gradient a function of the distance be-
tween the pixels. Thus for every distance d and subimage /
defined over neighborhood N, they compute:

gdy= 3>, {6~ Id+d,NI+11G )~ 1G-d, )
(i,/)EN
+ 110G, j) - I, 7 + DI+ [1G, ) - 1, j - I}
The curve of g(d) is like the graph of the minus autocorrela-
tion function translated vertically.
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Fig. 2. Set H and some of its translates.

Sutton and Hall applied this textural measure in a pulmonary
disease identification experiment and obtained identification
accuracy in the 80 percentile range for discriminating between
normal and abnormal lungs when using a 128 X 128 subimage.

Triendl [90] measures degree of edgeness by filtering the
image with a 3 X 3 averaging filter and a 3 X 3 Laplacian
filter. The two resulting filtered images are then smoothed
with an 11 X 11 smoothing filter. The two values of average
tone and roughness obtained from the low- and high-frequency
filtered image can be used as textural features.

Hsu [38] determines textural edgeness by computing gradient-
like measures for the gray tones in a neighborhood. If N de-
notes the set of resolution cells in a neighborhood about a
pixel, and g, is the gray tone of the center pixel, u is the
mean gray tone in the neighborhood, and p is a metric, then
Hsu suggests that

2 G, ), w,
(i,j))eN

2. UG, ), &),
(i, )EN

and p(u, &)

are all appropriate measures for textural edgeness at a pixel.

E. Texture and Mathematical Morphology

A structural element and filtering approach to texture on
binary images was proposed by Matheron [49] and Serra and
Verchery [80]. Their basic idea is to define a structural ele-
ment as a set of resolution cells constituting a specific shape
such as a line or a square and to generate a new binary image
by translating the structural element through the image and
eroding by the structural element the figures formed by con-
tiguous resolution cells having the value 1. The textural fea-
tures can be obtained from the new binary image by counting
the number of resolution cells having the value 1. The struc-
tural element approach of Serra and Matheron is the basis of
the Leitz texture analyses [58], [59], [78]. The approach
has found wide application in the quantitative analysis of
microstructures in materials science and biology.

To make these ideas precise, we first define the translate of
a set. Let Z be the set of integers Z,, Z, CZand HC Z X Z.
For any pair (7,/)€Z X Z, the translate H(i,j) of H in the
subset Z, X Z, is defined by:

HG,jy={(m,n)€Z, X Z,| for some (k, ) EH, m =k +i
andn=1+j}.

Fig. 2 illustrates a set and some of its translates.

Let Z, X Z, be the spatial domain of the given binary image
I and F be that subset of resolution cells in Z, X Z, which
take on the value 1 for image 7. The erosion F © H of F by H
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is defined by:
FeH={(m,n)EZX Z|H(m,n)CF}.

The eroded image J obtained by eroding I with structural
element H is defined by:

J(i,j)=1if and only if (i, j))EF © H.

The number of elements in the erosion F © H is proportional
to the area of the binary 1 figures in the image. An interesting
theoretical property of the erosion is that any operation which
is antiextensive, increasing, and idempotent must be made
up of erosions [44], [50], [79].

Textural properties can be obtained from the erosion process
by appropriately parameterizing the structural element and
determining the number of elements of the erosion as a func-
tion of the parameter. For example, in Fig. 3 we consider a
series of structural elements each of two resolution cells in
the same line and separated by distances of 0 through 19.
The image in Fig. 3 is then eroded by each of these structural
elements producing the eroded images of Fig 3. In Fig. 4, we
illustrate a graph showing the area of the erosion as a func-
tion of the distance separating the two resolution cells of the
structural elements. A function such as that graphed in Fig. 4
is called the covariance function. Notice how it has relative
maxima at distances which are multiples of about 5 % resolu-
tion cells. This implies that in the horizontal direction there
is a strong periodic component in the original image of about
5% resolution cells.

The generalized covariance function can use more compli-
cated structural elements and summarizes the texture informa-
tion in the image. If H(d) is a structural element having two
parts where d represents the distance between these two parts,
the generalized covariance function k for a binary image [ is
defined as:

k(d)=#F e H(d), where F={(i, )G, j)=1}.

For the case where the structural element consists of two
resolution cells in the same line separated by distance d, the
generalized covariance reduces to the autocovariance function
for the image I. The generalized covariance function cor-
responding to more complicated kinds of structural elements,
however, provides information not contained in the auto-
covariance function. Serra and Matheron show how the
generalized covariance function can determine mean size of
tonal features, mean free distance between tonal features, etc.

F. Spatial Gray-Tone Dependence: Cooccurrence

One aspect of texture is concerned with the spatial distribu-
tion and spatial dependence among the gray tones in a local
area. Julesz [39] first used gray tone spatial dependence
cooccurrence statistics in texture discrimination experiments.
Darling and Joseph [13] used statistics obtained from the
nearest neighbor gray tone transition matrix to measure this
dependence for satellite images of clouds and was able to
identify cloud types on the basis of their texture. Bartels
et al. [5] and Weid er al. [93] used one-dimensional cooccur-
rence in a medical application. Rosenfeld and Troy [77] and
Haralick [24] suggested two-dimensional spatial dependence
of the gray tones in a cooccurrence matrix for each fixed
distance and/or angular spatial relationship; Haralick et al.
[28], [32] used statistics of this matrix as measures of texture
in satellite imagery [30], [31], aerial, and microscopic imagery
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Fig. 3. The erosion operation for a number of different structural elements on the same image.

