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Abstract—In this paper, the facet model is used in the recovery of surface orientation from single and
multiple images. Two methods for determining surface orientation from image shading are presented. The
first method works in the single image domain and is formulated as a non-linear optimization problem.
Since three-dimensional scene information available in a single image is usually ambiguous, the optimization
procedure can result in multiple solutions. The possibility of adding boundary constraints to the
optimization process is also investigated. In the second method, additional images are obtained from the
same viewing position, but with changing illumination direction. With these additional images, local
surface orientation is determined uniquely by a linear optimization procedure. Experimental results of the

shape-from-shading methods are also described.
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1. INTRODUCTION

A trend of the recent mid-level computer vision
research is to study the recovery of intrinsic scene
characteristics such as surface orientations, reflectance
properties and distance information from images.*)
This recovery process is important because knowing
these intrinsic scene characteristics will be a definite
aid to higher-level scene analysis problems. Appar-
ently, humans have the ability to determine these
characteristics even for unfamiliar scenes. Since infor-
mation about the scene being viewed is captured as
observed gray level intensities in the image, it is
reasonable to believe that some of these characteristics
are recoverable from image intensity variations.

Many shape-from-x approaches have been pro-
posed for determining intrinsic scene characteristics.
Among these approaches, stereopsis’®!® and
motion''*** are currently the most studied subjects.
Four other important sources of shape information
are shading, texture, shadow and contour.

Smooth intensity variation (orshading) is an
important clue for determining surface orientation.
The shape-from-shading idea was first formulated by
Horn."! Since then, a great deal of work has been
done in this area.!*223% If we assume a uniformly
textured surface, surface orientations may be inferred
from the way the coarseness of the image texture
changes across the image. Shape-from-texture is
another area of recent research.!*¢?%! When shadows
are located in an image, the shapes of the shadows can
be used to determine three-dimensional information
about the objects in the scene. Shadow analysis can
be referred to as the process of locating shadow

Three-dimensional shape

683

Facet model

regions, finding correspondences between shadow
casting objects and shadow regions, and deducing
three-dimensional information about the objects
involved in the shadow formation process. Theoretical
work on shadow analysis can be found in Ref. (24),
Shape-from-shadow methods have been found to be
useful for estimating heights of objects in aerial
images.'* Three-dimensional surface shape can also
be inferred from the two-dimensional shapes of edges
or curves in an image. Shape-from-contour
methods®'*2®) have been found to be effective in
determining the shape of a visible surface.

In the present work, the intrinsic property which
we are primarily interested in is surface orientation.
In this paper, the facet model”™® is used in the
recovery of surface orientations from single or multi-
ple images. The facet model assumes that image
intensity values are noisy sampled observations of an
underlying intensity surface. Thus, any interpretation
made on the basis of a neighborhood of pixel values
should be understood through the analysis of its
underlying intensity surface.

In past facet work,'” the underlying intensity sur-
face was cstimated by a least squares fit with a
functional form consisting of a linear combination of
the tensor products of discrete orthogonal poly-
nomials. In the new facet shape-from-shading formu-
lation, the three-dimensional object surface is assumed
to be locally fit by a quadratic surface. The underlying
gray tone intensity surface is then modeled using a
quadratic object surface having Lambertian reflec-
tance. Having estimated the free parameters of the
Lambertian intensity surface, the surface orientation
around each pixel is readily determined.
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1.1. Overview

Two methods for determining surface orientation
from image shading information are presented in this
paper. The first method works in the single image
domain and the second method works for multiple
images. Before discussing these techniques in detail,
the image geometry and the illumination model to be
used in our presentation are defined in Section 1.2
and 1.3, respectively. The most pertinent related
literature is briefly discussed in Section 2. The basic
theory of the facet based shape-from-shading method
is given in Section 3.1. In Section 3.1.1, the selection
of starting value, which is required in our method, is
discussed. A modification of the original technique is
also suggested. The second method which works for
multiple images is described in Section 3.2. A possible
extension of these methods to handle specular reflec-
tion is given in Section 3.3. In Section 4, results of
some preliminary experiments are discussed.

1.2, Imaging .geometry

The relationship between scene coordinates and
image coordinates is illustrated in Fig. 1. We assume
that the camera lens is at the origin and that the z-
axis is directed towards the image plane which is in
front of the lens. The image plane is placed at a
distance f, the focal length of the lens, in front of the
origin so that the image is oriented in the same way
as the scene. As seen from Fig. 1, the following
relations hold for perspective projection:
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In our discussion, the perspective projection is
approximated by an orthographic projection. This
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Fig. 1. Relationship between scene coordinates and image
coordinates,

approximation is good when the size of the objects
being imaged is small compared to the viewing
distance. In this case, appropriate coordinate systems
can be chosen such that the following relations hold:

u=x and v=y.

