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Abstract—In this paper, a technique for estimating object shape from topographic primal sketch is
investigated. Given a gray tone image of a three-dimensional object, a topographic labeling of the image
indicates the peaks and pits, ridges and valleys, and flats and hillsides of the underlying, continuous, gray tone
surface. The patterns of these topographic labels capture information about the original three-dimensional
object in the scene and about the illumination. In order to determine if estimation of three-dimensional shape
from a topographic labeling is feasible, we have both analytically and experimentally determined the
topographic labelings for images of some mathematically generated surfaces with varied directions of
illumination, Our results indicate that such patterns do exist and will be useful in determining three-
dimensional shape from two-dimensional images. A scheme for partial classification of three-dimensional
object surface is proposed. Preliminary results are illustrated.
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1. INTRODUCTION

Consider an image of a three-dimensional object
illuminated by an arbitrary light source and viewed
from an arbitrary position. Although ambiguities
are possible, frequently the human viewer can estim-
ate (a) the three-dimensional shape of the object, (b)
the camera position, and (c) the location of the
light source. The original ‘shape-from-shading’ tech-
niques" solve systems of differential equations to
derive three-dimensional shape from gray tone in-
tensity variations and operate under a limiting set of
restrictions. In addition to low level shading cues, we
believe that the human viewer also recognizes patterns
in the image that give cues leading to estimation of the
shape of the object.

Extracting patterns from the original gray tone
image is, in most nontrivial cases, an impossible task.
In fact, it is for this reason that syntactic pattern
recognition systems have had to first extract
descriptions consisting of primitives, their properties,
and their interrelationships from the image and then to
parse these descriptions according to the rules of a
grammar. Instead of trying to recognize patterns at the
gray-tone intensity level, we propose to work at the
topographic labeling level.

To obtain a topographic labeling, a gray tone image
may be viewed as a three-dimensional surface whose

*To whom correspondence should be addressed.
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height at each row—column position corresponds to
the intensity value of the image at that position. While
the image is a discrete matrix of values, the underlying
surface is continuous. Each point of the surface may be
labeled as part of a peak, pit, ridge, valley, saddle,
hillside, or flat area. Hillsides can be further broken
down into the subcategories inflection point, convex
hill, concave hill, saddle hill, and slope. In Haralick et
al.® these categories are defined mathematically and
the topographic classification of image pixels is
described.

Our goal is to use patterns expressed in terms of
ridges and valleys, peaks and pits, flats and hillsides to
estimate three-dimensional shape. In Section 2 of this
paper, results employing two methods for determining
such topographic patterns from gray tone intensity
images of simple surfaces are described. Section 3
discusses how surface orientations can be estimated
from topographic structures. Section 4 describes an
object surface classification scheme based on the
topographic structures extracted from the image. In
the remainder of this section, the imaging geometry
and the illumination model to be used in our
discussion are defined. The topographic primal sketch
is briefly summarized, and some related literature is
discussed.

1.1. Imaging geometry

The relationship between scene coordinates and
image coordinates is illustrated in Fig. 1. We assume
that the camera lens is at the origin and that the z-axis
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Fig. 1. Relationship between scene coordinates and image
coordinates.

is directed towards the image plane which is in front of
the lens. The image plane is placed at a distance f, the
focal length of the lens, in front of the origin so that the
image is oriented in the same way as the scene. As seen
from Fig. 1, the following relations hold for perspective
projection:

(]
N

In our discussion, the perspective projection is
approximated by an orthographic projection. This
approximation is good when the size of the objects
being imaged is small compared to the viewing
distance. In this case, appropriate coordinate systems
can be chosen such that the following relations hold:

1.2. Hlumination model

In the following discussion, we will use a simple
illumination model that assumes a distant point light
source and a Lambertian reflectance model. A
Lambertian surface scatters light equally in all
directions. The brightness of a Lambertian surface
illuminated by a distant point light source is given by:

I=1IN-L (1)

where I is a constant depending on the surface albedo
and the intensity of the light source, N is the unit
surface normal vector, and L is the unit vector of the
illumination direction.

The unit vector which points in the direction of the
light source can be specified by the two angles shown in
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Fig. 1. The first is the azimuth (§) which is the angle
between the x-axis and the projection of the vector
onto the x—y plane, while the second is the angle of
elevation (¢) of the light source. If we represent this
unit vector by [a, b, ¢], then

a = cosf cos ¢,
b = sin @ cos ¢,

¢ = —sin¢. (2)

In our discussion we will consider only positive values
of ¢. Therefore, ¢ is always less than zero.