[30]. Chien and Fu [10] showed the application of gray tone
cooccurrence to automated chest X-ray analysis. Pressman
[65] showed the application to cervical cell discrimination.
Chen and Pavlidis [9] used cooccurrence in conjunction with
a split and merge procedure to segment an image on the basis
of texture. All these studies achieved reasonable results on
different textures using gray tone cooccurrence.

Suppose the area to be analyzed for texture is rectangular,
and has N, resolution cells in the horizontal direction, N,
resolution cells in the vertical direction, and that the gray tone
appearing in each resolution cell is quantized to N, levels.
Let L,={1,2,--+,N,} be the horizontal spatial domain,
L,={1,2,---,N,} be the vertical spatial domain, and G =
{1,2,--- ,Ng} be the set of Ng quantized gray tones. The
set L, X L, is the set of resolution cells of the image ordered
by their row-column designations. The image I can be repre-

sented as a function which assigns some gray tone in G to each
resolution cell or pair of coordinatesin L, X L ;I:L, X L. > G.

The gray tone cooccurrence can be specified in a matrix of
relative frequencies P;; with which two neighboring resolution
cells separated by distance d occur on the image, one with
gray tone i and the other with gray tone j. Such matrices of
spatial gray tone dependence frequencies are symmetric and
a function of the angular relationship between the neighboring
resolution cells as well as a function of the distance between
them. For a 0° angular relationship, they explicitly average
the probability of a left-right transition of gray tone i to gray
tone j within the right-left transition probability. Fig. 5
illustrates the set of all horizontal neighboring resolution cells
separated by distance 1. This set, along with the image gray
tones, would be used to calculate a distance 1 horizontal
spatial gray tone dependence matrix.
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Fig. 5. The set of all distance 1 horizontal neighboring resolution cells
on a 4 X 4 image.

Formally, for angles quantized to 45° intervals, the un-
normalized frequencies are defined by:

P(i, ], d, 0°) = #{((k, 1),(m, n)) € L, X L)X (L, X L,)|

k-m=0, |[I-n|=
Ik, 1)=i, I(m,n)=j}

PG, j,d,45%) = #{((k, 1),(m, m)) €L, X L)X (L, X L,)|
(k-m=d, I-n=-d)
or(k-m=-d, I-n=d),
Ik, 1)=1, I(m,n)=j}

PG, j,d,90%) = #{((k, 1),(m, n)) € (L, X L) X (L, X L,)|
lk-m|l=d, I-n=0,
Ik, 1)=1i, I(m,n)=j}

P(i,j,d, 135%) = #{((k, 1), (m,n)) E(L, X L) X (L, X Lyl
(k-m=d, I-n=d)
or(k-m=-d, I-n=-d),
Ik, 1)=i, Im,n)=j}
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Fig. 6. The spatial cooccurrence calculations [33].
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Fig. 7. 7 of the common features computed from the cooccurrence
probabilities.

where Pi =

where # denotes the number of elements in the set.

Note that these matrices are symmetric; P(i, j; d, a) = P(j, i;
d,a). The distance metric p implicit in the above equations
can be explicitly defined by p((k, ), (m, n)) = max {|k - m|,
7= nl}.

Consider Fig. 6(a), which represents a 4 X 4 image with four
gray tones, ranging from 0 to 3. Fig. 6(b) shows the general
form of any gray tone spatial dependence matrix. Forexample,
the element in the (2, 1)th position of the distance 1 horizontal
Ppr matrix is the total number of times two gray tones of value
2 and 1 occurred horizontally adjacent to each other. To
determine this number, we count the number of pairs of
resolution cells in Ry such that the first resolution cell of the
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pair has gray tone 2 and the second resolution cell of the pair
has gray tone 1. In Figs. 6(c) through 6(f), we calculate all
four distance 1 gray tone spatial dependence matrices.

Using features calculated from the cooccurrence matrix (see
Fig. 7), Haralick et al. [28] performed a number of identifica-
tion experiments. On a set of aerial imagery and eight terrain
classes (old residential, new residential, lake, swamp, marsh,
urban, railroad yard, scrub, or wooded), an 82 percent correct
identification was obtained. -On a LANDSAT Monterey Bay,
CA, image, an 84 percent correct identification was obtained
using 64 X 64 subimages and both spectral and textural
features on seven terrain classes: coastal forest, woodlands,
annual grasslands, urban areas, large irrigated fields, small
irrigated fields, and water. On a set of sandstone photo-
micrographs, an 89 percent correct identification was obtained
on five sandstone classes: Dexter-L, Dexter-H, St. Peter,
Upper Muddy, and Gaskel.

The wide class of images on which they found that spatial
gray tone dependence carries much of the texture informa-
tion is probably indicative of the power and generality of this
approach.

The approximate two dozen cooccurrence features times the
number of distance angle relationships the cooccurrence
matrices can be computed for lead to a potentially large num-
ber of dependent features. Tou and Chang [88] discuss an
cigenvector-based feature extraction approach to help al-
leviate this problem.

The experiments of Weszka er al. [92] suggest that the
spatial frequency features and, therefore, the autocorrelation
feature are not as good measures of texture as the cooccurrence
features. We suspect that the reason why cooccurrence
probabilities have so much more information than the auto-
correlation function is that there tends to be natural con-
straints between the cooccurrence probabilities at one spatial
distance with those at another. By these relationships, a lot of
information at one spatial distance can determine the smaller
amount of information in the autocorrelation function at
many spatial distances.