1.3. Hlumination model

In the following discussion, we will use a simple
illumination model that assumes a distant point
light source and a Lambertian reflectance model.
A Lambertian surface looks equally bright in all
directions. The brightness of a Lambertian surface
illuminated by a distant point light source is given
by:

I=I,N-L (1)

where [ is a constant depending on the surface albedo
and the intensity of the light source, N is the unit
surface normal vector, and L is the unit vector of the
illumination direction.

The unit vector which points in the direction of the
light source can be specified by the two angles shown
in Fig. 1. The first is the azimuth (6) which is the
angle between the x-axis and the projection of the
vector onto the x—y plane, while the second is the
angle of elevation (¢) of the light source. If we
represent this unit vector by [a, b, c], then

a = cosf cosg,
b = sinfl cos¢
and 2
¢ = —sing.

In our discussion, we will consider only positive values
of ¢. Therefore, c is always less than zero.

If the height of the object surface above the x=y
plane is expressed as a function of x and y, that is,
z = S(x,y), then the surface normal is given by the
vector:

[vaSy — 1]
(1+ 82+ 53172

where S, and S, denote first partials of S with respect
to x and y, respectively. By carrying out the dot
product in equation (1), it follows that

[ = as, + bS, — ¢
U+ SISy

2. RELATED LITERATURE

A great deal of work has been done in determining
surface orientation from image shading. The shape
from shading idea is first formulated in Horn's
paper.*!! Horn approaches the shape from shading
problem by solving the image irradiance equation
which is expressed in the form of a first-order partial
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differential equation. He suggests this equation be
solved using a modified characteristic strip-expansion
method. While this method works well in the absence
of noise, its behavior is uncertain when applied to a
noisy image.

While Hern estimates surface orientation by solving
the image irradiance equation by direct integration,
TIkeuchi and Horn''® estimate surface normal by an
iterative method. The iterative method attempts to
minimize the difference between the observed image
intensities and the predicted values which are obtained
iteratively from two constraints. The first constraint
is based on the image irradiance equation. The second
constraint is provided by the assumption that the
surface is smooth. As an additional constraint for
both Horn's and Ikeuchi’s methods, it is required that
both the reflectance property of the surface and the
illumination condition of the light source be known.
Tkeuchi’s method requires that occluding boundary
information be specified as boundary conditions.

Stereographic projection is used in Ikeuchi’s
method because the gradients of an occluding bound-
ary map to infinity in gradient space. In stereographic
projection, orientations of surface normals are rep-
resented uniquely by points on the Gaussian sphere.
A point on the Gaussian sphere is then projected
onto a plane tangent at the north pole with the center
of projection at the south pole. Therefore, an occluding
boundary, which is represented by points on the
equator of the Gaussian sphere, is projected into a
circle of radius two. A modification of Ikeuchi’s
method can be found in Ref. (25). Other results in
shape from shading from a single image include the
work of Woodham!) and Pentland.‘?? These studies
determine surface orientations of visible surfaces
through local analysis of image shading.

Woodham®" introduces a technique to determine
local surface orientation from images which are taken
by varying the illumination direction, while keeping
the viewing direction fixed. This technique is referred
to as photometric stereo. In this method, since images
are taken without altering the camera position, there
is no problem in finding corresponding points in the
images. This technique determines surface orientation
at each pixel by finding the intersection of the reflec-
tance maps of the images in the gradient space. In
general, at least three images are needed to determine
a unique surface orientation.

While Woodham’s method is designed for matte
surfaces, Tkeuchi'*® applies the photometric stereo
technique to determine surface orientations of specu-
lar surfaces. The point light source used in Woodham’s
method is unsuitable for specularly reflecting surfaces,
since the specular component in the image due to
point light source only occupies a very small area.
Instead, Tkeuchi employs a distributed planar light
source with spatially varying irradiation.

Although both Woodham’s and Ikeuchi’s methods
work well for noise free images, these methods obtain
surface orientation in an image on a pixel-by-pixel

basis. Therefore, we would expect these methods to
be very sensitive to noise. The problem is yet to be
solved if the input images are known to be noisy.