If the height of the object surface above the x—y
plane is expressed as a function of x and y,

z = S(x, y),

then the surface normal is given by the vector:
N =[S,. 5, —1]/1 + 2 + §H)'2

where §, and §, denote first partials of § with respect to
x and y, respectively. By carrying out the dot product
in Equation (1), it follows that

aS, +bS, —¢
®1 + 52 487

1.3. Extracting topographic structures

The topographical primal sketch can be used to
represent the underlying intensity surface of a digital
image. A complete mathematical treatment of the
topographic primal sketch is given in Haralick et al.™®
We will summarize here the concepts necessary to
understand the remainder of this paper. A digital
image may be interpreted as a sampling and
quantizing of a real valued function f. While the image
is a discrete matrix of values, the underlying surface is
continuous. Since the underlying surface is
continuous, we can work with such well-defined
concepts as its gradient magnitude and its first and
second directional derivatives.

The topographic labeling scheme is based on the
estimation of the values of the gradients and the
directional derivatives of the surface. In order to
obtain these values, we need first to assume some kind
of parametric form for the underlying function f. If we
assume that the neighborhood around each pixel is
suitably fitted by the bivariate cubic:

S, ) = kg + kox + kyy + kyx? + ksxy

+ key? + kax® + kgx?y + koxy? + kioy?,
then the parameters k,—k,, can be estimated by a least
squares fit to each pixel in the neighborhood. Once
these parameters are estimated, the gradient vector
(Vf)1s given by (8f /dx, 8f /0y) and its magnitude (|| Vf ||)
is

[(afiox)* + (@fféy)*]"2.

The first and second directional derivatives may be
calculated by forming the Hessian matrix
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Table 1. Mathematical properties of topographic structures

v/l X, X, Vjfw Vfw, Label

Peak
Ridge
Saddle
Flat
Saddle
Ravine
Pit
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+o | o4+ o |
cocoooo
SoOCcooCoo

+++o

Hillside
Ridge
Ridge

* Hillside
Hillside
Hillside
5 Hillside
* Hillside

* Ravine

0 Ravine

, Hillside

0 Impossible

®* ]|
*

s+t ro] oto|
|

++H4++++
* + * + 4+ 4+ |

Where:

Vf = gradient vector of the gray tone intensity function f;

[ Vf || = gradient magnitude:

H = Hessian matrix of f]

w, = direction in which the second directional derivative has
greatest magnitude (first eigenvector of H);

w, = direction orthogonal to w, (second eigenvector of H);

X, = value of the second directional derivative in the
direction w, (first eigenvalue of H);
X, = value of the second directional derivative in the

direction w, (second eigenvalue of H);

Vf-w, = value of the first directional derivative in the
direction of w,;
Vf w, = value of the first directional derivative in the

direction of w,.

|:€2f,uax2 C‘Zf,/axﬁ?y:|
~ Leéyexay aeyr |
The gradient magnitude and the directional

derivatives obtained from the Hessian are used in
determining the topographic labeling of the surface.
The mathematical properties of the topographic
structures defined in Haralick et al.*® are summarized
in Table 1. Each entry in the table is either 0, %, + or —.
The 0 means an entry is not significantly different from
zero, * means an entry does not matter, and +(—)
means an entry is significantly different from zero on
the positive (negative) side. If the values of the gradient
magnitude, eigenvalues and eigenvectors of the
Hessian at a given point of the surface satisfy the
constraints defined by one row of Table 1, then that
point is classified by the label at the end of that row. It
is important to note that any combination of || Vf|,
X, X,, wy, and w, corresponds to one and only one
row of Table 1.

1.4. Related literature

]

Many ‘shape-from-..." approaches have been
proposed for determining three-dimensional shape

from two-dimensional images. Among these
approaches, stereopsis’»* and motion®®® are
currently the most studied subjects. Four other
important sources of shape information are shading,
texture, shadow and contour.

Smooth intensity variation (or shading) is an
important clue for determining surface orientation,
The shape-from-shading idea was first formulated by
Horn.™" Since then, a great deal of work has been done
in this arca.”® If we assume a uniformly textured
surface, surface orientations may be inferred from the
way the coarseness of the image texture changes across
the image. Shape-from-texture is another area of
recent research.”'® ') When shadows are located in an
image, the shapes of the shadows can be used to
determine three-dimensional information about the
objects in the scene. Shadow analysis can be referred to
as the process of locating shadow regions, finding
correspondences between shadow casting objects and
shadow regions, and deducing three-dimensional
information about the objects involved in the shadow
formation process. Theoretical work on shadow
analysis can be found in Shafer and Kanade." 2 Shape-
from-shadow methods have been found to be useful for
estimating heights of objects in aerial images.!®
Three-dimensional surface shape can also be inferred
from the two-dimensional shapes of edges or curves in
an image. Shape-from-contour methods** ! have
been found to be effective in determining the shape of a
visible surface.