To illustrate this, consider the one-dimensional conditional
cooccurrence probabilities {p,-,-('r)} for some specific spatial
distance 7. Letting ¢ be the mean gray tone and 62 be the
gray tone variance, and p; be the probability of gray tone j
occurring, the autocorrelation function can be written in
terms of p;; by

2= WG - wpyny
p(r) == ;
g

Hence, for distance 27 we have
2.~ W~ Wp(21)p;

5]
21) =
P(27) e

Assuming the texture is Markov, we have a relationship
between {p,-,-('r)} and {sz(Z’r)}. Namely,

2if(21) = 2 pus(T)pi (7).
K

The conditional cooccurrence at one distance can determine
the conditional cooccurrence probabilities at another larger
distance. Since for any distance, the autocorrelation func-
tion is determined by the cooccurrence probabilities, we have
that to the extent the texture is Markov, the cooccurrence
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probabilities at one distance determine the autocorrelation
function at many distances.

Because the conditional cooccurrence probabilities are
based on a directed distance rather than the undirected dis-
tances typically used in the symmetric cooccurrence prob-
abilities, some valuable information may be lost in the
symmetric approach. The extent to which such informa-
tion is lost has not been extensively studied [11].

G. A Textural Transform

We wish to construct an image J such that the gray tone
J(i,7) at resolution cell (i, f) in image J indicates how common
the texture pattern is in and around resolution cell (i,j) of
image I. We call the image J the textural transform of I [25].

For analysis of the microtexture, the gray tone J(i, j) can be
a function of the gray tone I(i, j) and its nearest neighbors.

JG, ) =fAdG- 1,j- D IG- 1,),IG- 1,7+ 1),1G,j - 1),
TGN TG DTG+, - 1), TG+ 1, ),
SIG+ 1,7+ D).

Let us assume that this function f is an additive effect of
horizontal, right diagonal, vertical, and left diagonal relation-
ships. Then

JG, ) =1UG - 1), 1G, 1), IG,j+ 1)) (horizontal)
+ UG+ 1,7- D) IG N, IG- 1,j+1)
(right diagonal)
+ G- 1,),IG, ), IG+ 1,5) (vertical)

+f4(I(l+ 1,]+ 1))1(1,])3 I(l— l!]_ l))
(left diagonal).

But since we do not distinguish between horizontal-left and
horizontal-right, or right diagonal up-right and right diagonal
down-left, or vertical up and vertical down, or left diagonal
up-left and left diagonal down-right, the functions f,, 15, f3,
and f, have additional symmetries. Assuming the spatial
relationships between which we do not distinguish contri-
bute additively, we obtain

JG, ) =h G, P, IG, ]~ 1)) +h UG, 1G]+ 1))
(horizontal)
Tho UG, 7, IG+ 1,7~ 1)+ (G, 1), G- 1, + 1))
(right diagonal)
+ha((G, 1), 1G - 1,7)) + ha(G, ), 1G+ 1,1))
(vertical)
+haIG, ), IG+ 1,7+ 1))+ ha (UG 1), IG- 1,7~ 1))
(left diagonal)

where the functions h,, h,, h3, and hy are symmetric func-
tions of two arguments.

Since we want the & functions to indicate relative frequency
of the gray-tone spatial pattern, the natural choice is to make
each h the cooccurrence probability corresponding to the
horizontal, right diagonal, vertical, or left diagonal spatial
relationships.

This concept of textural transform can be generalized to
any spatial relationship in the following way.
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Fig. 8. Subimages in the test area.

Let Z, X Z, be the set of resolution cells of an image I (by
row-column coordinates). Let G be the set of gray tones
possible to appear on image /. Let R be a binary relation on
Z, X Z pairing together all those resolution cells in the desired
spatiairelation. The cooccurrence matrix £, P:G X G — [0, 1],
for image I and binary relation R is defined by

#{((a, b), (¢, d)) ER|I(a, b) =i and I(c, d) = j}

PG, )= 7R .

The textural transform J, J:Z, X Z, (-0, ) of image I rela-
tive to function f is defined by

J(r,c)= m—l‘w Z

FIPU(r, ¢), I(a, B))].
#R (r,e) (a, BYER(r,c)

e

Assuming f to be the identity function, the meaning of
J(r,c) is as follows. The set R(r,c) is the set of all those
resolution cells in Z, X Z, in the desired spatial relation to
resolution cell (r, ¢). For any resolution cell (e, b) € R(7, c),
P(I(r, ), I(a, b)) is the relative frequency by which the gray
tone I(r, c¢), appearing at resolution cell (7, ¢), and the gray
tone I(a, b), appearing at resolution cell (g, b), cooccur in
the desired spatial relation on the entire image. The sum

2. PUG, ), Ha, b))

{a, )& R(r,c)

is just the sum of the relative frequencies of gray tone cooccur-
rence over all resolution cells in the specified relation to
resolution (7, ¢). The factor 1/#R(r, ¢), the reciprocal of the
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Fig. 9. The textural transforms of the subimages of Fig. 8.

number of resolution cells in the desired spatial relation to
(r, ¢), is just a normalizing factor.

Fig. 8 illustrates 27 100 X 100 subimage of band 5 LANDSAT
image 1247-15481 iaid out according to their proper relation-
ships in the test area. Fig. 9 illustrates the textural transforms
of these subimages also laid out according to their proper
relationships in the test area. Gray tones which are white are
indicative of frequently occurring textural patterns in the
corresponding area on the original subimage. Gray tones
which are black are indicative of infrequently occurring
textural patterns in the corresponding area on the original
image. This means that the same land use type, depending
on how frequently it occurs, can be black or white on the
textural transform image.

Examining image (0, 0) we notice that Thompson Lake, a
U-shaped white area on the lower left side of the subimage
and a white area on the right side of the subimage have black
tones on the transform image. On image (0, 1) Lake Chemung
has a large enough area so that its solid black texture appears
as a middle gray on the transform image. One image (2, 3)
Whitmore Lake has a large enough area so that it appears
white on the transform image.