3. THE FACET MODEL APPROACH

In the following sections, two methods which deter-
mine surface orientation from image shading informa-
tion are presented. The first method works in the
single image domain and is formulated as a non-
linear optimization problem. Since three-dimensional
scene information available in a single image is usually
ambiguous, the optimization procedure can result in
multiple solutions. In the second method, additional
images are obtained from the same viewing position,
but with changing illumination direction. With these
additional images. the non-linear system of image
irradiance equations are transformed into a set of
linear equations. The least squares procedure
described in Section 3.2 enables a unique solution to
be obtained from this linear system of equations.

3.1. Shape from shading from a single image

The first method determines surface orientation
from the shading information of a single image. It is
formulated as a non-linear optimization problem.
According to the facet model, image intensity values
are the results of noisy sampling of an underlying
intensity surface. Therefore, the image intensity of a
Lambertian surface illuminated by a distant point
light source under orthographic projection can be
expressed as:

an(xs y) + bSy(x= y) —C
(1+ 82+ §7)i72

I(x,y) = 1I, +nlx,y) (3)
where n denotes the independent and identically
distributed noise. Furthermore, a smoothness con-
straint on the object surface is imposed in the following
way. Let R be an arbitrary neighborhood over which
equation (3) holds. We assume that

St y) = ) kihx,y) for (x,y)eR,
i=1
where the h;s are some basis functions and the ks
are constants. Different neighborhoods have different
coefficients. The form for S that we currently use is a
bivariate quadratic polynomial:

S(x,y) = ko + kyx + kyy + kyx? + kyxy + ksy*.

By using the intensity values {I(x, ¥)|(x,»)eR}, we
can determine a least squares estimator £ of k (note
that k denotes the vector [ky,k,,...,k,]).

The least squares approximation problem is to
determine coefficients k; such that

aS«(x,y) + bS(x,y) — c||?

€ <85 S

=y

(x,0)eR

[(x:y) = IO

)
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is minimized (note that ||-| denotes the I, norm). In
the case of a quadratic object surface,

Sx(xa y) - k] + 2k3x + k4y,
and
Sy{x’y) = kz T ka_x + 2k5y

where S,(x,y) and S,(x,y) denote the partial deriva-
tives of § with respect to x and y. Equation (4) can
be rewritten as:

et =Y |I(x,y) — Fix,y k)> (3)

(x.y)eR

where
Flx,y.k) =
alky + 2ksx + kgy) + blky + kyx + 2ksy) — ¢
O[L + (ky + 2Kksx + ko) + (kg + kox + 2ksy)?]H

Equation (5) is non-linear in the k’s. One of the
methods for solving this non-linear system is the
Marquardt Method.® This method is basically an
improvement of the Taylor series linearization method
and the steepest descent method. The ideas of the
linearization method and the steepest descent method
are explained briefly here.

The linearization method begins by expanding
F(x, y,k) into a Taylor Series, that is,

F(x,y,k) = F(x, y, ko)

= | dF(x,y, k)
+ PSS Mo ST
R

(k; — ko(i)):| (6)

k=ko

where ko is a starting value of k and k(i) denotes the
i component of k. If we let g; = k; — ko(i), then
equation (6) becomes linear in the g;’s. Therefore, the
original problem becomes a linear regression problem
and can be solved by the least squares procedure
for linear models. The least squares estimator thus
obtained is used as a new starting value for the Taylor
series expansion and the process is repeated until
convergence (i.e. until e* is less than some predeter-
mined tolerance).

The idea of the steepest descent method is to move
the estimate, from a starting point k,, along a direction
of steepest descent as long as e? decreases. The
direction of steepest descent is estimated as the
direction obtained by differentiating (5) with respect
to k. In general, the steepest descent method works
well when the starting value is far from the desired
solution and the linearization method does a better
job when a good initial value is provided. However,
Marquardt’s method is an iterative methods that
combines the good features of the two methods and
works well for most practical problems. There are
many possible implementations of the Marquardt
algorithm."” The algorithm used here is based on
the idea of More.??!!

The problem with using the above method for the

shape from shading task is that it is very starting-
value sensitive. A bad choice of starting value may
lead to only a local minimum instead of a global
minimum. Furthermore, multiple solutions may exist
if the information available from the input image is
ambiguous.

- 3.L.1. Initial estimate and boundary constraints. The
nonlinear optimization procedure described above is
an iterative method. An important starting point is
to obtain a good initial estimate. Better starting values
not only increase the rate of convergence, they also
reduce the chances of converging to local minima,
We also believe that supplying additional constraints
to the shape recovery process would result in an
improved accuracy in the reconstructed surface. We
want to explore in this section the possibility of using
two kinds of boundary constraints, depth and surface
orientation constraints, to bootstrap the shape-from-
shading process. Sparse depth values can be obtained
from stereo computations. A detailed discussion of
stereo computation can be found in Ref. (18). The
second constraint can be obtained from local analysis
of image shading. Local analysis of image shading is
given in Refs (22) and (23).