The shape modules use various sources of
information in the images to infer intrinsic scene
characteristics. Since intrinsic scene characteristics of
the visible surface in an image are captured as observed
intensities in the image, an important goal of early
vision is to extract a rich symbolic representation of
the gray tone intensity changes in the image. Among
the many representations proposed, the following are
the most important ones: (1) the primal sketch!® or
zero-crossing edges! V' of Marr, (2) the intrinsic images
of Barrow and Tenenbaum,'® (3) the relational trees
of Ehrich and Foith,'*® and (4) the topographic primal
sketch of Haralick et al.®

The idea of the facet model®® 2V is used in the
construction of the topographic primal sketch. The
facet model assumes that image intensity values are
noisy sampled observations of an underlying intensity
surface. Thus, any interpretation made on the basis of a
neighborhood of pixel values should be understood
through the analysis of its underlying intensity surface.
In the past, the facet model has been proven to be
useful in edge and region analysis,*% 22:23) noise
removal,?? corner detection,*> optical flow,?®
shape-from-shading and stereo matching.*” These
successes suggest that there is indeed something
fundamental about the approach. We believe that a
unified approach based on the facet model and the
topographic primal sketch can be developed and used
to solve the computer vision problem.
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Fig. 2. The cylindrical object used in our experiments.

2. SHAPE FROM TOPOGRAPHIC PATTERNS

There are two possible methods for determining the
pattern of topographic labels that will appear, given a
particular three-dimensional shape category, a
particular reflectance model, a particular light source,
and a particular viewpoint. The first method is to work
the problem analytically, obtaining exact equations for
the illuminated surface. At each point the gradient,
eigenvectors, and eigenvalues can be computed in
order to determine precisely which sets of points have
the various topographic labels. The second method is
to work the problem experimentally, using software to
generate digital images of illuminated three-
dimensional surfaces, to fit these image with either
polynomials, splines, or discrete cosines, and to assign
topographic labels to each pixel. The first method has
the advantage of exactness and the disadvantage of
becoming extremely difficult for all but the simplest
surfaces. The second method has the advantage of
being applicable to a wide variety of surfaces and
illuminating conditions and the disadvantage of
yielding some inaccurate results due to possible errors
in fitting the gray tone image. We have begun to
experiment with both methods, starting with very
simple surfaces, the Lambertian reflectance model, and
point light sources. We have worked with four simple
surfaces: (1) the top half of a cylinder, (2) the upper
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Fig. 3. The spherical object used in our experiments.
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Fig. 4. The ellipsoid used in our experiments.

hemisphere of a sphere, (3) the top half of an ellipsoid,
and (4) the upper half of a hyperboloid. Figures 2-5
illustrate the four three-dimensional surfaces.

2.1. Method 1: the experimental approach

The process for topographic classification can be
done in one pass through the image. At each pixel of
the image, the following four steps, which are discussed
in more detail in Haralick et al,” need to be
performed.

1. Calculate the least-squares fitting coefficients of a
two-dimension cubic polynomial in an n xn
neighborhood around the pixel.

2. Use the coefficients calculated in step 1 to find the
gradient, the gradient magnitude, and the eigenvalues
and eigenvectors of the Hessian at the center of the
pixel’s neighborhood.

3. Search in the direction of the eigenvectors
calculated in step 2 for a zero-crossing of the first
directional derivative within the pixel’s area.

4. Recompute the gradient, gradient magnitude, and

Fig. 5. The hyperboloid used in our experiments.



Shape estimation 337

values of second directional derivative extrema at each
zero crossing. Then classify the pixel based on Table 1.

2.2. Method 2: the analytical approach

2.2.1. Topographic labels on the cylinder. Consider a
cylindrical surface given by:

See, M)=d—(r* =y for —r<y<r (3)

where d is the distance of the x-y plane from the
camera down the z-axis and r is the radius of the
cylinder. This surface, in which the axis of the cylinder
lies along the x-axis, was chosen to simplify
calculations. Notice that since only the top half of the
cylinder is considered, the sign of the square root in
equation (3) is taken as positive. By differentiating S
with respect to x and y, we obtain

Se=0, §,=yr*— ) '
It follows from equation (2) that the intensity of the
cylinder illuminated from direction (g, b, ¢) is given by:
I(x, y) = Io(by — c(r® — y*)'/*)r 4

After some simplifications, the first and second partials
of I are found to be:

I.\:: Ixx: Ixy = Iyx= 0}
I, = Iob + cyr* — y2)~ 3,
1, = Loer(r? — y») 732,

where the subscripted I’s denote partial differentiation
with respect to the subscript(s).