We will take a few enlargements of the subimages and their
transforms and interpret the textural transform images in
terms of the gray tone spatial dependence pattems. Fig. 10
shows an enlargement of subimage (1, 3) and its transform.
Textures consisting of white tones occurring next to white or
light gray tones are the most infrequently occurring textural
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Fig. 10. An enlargement of subimage (1, 3) and its transform.

patterns and they appear as black in the transform image.
Finally, Fig. 11 shows an enlargement of subimage (6, 0)
where white tones occurring together or black tones occurring
together are the most infrequently occurring textural pattemns
and they appear as black in the transform image.

H. Generalized Gray-Tone Spatial Dependence Models for
Texture

Given a specific kind of spatial neighborhood (such as a
3 X 2 neighborhood or a 5 X § neighborhood) and a subimage,
it is possible to compute or estimate the joint probability dis-
tribution of the gray tone of the neighborhood in the sub-
image. In the case of a 5 X 5 neighborhood, the joint dis-
tribution would be 25-dimensional. The generalized gray tone
spatial dependence model for texture is based on this joint
distribution. Here, the neighborhood is the primitive, the
arrangement of its gray tones is the properiy, and the texiure
is characterized by the joint distribution of the gray tones in
the neighborhood.

Assuming equal prior probabilities, the probability that any
neighborhood belongs to texture class k is proportional to
the probability of the arrangement of the gray tones in the
neighborhood as given by the joint distribution for texture
class-k. —A -neighborhood can be assigned to texture class k
if the joint distribution for class k is maximal.

The problem with the technique is the high dimensionality
for the probability distributions. Parametric representation of
the distribution by its first two moments naturally leads to
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Fig. 11. An enlargement of subimage (6, 0) and its transform.

the characterization of texture by the autocorrelation func-
tion or power spectrum. Such approaches were discussed in
Sections II-B and II-C. Nonparametric representation of the
distribution by histogramming the high-dimensional distribu-
tions have sample size and storage problems. In ihe remainder
of this section, we review a discrimination technique for
representing the nonzero support for these distributions.

Histogram approaches to representing the neighborhood
distribution function must pay a heavy storage penalty. For
example, a 3 X 3 neighborhood with 4 quantized values for
each gray tone requires 4° storage locations (over 250 000).
To handle this problem, Read and Jayaramamurthy [67]
and McCormick and Jayaramamurthy [53] suggest using the
set covering methodology of Michalski [54] and Michalski
and McCormick [55] to keep track of those histogram bins
which would be nonempty. This technique allows for the
generalization of the observed texture samples for each class
and provides a simple table look-up sort of decision rule [26].

To see how this works, let the given type of neighborhood
contain N resolution cells and let G be the set of quantized
gray tones. Then G is the set of all possible arrangements of
gray tones in the neighborhood. Let S, C GY ve the training
set of all observed neighborhoods of texture class k, k=1,
-+, K. We will assume that S NS, = ¢ for k # m.

To generalize the training sets, we employ a cylinder operator
[27]. Let J be a subset of the indexes from 1 to N;J C {1,
-+, N}. The cylinder operator ¥y operates on N-tuples of
el constraining all components indexed by J to remain fixed
to the values they currently hold and letting go free the values
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for all components not indexed by J. In this manner, under
the ¥ {2 -, N} operator, the N-tuple (xy, -+, x5) becomes
(*, xz, CeeLXx N) where * means any value. Formally, for any
4 C GN, we define the order #J cylinder operator ¥; by:

V(4)={(g,, "
€4,gj=q;forallj€J}.

The cylinder operator is used to generalize the samples of
observed texture from each texture class by creating a minimal
cover of that class against all other classes. A cover for class &
is a collection of subsets of GV each of which has nonempty
intersection with Sy and empty intersection with S, m Fk.
An order-M cover of S}, against UK =1 Sy, is a collection £M of

m#k
subsets of GN each subset in the collection generalizing an V-
tuple in S by an order-M or less cylinder operator. £%=
{4 C GN| for some (x1,...,xy)ES; and index set J,
HI<MA=Vr(xy,...,xp) andAﬂSm =¢, mFk}.

It is clear that when the observed sample sets S are dis-
joint, it is always possible to ﬁnd a cover of Sy since we can
take the order M = N making .,Ck contain precisely the single-
ton sets whose members are elements of Sk Hence, for large
enough M, it is always possible to make £k satlsfy

,&n) €GN | for some (ay, - - -, apy)

SxC U 4c Us, D
acdl \IL

We will call an order-M cover minimal if by using cylinder
operators only of order less than M equation (1) cannot be
satisfied.

The labeling of neighborhoods by texture class can proceed
in the following way. Let £y, ..., Lx be minimal covers. Let

(81,...,8V) be an N-tuple of gray tones from a neighbor-
hood. If the N-tuple is in the cover for class k and for no
other class, then assign it to class k. Hence, if:
1) (gli"',gN)e U A
AELy
2) (gl""’gN)¢ U A) m¢k
AEL,,

then we assign the neighborhood to texture class k. If there
exists no class so that 1) and 2) are simultaneously satisfied,
then we reserve decision.

Using a decision rule similar to this but with a definition for
cover minimality which makes the cover dependent on the
order in which the N-tuples are encountered, Read and
Jayaramamurthy [67] achieved a 78 percent correct identifi-
cation in distinguishing two textures of chromatin samples and
artifact samples from pap smears using a 3 X 2 neighborhood
and a 4 gray level quantization.

I. Run Lengths

A gray level run length primitive is a maximal collinear con-
nected set of pixels all having the same gray tone. Gray level
runs can be characterized by the gray tone of the run, the
length of the run, and the duecnon of the run, Galloway [21]
used 4 directions: 0°, 45°, 90° , and 135°, and for each of
these directions she computed the joint probablhty of gray
tone of run and run length.