3.1.2. Depth constraints. In binocular stereopsis,
surface depth can be determined by matching image
features which are usually extracted as Zero-crossing
edges.®” Given a pair of stereo images, depth of object
surface can be determined by simple trigonometric
transformation once the correspondence problem is
solved. In stereo computations, corresponding points
in the two images are determined only at locations
with high information content. Since stereo matching
can produce only a sparse depth map, some kind of
interpolation technique is required to compute a
complete surface description.

A computational theory of visual surface interpol-
ation is proposed by Grimson'® and refined by
Terzopoulos.?” While this interpolation method con-
structs surface based on information available along
zero-crossing contours, its reconstructed surface fails
to account fully for the intensity changes which occur
away from the zero-crossing contours. Therefore, the
reconstructed surface may not be consistent with the
observed intensity variations. Our intention here is
to compute a complete surface reconstruction by
augmenting shading information with depth con-
straints.

Let R be an arbitrary connected region over which
the smoothness constraint S(x, y) is satisfied. Let B be
a set of pixels for which the depths are known. We
have for (x;, y;)€ B,

ko + kyxi + kay; + kax? + kaxuy; + ksy? = 5;
fori=1,...,n

where n is the number of pixels in B, and s, gives the
depth of the surface at (x;, y,). In matrix notation, we
have

I

Agk
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where
X = (ko by, ky ks kq ks,
i = Sis
and
a = (Lx,voxi, Xy yd), i=1..,n

Given enough points in B, an initial estimate for the
surface in R can be determined by a least-squares
method which minimizes

22 = Z ll(ko + kl.‘(,- -+ kz_V,'
i=1
+ kaxi + kaxoy; + ksy?) — 5|2
or equivalently,
e’ = jidx — il

The solution to this least-squares problem is discussed
below.

3.1.3. Singular value decomposition. There are many
algorithms for solving the least-squares problems.
The most reliable method is the singular value
decomposition method. A singular value decompo-
sition of a rectangular m x n matrix A with m > n is
a factorization of the form

A=USIr

where U is an m x m orthogonal matrix, Vis ann x n
orthogonal matrix, and Sisanm x n diagonal matrix
with nonnegative diagonal entries. The diagonal ele-
ments of § are called singular values of A4.

Using the singular decomposition of A4, the linear
system Ax = , becomes

USVix = .
The error,
e = A2 — |2,
to be minimized in the least-squares problem becomes
e’ = |USV'x — vl
Since orthogonal matrices preserve norm, we have
e= |UUSV'x - y)|
= [ISV'x — UL,
Ifweletz=V'xand v = U’y, we then have
e= |8z -zl

Since S is a diagonal matrix, it is easily seen that the
vector z that produces the minimum e is given by

if 5; + 0, and
if 5, = 0.

= us;
z;=0
The transformation x = Vz then determines the least-

squares solution.
3.1.4. Possible modification. We have shown how

PR 22:6-D

boundary constraints can be used to obtain initial
estimates. As an extension of the algorithm described
in Section 3.1, we may also consider a minimization
of the form

w Y H(x,)) — Fix, p, k)2
(x.y)eR
+(1=w) ¥

(x".y")eB

i Ax — y)?

where w is a constant between zero and one. The first
part of the above expression is acquired from equation
(5) which gives the error between the observed and
the estimated gray level intensities. The second part
designates the deviation between the estimates and
the boundary conditions. The constant w is set close
to one if the boundary conditions are not certain to
be reliable. The same Marquardt method can be used
to solve this minimization problem. Experiments
show that this formulation is superior to the original
formulation.

3.1.5. Extracting regions. So far, we have described
a shape-from-shading method. One problem remain-
ing to be solved is to find regions over which the
smoothness constraints are satisfied. This region
extraction process can be accomplished by analyzing
the topographic primal sketch of the image intensity
surface. While a detailed description of the region
extraction process is given in Ref, (23), the overall
process is summarized as follows.

1. Extract edge structures based on the facet model
second directional derivative zero-crossing edge oper-
ator.

2. Extract maximally connected components of
non-edge structures as an initial set of region seg-
ments,

3. Extract regions by assembling topographic struc-
ture within the initial set of region segments.

3.2. Shape from shading from multiple images

As mentioned in Section 3.1, three-dimensional
scene information available in a single image is
sometimes ambiguous. Woodham®® suggests a
method to resolve this ambiguity by using multiple
images. In this method, multiple images are obtained
by varying the illumination direction, while keeping
the viewing direction fixed. In this section, we will
describe a variation of Woodham's method. This
method is also based on the facet model. We believe
that our method is more robust than Woodham’s
method.