Since I, is equal to zero, the gradient magnitude
(II'Vf 1) is equal to the absolute value of I,. Therefore,
[V/ ] = 0 when

Iy=1Igb + cyi? —y?) " "3)r=0
which implies
br* — y)'"* = —cy. (%)
Upon solving equation (5), we obtain
y? = ri?(b? + ).
Because ¢ is always negative, the sign of y is taken to be

the same as that of b in order for equation (5) to be
satisfied.

To determine the second directional derivative
extrema values and the first directional derivatives
taken in the directions which extremize second
directional derivatives, we form the Hessian:

¥ 0 0
“lo Toer(rt — y3)~32 |

The eigenvalues of the Hessian are obtained as:
X, = Iyer(r® — y?) =32, (6)
X, =0 @)

their associated eigenvectors are:

Wy = (Oa 1):
wy = (1, 0).

Recall that cis always negative, therefore, X | is always
negative for —r < y < r. By taking the dot product of
the gradient with the eigenvectors, we obtain:

VIw, =1, =Iyb+ ey(r* — y?)~'2)r,
VI-w, =0.

To determine the topographic labels, we need to

consider two cases: (1) zero gradient magnitude and (2)
positive gradient magnitude.
Case 1: zero gradient magnitude. If we let y, = rb(b*
+ ¢*)~ Y2 it follows from equation (5) that | VI = 0
when y = y, By equations (6-7), the second
directional derivative extrema values at y = y, are

X, = Lyer(r* — yg) 32 (8)
X, =0. (9)

Since X, is always less than zero, it follows directly
from Table 1 that a ridge is located at y = y,,.

Case 2: positive gradient magnitude. If the gradient
magnitude (|| VI|) is taken to be positive, then the
value of the first directional derivative in the direction
of w (VI -w,) is always non-zero because VI-w, = I,
and ||[Vf|| = |I,| In this case, since X, is always
negative and X, is always zero, it follows from row 11
of Table 1 that hillsides are located at those places
where the gradient magnitudes are positive.

2.2.2. Topographic labels on the sphere. In the case of
the sphere, the equation of a spherical surface with
radius r is given by:

Sx, =d—(*—x2—yHYY? for —r<x<r
(10)
and —r<y<r

Itsintensity illuminated from direction [a, b, ¢] is given
by:

I(X, _V) = Io*[ax + by — c(rz — x%_ }’2)1”2]/1‘

(11)

After some simplifications, the first and second partials
of I are found to be:

I, = Ila + cx{r? — x* — y»)~ 2,
I = Lo[b + ey(r? — x* — y3)~ 112,
Lo = Loclt = Y3 — % = )2y,
Ly = L = Lyexylr® — 52 — )32,
I, = Toclr? — x?) (12 — x2 — y3)~ 32,
The gradient magnitude (|| VI |) is given by:
IVI| = (IZ + I3)*,

which is zero when a(r> — x* — y»)'? + ¢x = 0 and
b(r* — x? — 912 4 ¢y = 0 are satisfied simultaneously,
By squaring and invoking the constraint a® + b? + ¢2
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= 0 on the unit vector [a, b, ¢], the solution to the
simultaneous equations is found to be:

x=ra, y=rb.

The Hessian for the intensity surface of the illuminated
sphere is given by:

T I:r2 -y xy :|
H=——"— =« :
Hr* — x? — y?) Xy r?2 — x?

Its eigenvalues are found to be:
X, = Iger(r? — x? — yH) 732,
X, = Ige(r* — x* — yH)~12fr.

Notice that both eigenvalues are always less than zero
since ¢ is always less than zero. The eigenvector
corresponding to X, is given by:

wy = [x(x* + y*)7V2, y(x? + y)712]
and the eigenvector corresponding to X, is given by:
Wy = [—0(x? + y2) 712, x(x? + )7 1],

The dot product of the gradient with w, is
Iy cx
% r(xl S yZ)l,'?. x{a+ (rz —_x2 — y2)uz

y(b+2zcyzuz):| (12)
{r* =%"~y)

and the dot product of the gradient with w, is
VI-w, = Io(—ay + bx) (x* + y*)~ 12/r.

VI-w,

(13)

We determine the topographic labels by considering
two cases.

Case 1: zero gradient magnitude. The gradient
magnitude is equal to zero when (x, y) = (ra, rb). Since
both eigenvalues are less than zero on the illuminated
sphere, it follows directly from Table 1 that a peak is
located at (x, y) = (ra, rb).

Case 2: positive gradient magnitude. In the case when
the gradient magnitude is given to be positive, since
both eigenvalues are known to be negative, it follows
from Table 1 that there is a ridge at those locations
where either V/-w, = 0 or Vf* w, = 0 is satisfied. We
obtain from equations (12) and (13) that

VI w, = 0 when (ax + by)(r? — x2 — yH)112 4
cx? + =0,
VI w, = 0 when —ay + bx = 0.