Let p(i, j) be the number of times there is a run of length j
and having gray tone ;. Let N, be the number of gray tones
and N, be the number of runs. Useful statistics of the p(, )
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include:
Ng N,

4 p(z, )] i Ny G ) (short run emphasis
i=1 j=1 == inverse moments)
Ng N, N, N, )

P0G, 7) f Z G ) (long run emphasis
i=1 j=1 i1 j= moments)
Ng [ N, 2 N, N,
g 4 g “Vr
oG, /) > > ety (vl
= I=1 == nonuniformity)
N, [N, N, N,
& Ll G (run length
p(, J) PIDIN I e
=1 \i=1 == nonuniformity)
Ng (fraction of image

P(t j)) in runs).

Usmg these f1ve measures for each of 4 directions, and one
of Haralick’s data sets, Galloway illustrated that about 83 per-
cent identification could be made of the six categories: Swamp,
lake railroad, orchard, scrub, and suburb.

J. Autoregression Models

The linear dependence one pixel of an image has on another
is well known and can be illustrated by the autocorrelation
function. This linear dependence is exploited by the auto-
regression model for texture which was first used by
McCormick and Jayaramamurthy [52] to synthesize textures.
McCormick and Jayaramamurthy used the Box and Jenkins
[6] time series seasonal analysis method to estimate the pa-
rameters of a given texture. They then used the estimated
parameters and a given set of starting values to illustrate that
the synthesized texture was close in appearance to the given
texture. Deguchi and Morishita [15], Tou e al. [89], and
Tou and Chang [87] also use a similar technique.

Fig. 12 shows this texture synthesis model. Given a ran-
domly generated noise image and any sequence of K synthesized
gray tone values in a scan, the next gray tone value can be syn-
thesized as a linear combination of the previously synthesized
values plus a linear combination of previous L random noise
values. The coefficients of these linear combinations are the
parameters of the model.

Although the one-dimensional model employed by Read and
Jayaramamurthy worked reasonably well for the two vertical
streaky textures on which they illustrated the technique, per-
formance would be poorer on diagonal wiggly streaky tex-
tures. Better performance on general textures would be
achieved by a full two-dimensional model illustrated in Fig. 13.
Here a pixel (7, j) depends on a two-dimensional neighborhood
N(i, j) consisting of pixels above or to the left of it as opposed
to the simple sequence of the previous pixels a raster scan
could define,
for pixel (i, /), (k, ) must be previous to pixel (, /) in a stan-
dard raster sequence and (k, /) must not have any coordinates
more than D units away from (i, j). Formally, the order-D
neighborhood is defined by:

NGD={(k,DI(-D<k<iandj- D<I<

P P |
For each “““" {1' “ inanorder-D n u\usuuu.uluuu

j+D)

1<k

The autoregressive model can be employed in texture seg-
mentation applications as well as texture synthesis applica-
tions. Let {a.(m, n), B.(m, n)} be the coefficients for texture
category c and let 8 be a threshold value. Define the estimated

or(k=iandj- D<
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b1 b2 b3 bL} .. .. a, ay a3 ay
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Randomly Generated Noise Image Synthesized Image
K 1 L= 1
a E: @ Ay - * Z By PN -2
N+1 e k N -k o= 2
[ —
R
Auto-Regressive Moving Average
Terms Terms

Fig. 12. Illustration of how from a randomly generated noise image
and a given starting sequence aj,...,ag, representing the initial
boundary conditions, all values in a texture image can be synthesized
by a one-dimensional autoregressive model.

D pixels

b(i,J) ali,j)
Order D Neighborhood of Randomly Order D Neighborhood of Synthesized
Generated Noise Image Image
a(i,j) = Z ali - k,2 - ) alk,2) + Z B(i - ke - J) blk,2)
(k,2) e N(i,j) (k,2) € N(i,j)
R —— e
Auto-Regressive Terms Moving Average Terms

Fig. 13. Illustration of how from a randomly generated noise image
and a given starting sequence for the first-order D neighborhood in
the image, all values in a texture image can be synthesized by a two-
dimensional autoregressive model.

a(i,j)

aGi,g) = Z ali -k, j - 2) a(k,2) + Z 8(i - k, j - E)[a(k,z) —’é(k,d

(k,2) & N(P,J) (k,2) & N(i,J)
Auto-Regressive Terms Moving Average Terms

Fig. 14, Illustration of how a gray tone value for pixel (i, /) can be
estimated using the gray tone values in the neighborhood N(7, ) and
the differences between the actual values and the estimated values in
the neighborhood.
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value of the gray tone at resolutign cell 4, /) by:

B, )= D ali-k,i-Da, (kD)
(K, DEN(G,])

2

(k,)EN(,])

Bc(i - k> j~ Z) [ac(ky Z) - ac(k: Z)} .

(See Fig. 14.)
Assuming a uniform prior distribution, we can decide pixel
(i, /) has texture category k if:

laG, 1) - @G, D1<laG, j)- 2,6, j) | for every I
and |a(i, /) - @i, N 1< 6.

if |a@i, j) — ax(i, /)| > 6, then decide pixel (i, /) is a boundary
pixel.

Those readers interested in general two-dimensional estima-
tion procedures for images will find Woods [94] of interest.

K. Mosaic Texture Models

Mosaic texture models tessellate a picture into regions and
assign a gray level to the region according to a specified proba-
bility density function [100}. Among the kinds of mosaic
models are the Occupancy Model [101], the Johnson-Mehl
Model [102], the Poisson Line Model [103], and the Bombing
Model [104]. The mosaic texture models seem particularly
amenable to statistical analysis. It is not known how general
these models really are and they are mentioned here for
completeness.