Suppose two images I;(x, y) and I 2(x, y) are obtained
by varying the position of a point light source. The
irradiance equations corresponding to Ii(x,y) and
I5(x, y) are

Sxlx, Y)ay + Sy )by — ¢,
(1 + 83(x, y) + S¥(x, y)'?

Lix,y) =1,

and

S.(x, ya; + S,(x, by — ¢,
I(x, y) = I,>= :
T S2(x, y))1 2
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where [a,,b,,c;1"and [a,, b, c,]" are the unit vectors
which point in the directions of the light sources.
In the case of a quadratic object surface,

I}(X,}'] ==
a(ky + 2kyx + kgy) + by(ks + kyx + 2ksy) — ¢,
OT1 + (ky + 2k3x + kgy)? + (ks + kax + 2k5y)7]V2
N

Il(x!y) =
ay(ky + 2ksx + ko) + balks + kox + 2ksy) — ¢y
OTL + (ky + 2keax + ko))? + (kp + kox + 2532
(8)

Note that I,(x,y) and I(x,y) do not depend on kq.
This is expected because a distant point light source
is assumed:; a translation of the object along the
viewing direction does not affect the observed image
intensity.

The above irradiance equations are nonlinear in
the k;’s. By taking the ratio of the two irradiance
equations, we will show that local surface orientation
can be determined by a linear optimization procedure.

3.2.1. Estimation of surface orientation. Although (7)
and (8) are nonlinear in the k;’s, we can linearize the
problem by taking their ratio. That is

I(x,5) _
Il(xay)
aylk, + 2ksx + kyy) + by(ky + kax + 2ksy) — ¢,
a,(k, + 2kyx + kgy) + balk, + kox + 2ksy) — ¢y’
&)

If we let I(x, y) = I(x, ¥)/I,(x, y), equation (9) can be
rewritten as:

({(x,y)a; — ay)k; + (I0x, p)bs — bi)ky
+ 2x(I(x, y)ay — aydks + [x(I(x, y)b; — by)
+ WI(x, y)a; — ay)Tks + 20(I(x, y)by — b )ks

= U(x,y)c; —¢;) = 0. (10)

Equation (10) is linear in the k;s. We can estimate
the k;’s by fitting (10) to the observed I(x, y)s in the
neighborhoods of I; and I,. For simplicity, we will
consider only odd sized rectangular neighborhoods
and the coordinates of the center of the neighborhood
R x C will be set to (0, 0). It is important to note that
the surface normal at the center of the neighborhood
is given by [k,,k,, —1]". For(x, y)e R x C, the system
of equations can be represented in matrix notation
by

where, if b(x, y) is the row vector

[I(X, _V)ﬂz - al’I(x: }’)bz - blszx(l(x’y)al - al)’
X{I(X,Jf‘]bz - bl) + y(!(x,y)ﬂ'z - al);
2)(I(x, y)by — by)]

then
[ H—-R,-C) ] [ H=R,—C); —c, 7]
b(—R,-C+ 1) (=R, —C+ l)e; — ¢,
B=| 50,0 p=| 10.00c; — ¢,
BR =3, 1 R — Tty
| BKR,C) N | HR.C)ey — ¢,

and a = [k, ka, k. kg ks
A least squares procedure which minimizes

is used to determine the estimator 4. The normal
equation estimator for a is given by
4=(B'B)" ‘B, (12)

If there is exact linear dependency between the
columns of B, the rank of B is less than 5 and B'B is
singular. In general, the columns of B are near linearly
dependent. In this case, BB is ill-conditioned and the
estimate of a suffers from large error. A more reliable
method for solving this least-squares problem is based
on a matrix factorization known as the singular value
decomposition which is described in Section 3.1.3.
However, if the problem is rank deficient (i.e. at least
one of the singular values of A is zero), the solution
which minimizes e* is not unique. Two approaches
are suggested to avoid this problem.

The first approach is to use a third image. An
additional set of equations can be obtained by taking
the ratio of the irradiance equation of the third image
and that of the first (orsecond). A new matrix B is
obtained by combining these equations. It is clear
that the effect of multicollinearity in the new B can
be reduced, provided the vectors of the incident
illuminations do not all lie in a plane. The second
approach is to constrain the locations of the light
sources.