Table 1 also says that hillsides appear at places where
both Vf-w, and Vf-w, are non-zero.

2.2.3. Other conic surfaces. We have also attempted
to derive analytical results for the following conics
surfaces:

(1) ellipsoid

S(x, y) = d — (P — m*x* — n?y?)/%
(2) hyperboloid of one sheet
S(x, y) = d — (1> — m*x? + n®y)!'%
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(3) hyperboloid of two sheets
S(x, y) = d — (m?x? — n?y* — [R)l/2,
(4) paraboloid
S(x, y) = d — (nx* + my?),

Unfortunately, no simple closed form solution has
been obtained for the first and second directional
derivatives of these surfaces. Some of the analytical
equations of these surfaces are given in Pong.?®
Results of the topographic patterns on these surfaces
are described in Section 5.5. Results show that patterns
also emerged for these surfaces.

3. ESTIMATION OF SURFACE ORIENTATION

In this section, we will show that the topographic
labels along with their quantitative measurements
bear a strong relationship to the surface orientation of
the three-dimensional object in the scene. Consider a
spherical surface as described in Section 2.2.2. The
unnormalized surface orientation of such a surface can
be represented in the gradient space by the vector [p, g,
—17, where

X ¥

p= (% — x* — y3)ie’ 9= (2 — x% =yl
An alternative way of specifying surface orientation is
the tilt and slant representation. Tilt specifies the
orientation of the projection of the surface normal
onto the image plane. Slant is the angle between the
surface normal and the viewing direction. The tilt and
slant representation and the gradient space
representation can be related by the following
formulas:

tanf = g/p and
tan ¢ = (p* + ¢*)'* or
cosp = (1 + p* +¢g*) V2
In the case of a sphere,
tan 6 = y/x,
cos = (r2 — x% — yA)frt,

To see how the surface orientation of a spherical
Lambertian surface can be derived from the
topographic analysis of the image intensity surface, we
need first to complete the analytical results of Section
2.2.2 by considering the lower half of the sphere. The
equation of the lower hemisphere of a sphere whose
center is at (0, 0, d) is given by:

S, M=d+(*—x*—p)'"? for —r<x<r
<

<
and —r<y=<r

Differentiating the above equation with respect to x
and y, we obtain

—-X 7})

p= 2 —x* — yz)uz’ gr= " — x% — yz)uz'
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Notice the sign difference between the surface
orientations of the upper and lower hemispheres.

As for the upper hemisphere, after some
simplification, we obtain for the lower hemisphere a
similar set of expressions for I and its partials,

I =1I[—ax — by — c(r® — x* — y?)'2r,
I, =I[—a+ ex(r? — x* — y?)~ 123/,

= Io[—b + cy(r® — x? — y3)~12]/r,

I = Igelr® — y) (7 — x* — y3) 32,

= I,, = Ioexy(r®* — x* — y*)" %3,

I =gt =850 — 2* =97 .

¥,

Notice that the second partials of I are the same for
both halves of the sphere. Since the second partials
make up the Hessian, it follows that the eigenvalues
and eigenvectors for the two hemispheres are also
identical. Recall that the eigenvalues and eigenvectors
are given by

X, = Ior(r? — x? — y3) 732

X, = 1'01:(1‘2 —¥2 — yz)_l"z,/r,

wy = [x(x* + y?) 712, px® + yH)7 12,
wy = [—y(x?* + y3) 712, x(x? + y?) 2]

If we take the ratio of the smaller over the larger
eigenvalue, we obtain
X, rPox?_)?

X, r?

This ratio is the square root of the cosine of the surface
slant. Note that the signs of both X, and X, depend
only on the sign of ¢ which is the negative of the sine of
the angle of elevation of the light source. Therefore, the
ratio is always positive and its square root is always
justifiable. Furthermore, the ratio is always less than or
equal to one since X, is the smaller eigenvalue. Thus,
we can obtain surface slant by taking the arc-cosine of
the square root of X,/X,. The resulting angle is
determined uniquely because the surface slant for a
visible surface always lies between 0 and n/2.

The remaining component to be determined for the
unit surface normal is the surface tilt. By considering
w,, the eigenvector corresponding to the larger
eigenvalue, we can obtain the direction 6 in which the
second directional derivative of I is extremized. That
is,

y (x* +yH)'?  y
tanf = . ==,
(x? + yH)'? x x

which is identical to the tangent of the surface tilt. Thus
we havet = f ort = 0 + = Unfortunately, there are
two possible solutions. This is expected because each
solution corresponds to one half of the sphere. This
shows the ambiguity in local analysis of image shading.