II. STRUCTURAL APPROACHES TO TEXTURE MODELS

Pure structural models of textuie are based on the view that
textures are made up of primitives which appear in near regu-
lar repetitive spatial arrangements. To describe the texture,
we must describe the primitives and the placement rules [73].
The choice of which primitive from a set of primitives and the
probability of the chosen primitive being placed at a particular
location can be a strong or weak function of location or the
primitives near the location.

Carlucci [8] suggests a texture model using primitives of line
segments, open polygons, and closed polygons in which the
placement rules are given syntactically in a graph-like language.
Zucker [98] conceives of real texture as being a distortion of
an ideal texture, The underlying ideal texture has a nice repre-
sentation as a regular graph in which each node is connected to
its neighbors in an identical fashion. Each node corresponds
to a cell in a tessellation of the plane. The underlying ideal
texture is transformed by distorting the primitive at each node
to make a realistic texture. Zucker’s model is more of a
competance based model than a performance model.

Lu and Fu [47] give a tree grammar syntactic approach for
texture. They divide a texture up into small square windows
(9 X 9). The spatial structure of the resolution cells in the
window is expressed as a tree. The assignment of gray tones
to the resolution is given by the rules of a stochastic tree
grammar. Finally, special case is given to the placement of
windows with respect to another in order to preserve the co-
herence between windows. Lu and Fu illustrate the power of
their technique with both texture synthesis and texture
experiments.

In the remainder of this section, we discuss some structural-
statistical approaches to texture models. The approach is
structural in the sense that primitives are explicitly defined.
The approach is statistical in that the spatial interaction, or
lack of it, between primitives is measured by probabilities.
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We classify textures as being weak textures, or strong tex-
tures. Weak textures are those which have weak spatial-
interaction between primitives. To distinguish between them
it may be sufficient to determine the frequency with which
the variety of primitive kinds occur in some local neighbor-
hood. Hence, weak texture measures account for many of the
statistical textural features. Strong textures are those which
have nonrandom spatial interactions. To distinguish between
them it may be sufficient to determine, for each pair of primi-
tives, the frequency with which the primitives cooccur in a
specified spatial relationship. Thus our discussion will center
on the variety of ways in which primitives can be defined and
the ways in which spatial relationships between primitives can
be defined.

A. Primitives

A primitive is a connected set of resolution cells character-
ized by a list of attributes. The simplest primitive is the pixel
with its gray tone attribute. Sometimes it is useful to work
with primitives which are maximally connected sets of resolu-
tion cells having a particular property. An example of such a
primitive is a maximally connected set of pixelsall having the
same gray tone or all having the same edge direction,

Gray tones and local properties are not the only attributes
wiich primitives may have. Other attributes include measures
of shape of connected region and homogeneity of its local
property. For example, a connected set of resolution cells can
be associated with its length or elongation of its shape or the
variance of its local property.

Many kinds of primitives can be generated or constructed
from image data by one or more applications of neighborhood
operators. Includedin this class of primitives are: 1) connected
components, 2) ascending or descending components, 3) saddle
components, 4) relative maxima or minima components, 5) cen-
tral axis components. Neighborhood operators which compute
these kinds of primitives can be found in a variety of papers
and will not be discussed here—see [1], [27], [69], [71 1,
[741-[761, [96].

B. Spatial Relationships

Once the primitives have been constructed, we have available
a list of primitives, their center coordinates, and their attributes.
We might also have available some topological information
about the primitives, such as which are adjacent to which.
From this data, we can select a simple spatial relationship such
as adjacency of primitives or nearness of primitives and count
how many primitives of each kind occur in the specified
spatial relationship.

More complex spatial relationships include closest distance
or closest distance within an angular window. In this case, for
each kind of primitive situated in the texture, we could lay ex-
panding circles around it and locate the shortest distance be-
tween it and every other kind of primitive. In this case our co-
occurrence frequency is three-dimensional, two dimensions for
primitive kind and one dimension for shortest distance. This
can be dimensionally reduced to two dimensions by consider-
ing only the shortest distance between each pair of like
primitives,

C. Weak Texture Measures

Tsuji and Tomita [91] and Tomita, Yachida, and Tsuji [85]
describe a structural approach to weak texture measures. First
a scene is segmented into atomic regions based on some tonal
property such as constant gray tone. These regions are the
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primitives. Associated with each primitive is a list of proper-.

ties such as size and shape. Then they make a histogram of
size property or shape property over all primitives in the scene.
If the scene can be decomposed into two or more regions of
homogeneous texture, the histogram will be muitimodal. If
this is the case, each primitive in the scene can be tagged with
the mode in the histogram it belongs to. A region growing/
cleaning process on the tagged primitives yields the homoge-
neous textural region segmentation.

If the initial histogram modes overlap too much, a complete
segmentation may not result. In this case, the entire process
can be repeated with each of the then so far found homoge-
neous texture region segments. If each of the homogeneous
texture regions consists of mixtures of more than one type of
primitive, then the procedure may not work at all. In this
case, the technique of ccoccurrence of primitive properties
would have to be used.

Zucker ef al. [99] used a form of this technique by filtering
a scene with a spot detector. Nonmaxima pixels on the filtered
scene were thrown out. If a scene has many different homoge-
neous texture regions, the histogram of the relative max spot
detector filtered scenme will be multimodal. Tagging the
maxima with the modes they belong to and region growing/
cleaning thus produced the segmented scene.