3.2.2. Locations of the light sources. Recall from
Section 1.3 that the direction of a distant point light
source is specified by two angles: the azimuth (8) and
the elevation (¢). It follows from equation (2) that if
@ is 90°, then a becomes zero, if & is 0° then b becomes
zero and if ¢ is 90° both a and b are zero. The angle
of elevation of the light source is always made greater
than zero, therefore, ¢ is always non-zero.

We can simplify equation (10) by restricting the
positions of the light sources. If both a, and a, are
set to zero, equation (10) can be rewritten as

(U(x, y)ba = byky + x(I(x, y)by — bk
+ 2y(I(x, y)by — bi)ks — (I(x,y)c; — ¢;) =0

or

ky + xky + 2yks = J(x, ),
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where J(x, y) = ({(x,y)c; — ¢,)([{x. )by — b,). There-
fore, the matrix B in (11) can be replaced by

1 —R 2-0) ]
1 —R

1 R ¢
L1 R

v becomes a column vector of the J(x,y)’s and a
becomes [k;,kq,ks]" Note that B is independent of
the I’s and because the center of each neighborhood
has (x,y) equal to (0,0), B'B is the same for all the
neighborhoods in the image. Furthermore, B'B in (12)
is always invertible and can be computed accurately.
Therefore, the computation of 4 from equation (12)
is stable and efficient.

We can determine k,,k; and ks accurately if a,
and a, are both zero. Similarly, k,, k; and k, can be
obtained by making both b, and b, equal to zero.
Hence, if we obtain a first image with 6 = 90 and
¢ = 90°, a second image with § = 90" and arbitrary
¢, and a third image with # = 0" and arbitrary ¢,
then @ can be determined accurately and efficiently.
If (ky, k3, kq) and (k,, ky, ks) are determined independ-
ently as described, it is possible that the k,’s computed
from the two processes disagree. In the case where
the k,’s differ by a significant amount, we can either
take their average or use the three images together to
solve for a unique a.

If only two images are to be used, we can first
compute k,, k,, and ks by sctting a, and a, to zero
(or ky, k3 and ky by setting b, and b, to zero) and
then obtain k, (ork,) from the following derivations.

If a; = 0 and a, = 0, one obtains from (7)

10,0) = H% (13)
or
1+ k3 + k3 = [Io(koby — c,)]%/100,0)2.  (14)
Similarly,
L+ (k3 = 2kyky + k3) + (k3 — 4kqks + 4K2)
= [Io{(ky — 2ks)b; — ¢ )]¥/I(0, —1)* (15)
and
+ (kI + 2kyky + k3) + (K3 + 4kks + 4k2)
= [Iol(ks + 2ks)by — ¢))I/I0, 1)*.  (16)

If I, is known, one can obtain k, directly from (13).
Otherwise, let

ho = (kyby — ¢,)*/1{0,0),
hoy= (ky — 2ks)b; — c1)?/1(0, *1)2

and
hy = (ks + 2ks)b, — )2/ 10, 1)?
then
(15) -

(16) = 4k,k, + 8kyks = I5(hy — h_y) (17)

and
(14) — (15) = 2k ky — k2 + dkyk, ~4ks = Ii(hg — h_ N
(18)

If k, #0, by taking the ratio of (17) and (18), one
finds

h(dkyks — k3 — 4k2) — 8k, ks
2k,(2 — h) ’

where h = (hy — h_)ftho — h_,). If k, = 0, by takmg
the ratio of (15) and (16), one finds

k2 =
A1+ (k3 + dkaks + k3] — [1 + (k3 — dk ks + 4k2 )]

ky =

1-h

Where h=h_y/h,. In this case, the sign of k, is
undetermined.

In this section, a photometric stereo method has
been presented. By taking the ratio of the irradiance
equations of a pair of images, we are able to determine
local surface orientation uniquely by a linear optimiz-
ation procedure. It was also shown that adding a
third image and restricting the position of the light
sources allows us to determine surface orientations
accurately and efficiently. The photometric stereo
technique is particularly useful in controlled environ-
ments where the intensity and position of light source
can be adjusted and measured accurately. Some
possible applications of this technique include robotic
hand-eye systems and industrial inspection tasks.

3.3. Specular reflectance model

A more general shading model consists of two
components. The first component is Lambertian
reflection. Lambertian surfaces (or matte surfaces)
look equally bright in all directions. Specular or
mirror-like reflection accounts for the second com-
ponent. A surface having specular reflection reflects
light unequally in different directions. Specular reflec-
tion is usually observed as in the image.