Recently, Pentland® proposed a method that
estimates surface orientation locally at each image
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point. This method is based on the claim that the image
of a point on a spherical Lambertian surface can
produce any combination of image intensity I and
derivativesI,,{,,I,., I, and I, . Theimplication of this
claim is that it is impossible to determine, based on
local analysis of shading, whether or not an image
point is resulted from a point on a spherical Lambertian
surface. In what follows, we will show that Pentland’s
claim is incorrect and we will then suggest a scheme for
partial classification of three-dimensional object
surfaces.

Without any assumption about the location of the
light source, we found from the above analytical results
that the topographic labels on the underlying intensity
surface resulting from a spherical Lambertian surface
can only be peak, pit, ridge, valley, convex or concave
hillside. This is because any combinations of I, I,,
and I, resulting from a spherical Lambertian surface
can produce only either a semi-positive or semi-
negative definite Hessian. Therefore, not all
combinations of I,,, I, and I, are possible,

Furthermore, if we approximate three-dimensional
surfaces locally by spherical surfaces, it is expected that
the radii of the approximating spheres for points on a
spherical surface are constant. Recall that the radius, r,
and the eigenvalues, X, and X,, of a spherical
Lambertian surface are related by the following
expressions:

Iger

= (rt — x% — yz)a,'z’

We obtain from the expression of X,
Iy
X—zr'

We then have from the expression of X,
Ige\ 73
X, =Ieer{ —| ,
X,r

X13c?
X3

(rz _ xz . y2)1/2 —_

or

rt =

Since I, and ¢ are fixed, we conclude that X /X3 is
constant for a spherical Lambertian surface.
Therefore, an image point can be determined as
resulting from a point on a spherical Lambertian
surface only if it is labeled as a peak, pit, ridge, valley,
convex hillside or concave hillside, and the radii of the
approximating spheres at pixels within the
neighborhood around that point are similar enough,
We thus showed that Pentland’s claim is incorrect.
What this suggests is that we should estimate surface
tilt and surface slant locally from the eigenvalues and
eigenvectors of the Hessian of the underlying intensity
surface only if the underlying intensity surface is
compatible with that of a spherical Lambertian
surface.

It can be observed from the expressions of the
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eigenvalues that a pit, valley and convex hillside
classification of the intensity surface of a spherical
Lambertian surface corresponds to a positive c. This
implies a light source below the object surface.
Although this is physically possible, such illuminating
condition can usually be ignored when solving
practical problems. We thus further assume that a
spherical Lambertian surface can only result in peak
ridge and concave hillside classifications.

4. CLASSIFICATION OF OBJECT SURFACES

We will propose here a scheme for partial
classification of three-dimensional object surfaces. The
basic goal of this classification scheme is to group
together pixels which are likely to come from the same
surface patch. We will limit our consideration to five
types of object surfaces. They are planar, developable®,
spherical, elliptical, and hyperbolic surfaces.

Based on the above discussions, it is evident that
topographic labels together with the signs and
magnitudes of their second directional derivatives bear
a strong relationship to the nature of the three-
dimensional object surface in the scene. This evidence
leads to the assumption that maximally connected sets
of pixels having the same topographic label belong to
the same surface patches. To extract these connected
sets of topographic structures, the feature extraction
process described in Pong?®” is employed. The
resulting structures of this feature extraction process
are arcs, regions and topographic labels. The desired
topographic structures are then determined by
applying a connected components algorithm@® to the
topographic labels within each region segment.

The assembled topographic structures may be
divided into three categories: (1) areal structures which
consist of convex hillsides, concave hillsides, saddle
hillsides, flat surfaces, and sloped surfaces; (2) arc
structures which include edges, ridges, and valleys; (3)
point structures which include peaks, pits, and saddle
points. In what follows, we suggest hypotheses that can
be made about the three-dimensional objects based on
the analytical results that we have derived and the
results of the experiments that we have performed. We
believe that three-dimensional object shape can be
inferred by feeding this knowledge into a hypothesis
based reasoning system such as that of
Mulgaonkar.?®

4.1. Areal structures

Flat. A flatis a simple surface with zero gradient and
no curvature. That is, the gray level intensity is
constant in a connected flat structure. Since the surface
normal vectors within a planar surface are constant,
we can be almost certain that pixels belonging to a

* A developable surface is one which may be unrolled onto
a plane without distortion.
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connected flat structure come from the same planar
surface. Although this may not hold for shadow areas,
we can usually separate shadow areas by identifying
flat structures with relatively low intensity averages.