The idea of the constant gray-level regions of Tsuji and
Tomita or the spots of Zucker ef al. can be generalized to re-
gions which are peaks, pits, ridges, ravines, hillsides, passes,
breaks, flats, and slopes [63], [86]. In fact, the possibilities
are numerous enough that investigators doing experiments
will have a long working period before understanding will
exhaust the possibilities. The next three subsections review
in greater detail some specific approaches and suggest some
generalizations. -

1) Edge Per Unit Area: Rosenfeld and Troy [77] and
Rosenfeld and Thurston [76] suggested the amount of edge
per unit area for a texture measure. The primitive here is the
pixel and its property is the magnitude of its gradient. The
gradient can be calculated by any one of the gradient neighbor-
hood operators. For some specified window centered on a
given pixel, the distribution of gradient magnitudes can then
be determined. The mean of this distribution is the amount of
edge per unit area associated with the given pixel. The image
in which each pixel’s value is edge per unit area is actually a
defocused gradient image. Triendl [90] used a defocused
Laplacian image. Sutton and Hall [83] used such a measure
for the automatic classification of pulmonary disease in chest
X-rays. '

Obhlander [60] used such a measure to aid him in segmenting
textured scenes. Rosenfeld [70] gives an example where the
computation of gradient direction on a defocused gradient
image is an appropriate feature for the direction of texture
gradient. Hsu [38] used a variety of gradient-like measures.

2) Run Lengths: The gray level run lengths primitive in its
one-dimensional form is a maximal collinear connected set of
pixels all having the same gray level. Properties of the primitive
can be length of run, gray level, and angular orientation of run.
Statistics of these properties were used by Galloway [21] to
distinguish between textures.

In the two-dimensional form, the gray level run length
primitive is a ni:aximal connected set of pixels all having the
same gray level. These maximal homogeneous sets have prop-
erties such as number of pixels, maximum or minimum diame-
ter, gray level, angular orientation of maximum or minimum
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Fig. 15. Illustration of how the height and size properties of a valley
are defined.

diameter. Maleson [48] has done some work related to maxi-
mal homogeneous sets and weak textures.

3) Relative Exitrema Density: Rosenfeld and Troy [77]
suggest the number of extrema per unit area for a texture
measure. They suggest defining extrema in one-dimension
only along a horizontal scan in the following way: in any row
of pixels, a pixel i is a relative minimum if its gray tone g()
satisfies:

g)sg(+1) and g()<g(- 1. 2)
A pixel is a relative maximum if:
g@)y=g(i+1) and g()=g(i- 1). (3)

Note that with this definition each pixel in the interior of any
constant gray tone run of pixels is considered simultaneously
a relative minimum and relative maximum. This is so even if
the constant run is just a plateau on the way down or on the
way up from a relative extremum.

The algorithm employed by Rosenfeld and Troy marks every
pixel in each row which satisfies equations (2) or (3). Then
they center a square window around each pixel and count the
number of marked pixels. The texture image created this way
corresponds to a defocused marked image. )

Mitchell, Myers, and Boyne [56] suggest the extrema idea
of Rosenfeld and Troy except they proposed to use true ex-
trema and to operate on a smoothed image to eliminate ex-
trema due to noise [7], [18], [19].

One problem with simply counting all extrema in the same
extrema plateau as extrema is that extrema per unit area is not
sensitive to the difference between a region having few large
plateaus of extrema and many single pixel extrema. The solu-
tion to this problem is to only count an extrema plateau once.
This can be achieved by locating some central pixel in the ex-
trema plateau and marking it as the extrema associated with
the plateau, Another way of achieving this is to associate a

In the one-dimensional case, there are two properties that
can be associated with every extrema: its height and its width.
The height of a maxima can be defined as the difference be-
tween the value of the maxima and the highest adjacent
minima. The height (depth) of a minima can be defined as the
difference between the value of the minima and the lowest
adjacent maxima. The width of a maxima is the distance be-
tween its two adjacent minima. The width of a minima is the
distance between its two adjacent maxima. (Fig. 15 illustrates
these properties.)

Two-dimensional extrema are more complicated than one-
dimensional extrema. One way of finding extrema in th~ full
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two-dimensional sense is by the iterated use of some recursive
neighborhood operators propagating extrema values in an ap-
propriate way. Maximally connected areas of relative extrema
may be areas of single pixels or may be plateaus of many
pixels. We can mark each pixel in a relative extrema region of
size N with the value % indicating that it is part of a relative
extrema having height 4 or mark it with the value h/N indi-
cating its contribution to the relative extrema area. Al-
ternatively, we can mark the most centrally located pixel in
the relative extrema region with the value 4. Pixels not marked
can be given the value 0. Then for any specified window
centered on a given pixel, we can add up the values of all
pixels in the window. This sum divided by the window size is
the average height of extrema in the area. Alternatively we
could set A to 1 and the sum would be the number of relative
extrema per unit area to be associated with the given pixel.

Going beyond the simple counting of relative extrema, we
can associate properties to each relative extrema. For ex-
ample, given a relative maxima, we can determine the set of all
pixels reachable only by the given relative maxima and not by
any other relative maxima by monotonically decreasing paths.
This set of reachable pixels is a connected region and forms a
mountain. Its border pixels may be relative minima or saddle
pixels.

The relative height of the mountain is the difference between
its relative maxima and the highest of its exterior border
pixels. Its size is the number of pixels which constitute it. Its
shape can be characterized by features such as elongation,
circularity, and symmetric axis. Elongation can be defined as
the ratio of the larger to small eigenvalue of the 2 X 2 second
moment matrix obtained from the (;) coordinates of the
border pixels [2], [20]. Circularity can be defined as the
ratio of the standard deviation to the mean of the radii from
the region’s center to its border [25]. The symmetric axis
feature can be determined by thinning the region down to its
skeleton and counting the number of pixels in the skeleton.
For regions which are elongated, it may be important to mea-
sure the direction of the elongation or the direction of the
symmetric axis.