Let 6 and ¢ be the angles defined in Fig. 2. The
angle § is the angle between the incident ray (L) and
the surface normal (N). Note that the angle between
the reflected ray (R) and the surface normal is also 6.
The angle ¢ is the angle between N and the vector
half way between the viewing direction (V) and L.
According to the shading model described in Ref, (10),
the intensity of a specular surface illuminated by a

point light source can be expressed as:
= I, costl + I;cos"¢ (19)

where the values of I) and I;. depend on the properties
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Fig. 2. Relationship between 6 and ¢.

of the surface material, the distance of the light source
to the surface element, and the intensity of the light
source, and n is a constant. The value of n ranges
roughly from 1 to 200, depending on the surface. A
shiny metallic surface will have a very large n. A dull
surface will have a small value. If we let L, N, and ¥
be, respectively, the unit vectors of L, N, and ¥, then
equation (19) can be rewritten as:

I=1(L.N)+ I(N.H)".
where
H=(L+V)/|L+ V|

It is clear that I,(L.N) is the component due to
Lambertian reflection, and I{N . H)" is the component
due to specular reflection. Note that the intensity of
the specularly reflected light falls off rapidly as ¢
increases.

The shape-from-shading method described above
can easily be extended to handle specular reflection.
The observed intensity of a specular quadratic object
surface can be approximated by

I(x,y) =
a(k, + 2ksx + kay) + blky + kyx + 2ksy) — ¢
UL+ (kg + 2k3x + kay) + (ky + kg + 2ksy)2]12

[ diky + 2k3x + kaY) + elky + koX + 2ksy) —f
TLLL + (ky + 2k3x + kyy)* + (ky + kg + 2ksy)*]"2

when L = (a,b,c) and H = (d, e,f). The same optimiz-
ation procedure as described in Section 3.1 can be
used to determine surface orientations for specular
surfaces by minimizing the sum of squares of the
differences between the observed intensity data and
the estimated intensity values computed from the
equation above.

3.4. Justification

The methods presented here have some advantages
over the previous shape-from-shading approaches.
Since a neighborhood of pixels are considered when
the surface orientation at a particular location is
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estimated, results show that this method is less sensi-
tive to noise. '

Furthermore, the above methods can produce more
than just the surface normal at each pixel. For each
neighborhood, it also produces the coefficients of the
fitting polynomial. Using these coefficients permits us
to determine whether or not neighboring pixels belong
to the same surface patch.

4, RESULTS

The non-linear optimization procedure described
in Section 3.1 has been tested on a 50 x 50 image of
a simple surface. Figure 3 shows the surface generated
by the polynomial: 40x + 40y — 2x% — xy + 2y The
shaded image resulting from illuminating the surface
of Fig. 3 from light direction (0,0, — 1), which means
directly above the center of the surface, is shown in
Figz 4. By inputting the starting value
ko =(1,1,1,1,1) or ko =1(40,40, -2, —1,2) to the
optimization procedure, k£ was found to be
(38.5,43.8, —2.0, — 1.3, 2.0), which is very close to the

Fig. 3. The polynomial surface:
40x + 40y — 2x% — xy + 2y2

Fig. 4. The shaded image of the surface of Fig. 3.
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original surface within the range of (x,y) used. By
using ko = (—40, —40,2,1, —2), the estimated surface
is shown in Fig. 5. By using k, = (0.86, —1.61, —0.03,
0.04, —0.01), which was obtained by fitting a second
degree polynomial to the intensity surface of the
shaded image, the estimated surface is shown in Fig.
6. By illuminating the three estimated surfaces from
light direction (0,0, —1), we obtained essentially the
same shaded image. This shows the ambiguity in
image shading information.

Figure 7 shows a pair of synthetic stereo images.
A sparse depth map was determined by the stereo
matching procedure dgscribed in Ref. (23). The depth
map is illustrated in Fig. 8. The depth constraints
obtained from the stereo pair of images were used to
determine an initial estimate of the object surface in

7,
50%,
20,00,
2:05%8,
5K
140%0,%,

Fig. 5. The reconstructed surface for the shaded image of
Fig. 4.

Fig. 7. Synthetic stereo images of a spherical surface.

Fig. 8. The depth map resulting from matching the stereo
images of Fig. 7.

the images. The singular value decomposition method
was used to obtain such an initial estimate. By
incorporating the depth constraints into the shape-
from-shading algorithm, an accurate reconstructed
surface was obtained (Fig. 9). It is worth mentioning

0
LR
(I T
WA Wk
HIIWHTHINITHES

Fig. 6. Another reconstructed surface for the shaded image
of Fig. 4.

Fig. 9. The reconstructed surface for object in the stereo
images.
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that multiple surface reconstructions are possible if
boundary constraints are unavailable.