Hillsides. We first hypothesize that a con-
cave/convex hillside assembly is part of a spherical,
elliptical or developable surface, and a saddle hillside
assembly is part of a hyperbolic surface. QOur first
hypothesis is driven by the analytical and experimental
results of the cylindrical, spherical, elliptical and
hyperbolic surfaces that we have considered in Section
2.2

We further postulate that a concave/convex hillside
assembly is part of a developable surfaceifit is adjacent
to a straight and horizontal ridge. In particular, it is
part of a cylindrical surface if it is concave and the
second directional derivative of the hillside in the
direction of the ridge is zero.

As a result of Section 3, a hillside assembly can be
considered as part of a spherical surface if it is
concave and the radii of the approximating spheres
within the hillside assembly are similar enough. We
have not been able to derive a complete classification
scheme for all the areal structures. Nonetheless, since
the assembled regions are likely to come from the same
surface patches, they are good starting regions for the
shape-from-shading method described in Pong.?”

4.2, Line and point structures

While edges are considered to be good indications of
surface discontinuities, peaks and ridges are found to
be significant structures in the images of the conic
surfaces that we have considered. The following
observations are gathered from the topographic
structures of the conic surface.

1. The ridge arcs obtained from the images of the
sphere are found to be symmetrical around the peaks.
2. Ridges for the images of the ellipsoid and the
hyperboloid are found to be symmetrical around the
peaks only if the projection of the light vectors are
parallel to one of the axes of these conic surfaces.

3. Straight ridge lines are found in the images of the
cylinder. The gray tone intensities along the ridge lines
are found to be constant.

4. While the ridges around the peaks found in the
image of the ellipsoid curve away from the light
sources, those of the hyperboloid curve towards the
light sources.

5. The peaks located in the images of the conic
surfaces correspond to locations where the surface
normals are pointing towards the light sources.

A pictorial illustration of the above observations is
given in Fig. 6.

In this section, we have listed a set of criteria that can
be used to infer shapes of three-dimensional objects.
These criteria are supported by the experimental
results to be described in Section 5. We believe that an
integrated knowledge based vision system can be
benefited by effectively using the knowledge about
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Fig. 6. An illustration of

these topographic structures.

5. RESULTS

In Sections 5.1-5.3, we show the analytical and
experimental results of the topographic patterns on the
cylinder and sphere of Fig. 2 and 3. Three illumination
conditions are considered for each surface: (1) the light
direction is (0, 0, — 1) which means directly above the
center of the surface; (2) the light direction is (0, -, 3/2,
—1/2) which translates to azimuth 0 degrees and
elevation 30 degrees; (3) the light direction is (1/2, 1/2,
- 1/\/ 2) which translates to azimuth 45 degrees and
elevation 45 degrees. The illuminated surfaces of the
cylinder and the sphere are shown in Fig. 7 and Fig. 8,
respectively.

5.1. Analytical results for the cylinder

When the light direction is from azimuth 0 degrees,
elevation 90 degrees, analytical results in Section 2.2.1
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the topographic patterns.

indicate a ridge parallel to the axis of the cylinder and
running along the center of the top half, as shown in
Fig. 9a. When the light direction is from azimuth 0
degrees and elevation 30 degrees, the ridge appears as
in Fig. 9b. When the light direction is from azimuth 45
degrees and elevation 45 degrees, the ridge appears as
in Fig. 9c. In all three cases, the remaining points of the
cylinder are hillsides.

5.2. Analytical results for the sphere

When the light source is directly above the center of
the sphere, the gradient magnitude is zero at (0, 0),
therefore, a peak is located at the center of the sphere.
The gradient magnitude is positive and the first
directional derivative in the direction w, is zero at the
remaining points of the sphere. It follows from our
analytical results that ridges locate at these points.*

* This result is due to the analysis used in Haralick et al./®
and may not be intuitively obvious to all readers.
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Fig. 7. Shaded images of the cylinder of Fig. 2. Fig. 10. The analytically dig;zfetopographlc labeling of the

Fig. 8. Shaded images of the sphere of Fig. 3. Fig. 11. The experimental results for the cylinder.

Fig. 9. The analytically derived topographic labeling of the
cylinder. Fig. 12. The experimental results for the sphere.
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Fig. 13. A synthetic three-dimensional object.

When the light direction is (0, \/3/2, —1,2), a peak is
found at (0, \/ 3r/2). At the remaining points,

VIi-w, =0 when (x*+ y?

=320 — % —y

VIi-w,=0 when x=0.

2)1,’2,

Therefore, there are ridges when either one of the
above two equations is satisfied and hillsides
otherwise.

Similarly, a peak is found at (r/2, r/2) when the light
directionis(1/2,1/2, — 1/, /2). Ridges can be located at
places where either
yZ]l,iZ

V25 + 9D = (x + p)? - X

or x =y is satisfied.

At the remaining points, hillsides are the correct
categories. Figure 10 shows the topographic labels for
the illuminated spheres.