Osman and Saukar [62] use the mean and variance of the
height of mountain or depth of valley as properties of primi-
tives. Tsuji and Tomita [91] use size. Histograms and sta-
tistics of histograms of these primitive properties are all
suitable measures for weak textures.

4) Relational Trees: Ehrich and Foith [18] describe a rela-
tional tree representation for the extrema of one-dimensional
functions with bounded domains. The relational tree re-
cursively partitions the function and its domain at the smallest
relative minimum. The relative minimums for the newly
formed segments and functions to the left and right of the
dividing point can be used for further divisions. An alternative
way to form the tree is to use maximums instead of minimums
for dividing.

Fig. 16 illustrates a function and Fig. 17 illustrates its rela-
tional tree. The root of the tree indicates that over the entire
function domain the highest relative maximum is point 16 and
the lowest relative minimum is point 23. The function is then
divided at valley 23. The segiment to the right of 23 has
point 26 for the highest relative maximum and point 27 for
the lowest relative minimum, and so on.

Textural features can be extracted at any level of the rela-
tional tree. One such texture feature is segment contrast.
Segment contrast is the difference between the largest relative
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Fig. 16. A waveform.

maximum and the smallest relative minimum in the segment,
The segment contrast textural feature can be the mean or
variance of segment contrast taken over the set of segments
comprising the given function at a specified level of the tree.
Another textural feature can be the variance of segment length,

D. Strong Texture Measures and Generalized Cooccurrence

Strong texture measures take into account the cooccurrence
between texture primitives. On the basis of Julesz [40] it is
probably the case that the most important interaction between
texture primitives occurs as a two-way interaction, Textures
with identical second- and lower order interactions but with
different higher order interactions tend to be visually similar.

The simplest texture primitive is the pixel with its gray tone
property. Gray tone cooccurrence between neighboring pixels
was suggested as a measure of texture by a number of re-
searchers as discussed in Section II-F. All the studies men-
tioned there achieved a reasonable classification accuracy of
different textures using cooccurrences of the gray tone
primitive.

The next more complicated primitive is a connected set of
pixels homogeneous in tone [91]. Such a primitive can be
characterized by size, elongation, orientation, and average gray
tone. Useful texture measures include cooccurrence of primi-
tives based on relationships of distance or adjacency. Maleson
et al. [48] suggests using region growing techniques and
ellipsoidal approximations to define the homogeneous regions
and degree of colinearity as one basis of cooccurrence. For
example, for all primitives of elongation greater than a speci-
fied threshold, we can use the angular orientation of each
primitive with respect to its closest neighboring primitive as a
strong measure of texture.

Relative extrema primitives were proposed by Rosenfeld and
Troy {77}, Mitchell, Myers, and Boyne [56], Ehrich and Foith
[18], Mitchell and Carlton [57], and Ehrich and Foith [19].
Cooccurrence between relative extrema was suggested by Davis
et al. [14]. Because of their invariance under any monotonic
gray scale transformation, relative extrema primitives are
likely to be very important.

It is possible to segment an image on the basis of relative
extrema (for example, relative maxima) in the following way:
label all pixels in each maximally connected relative maxima
plateau with a unique label. Then label each pixel with the
label of the relative maxima that can reach it by a mono-
tonically decreasing path. If more than one relative maxima
can reach it by a monotonically decreasing path, then label the
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Fig. 17. Ehrich and Foith’s relational tree for the waveform of Fig. 16.
The first number in each node is the lowest valley point. The second
number is the highest peak point for the segment.
pixel with a special label ““c” for common. We call the regions CONCLUSION

so formed the descending components of the image.

Cooccurrence between properties of the descending com-
ponents can be based on the spatial relationship of adjacency.
For example, if the property is size, the cooccurrence matrix
could tell us how often a descending component of size s; oc-
curs adjacent to or nearby to a descending component of size
s, or of label “c.”

To define the concept of generalized cooccurrence, it is
necessary to first decompose an image into its primitives. Let
O be the set of all primitives on the image. Then we need to
measure primitive properties such as mean gray tone, variance
of gray tones, region, size, shape, etc. Let T be the set of
primitive properties and f be a function assigning to each
primitive in Q a property of 7. Finally, we need to specify a
spatial relation between primitives such as distance or ad-
jacency. Let SC QX Q be the binary relation pairing all
primitives which satisfy the spatial relation. The generalized
cooccurrence matrix P is defined by:

#{(q1,92)ES | f@1) =13 and f(q,) =15 }
#s

P(ry, 1,) is just the relative frequency with which two primi-
tives occur with specified spatial relationship in the image, one
primitive having property f; and the other primitive having
property z,.

Zucker [97] suggests that some textures may be charac-
terized by the frequency distribution of the number of primi-
tives any primitive has related to it. This probability p (k) is
defined by:

P(ty, t3) =

_#@E0l#5(@) =k}
#Q '
Although this distribution is simpler than cooccurrence, no

investigator appears to have used it in texture discrimination
experiments.

p(k)

We have surveyed the image processing literature on the
various approaches and models investigators have used for tex-
tures. For microtextures, the statistical approach seems to
work well. The statistical approaches have included auto-
correlation functions, optical transforms, digital transforms,
textural edgeness, structural element, gray tone cooccurrence,
and autoregressive models. Pure structural approaches based
on more complex primitives than gray tone seems not to be
widely used. For macrotextures, investigators seem to be
moving in the direction of using histograms of primitive prop-
erties and cooccurrence of primitive properties in a structural-
statistical generalization of the pure structural and statistical
approaches.
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