To investigate the effect of boundary constraints
on the optimization process, the shape-from-shading
algorithms with and without boundary constraints
have been tested on the image of Fig. 10. One-hundred
sets of randomly generated initial estimates were input
to the methods described in Section 3.1 and Section
3.1.4. A set of boundary constraints was obtained
along the object boundary. Results show that the
method converged to three different but correct solu-
tions for eighty-four out of the one hundred initial
estimates if no boundary constraint was used. The
method converged to a unique solution ninety-four
times if the set of boundary constraints was included
in the optimization process. We also found that the
average rate of convergence was improved by a factor
of about two if the boundary constraints were used.
Similar results were obtained when these methods
were run on the image of Fig. 10.

The photometric stereo method described in Sec-
tion 3.2 has been tested on both artificially generated
images and real images. An object surface correspond-
ing to a portion of a spherical surface is shown in
Fig. 11. Three shaded images were obtained by
illuminating the surface of Fig. 11 from three different
positions: (1)the light direction is (0,0, —1) which
means directly above the center of the surface; (2) the
light direction is (0, 0.259, —0.966) which translates to
azimuth 90° and elevation 75° (3) the light direction
is (0.259,0, —0.966) which translates to azimuth 0°
and elevation 75°. The shaded images are shown in
the first row of Fig. 12.

In spite of the fact that a spherical surface cannot
be fit exactly by a second degree polynomial, the
reconstructed surface by the photometric stereo
method is extremely close to the original one, The
root mean square difference between the elevation
data (range from 100 to 255) of the original surface
and the reconstructed surface was found to be 1.20.

To examine the performance of our method on
noisy images, random noise of mean = 0 and standard
deviation = 10 was added to the shaded images of

Fig. 10. Shaded images of a curved surface.

Fig. 12. Shaded images and noisy images of the surface of
Fig. 11.

Fig. 12. The noisy images are shown in the second
row of Fig. 12. The reconstructed surface by our
method is shown in Fig. 13, The RMS difference
between the original surface and the reconstructed
surface is 2.67. As a comparison, Woodham’s method
was implemented and was run on the same noisy
images. The reconstructed surface by Woodham's
method is shown in Fig. 14. The RMS difference
between the original surface and the reconstructed
surface is 5.82. These results show that our method
is less sensitive to noise.

Another experiment has been performed on the
shaded images of an egg. The images were taken with
the camera positioned directly above the egg and the
light sources positioned at (8, ¢) = (90°90°),
(6, @) = (90°,45°), and (8, @) = (0°,45°). The corres-
ponding images are shown in Fig. 15. The recovered
surface is shown in Fig. 16, The result is considered
satisfactory because the light source used was not a
point light and the illumination angles measured may
differ from the true angles by as much as +10°.

In addition to the above experiments, images of a
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Fig. 13. The reconstructed surface by the photometric stereo
method.
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Fig. 14. The reconstructed surface by Woodham'’s method.

Fig. 15. Shaded images of an egg.

Fig. 16. The reconstructed surface from the images of Fig.
15.

more complex object were also used in testing the
photometric stereo method. Three shaded images
were obtained by illuminating the object
from  (8,¢) =(90%,90°), (6, ¢) =(90°,60°), and
{6, ¢) = (0°,60°). The shaded images are shown in Fig.
17. Since the object is composed of different types of
surfaces, the smoothness constraint was not expected
to hold at locations where these surfaces met. Thus,
an edge operator was first used to detect these
discontinuities, and the shape-from-shading method
was only applied to locations where no discontinuity
was detected. The reconstructed surface obtained by
using the photometric stereo method with a 5 x 5
window is shown in Fig. 18. The CPU time for
running our algorithm on a VAX/780 for these images
took a little over 1.5 min.

5. SUMMARY

Two methods to recover 3-D surface orientation
from image shading information have been presented.

Fig. 17. Shaded images of a complex object.
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Fig. 18. The reconstructed surface from the images of Fig.
17.

The first method works in the single image domain
and Is posted as a non-linear optimization procedure.
Experiments have been performed on synthetic and
real images and the results are found to be satisfactory.
Since inherent ambiguity exists in the image, the
optimization procedure may lead to undesirable or
multiple solutions. By using additional boundary
constraints, good initial estimates are obtained for
the optimization process and the performance of the
method is improved.

By using additional images as constraints, the
second method linearizes the optimization process.
Unique and accurate solutions have been obtained
by experimenting with the second method on simple
images. So far, the proposed methods have been tested
only on images which are obtained from orthographic
projection. In order for these methods to handle
perspective projection and more complex images,
more work needs to be done in the future.
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