5.3. Experimental results
Experimentally, we are working in the GIPSY

Fig. 14. Gray tone image of the synthetic object illuminated
from azimuth 45 degrees and elevation 45 degrees.

Fig. 15. The topographic labeling of the synthetic object
image.

(General Image Processing System) environment.
There currently exist GIPSY commands to construct
three-dimensional surfaces, to produce images of these
surfaces from various viewpoints and light directions,
to fit these images with either cubic polynomials,
splines, or discrete cosines, and to calculate the
topographic labelings. Figures 11 and 12 show
experimental results for the cylinder and sphere using
cubic polynomial surface fitting. Experimental results
show very good correspondence with the analytical
results, except for the sphere when the light direction is
(0, 0, —1). In this case, when points are labeled ridge
and have neighboring points in a direction orthogonal
to the gradient that are also labeled ridge, our software
reclassifies these ridge continuums as hillsides. A
detailed discussion of ridge and valley continua can be
found in Haralick et al{?

In addition to the images of the two simple surfaces,
a synthetic image of a more complex surface was also
used in testing. The surface of Fig. 13 is composed of
cylindrical and spherical surface patches. Figure 14
shows the image of the surface when illuminated from
azimuth 45 degrees and elevation 45 degrees. Figure 15
illustrates the topographic labels that resulted from the
experimental method. Most of the resulting
topographic labels are located at places where they are
predicted by the analytical method.

Our results show that the most informative features
found in the images of the cylinder and sphere are
ridges and peaks. While the ridges found in the
cylinder images are intuitive, the ellipse-like ridges
found in the sphere images are unexpected. Although
most ridge points found in the sphere images are weak
ridges, experimental results show that these ridges are
detectable. These ellipse-like ridges will be a definite
clue to 3-dimensional surface identifications. Once the
shape of the 3-dimensional surface is hypothesized as
cylindrical or spherical, information such as the
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Fig. 19. The analytically derived topographic labelings of the
images of the hyperboloid.

Fig. 17. Shaded images of the hyperboloid of Fig. 5.

Fig. 20. The experimental results of the images of the ellipsoid.

Fig. 18. The analytically derived topographic labelings of the ~ Fig. 21. The experimental results of the images of the
images of the ellipsoid. hyperboloid.
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Fig. 22. Noisy images of an ellipsoid.

Fig. 23. The experimentally derived topographic labelings of
the images of Fig. 23.

Fig. 24. Results of the ridge linking process.
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direction of the light source and the cylinder/sphere
radius may also be estimated by examining the
topographic labels.

5.4. Results for the other conic surfaces

Experiments have been performed on the ellipsoid
and hyperboloid of Figs. 4 and 5. Shaded images of
these conic surfaces are shown in Figs. 16 and 17.
Figures 18 and 19 illustrate the topographic labels that
resulted from the analytical equations given.?”
Figures 20 and 21 show the topographic labels that
resulted from the facet surface fitting model. Results
show that the dominant structures in the images of the
ellipsoid and hyperboloid are, respectively, concave
and saddle hillsides. It was also found that only
portions of the ridges that appear in Figs. 18 and 19
were detected by the experimental method. Careful
examinations showed that the ridges detected by the
experimental method were dominant ridges which
gave high curvatures (or eigenvalues), and the
undetected ridges were weak ridges which gave very
small curvatures. It was also observed that the
intersection of the two ridge lines produced a peak.

To examine the performance of the facet fitting
topographic labeling scheme on noise images, random
noise of mean = 0 and standard deviation = 100 was
added to the shaded images of an ellipsoid. The gray
level intensities of the shaded images range from 0 to
1000. The noisy images are shown in Fig. 22. Figure 23
shows the topographic labels that resulted from the
facet surface fitting model. It was found that the ridge
labels detected were fragmented into small pieces. In
order to group the fragmented ridges into more
meaningful structures, a modification of the arc
segment extraction procedure as described in Pong?”
was used to link the fragmented ridges. The modified
procedure differs from the original procedure in that
linking is done based on ridge orientations instead of
edge orientations, In particular, ridge orientation is
defined to be the direction perpendicular to the eigen
direction which gives the first directional derivative
zero-crossing. Results of the ridge linking process are
shown in Fig. 24. It was also found that the detected
ridges became unrecognizable when more noise was
added to these images.

6. SUMMARY

Both the analytical and experimental results so far
indicate that there are definite patterns emerging that
can help indicate the shape of the original three-
dimensional surface and the direction of the light
source. For both methods, we anticipate a great deal
more work. We would like to carry out the analytic
approach for several more simple surfaces, perhaps
using a symbol manipulator to help solve the
equations. For the experimental methods, we need to
work on getting results as close as possible to the
analytic results. We will then perform a large series of
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