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ABSTRACT

Segmentation is a basic step in a variety of image pro-
cessing tasks. This paper indicates how segmentation stands
in the grouping phase of vision algorithms by discussing the
entire context of the phases of vision algorithms. The main
body of the paper reviews common segmentation algorithms
and gives examples for most of the algorithms discussed.
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1. Overview

To understand what segmentation must accomplish,
we must understand its place in the vision toolbox. The
machine vision toolbox has five kinds of processes: con-
ditioning, labeling, grouping, extracting, and matching.
Segmentation falls in the grouping class. Before we review
segmentation itself, we will discuss the five kinds of pro-
cesses in the vision toolbox.

1.1 Conditioning

Conditioning is based upon a model which suggests that
the observed image is composed of an informative pattern
modified by uninteresting variations which typically add to
or multiply the informative pattern. Conditioning estimates
the informative pattern on the basis of the observed image.
Thus conditioning surpresses noise which can be thought
of as random unpatterned variations affecting all measure-
ments. Conditioning can also perform background normal-
ization by surpressing uninteresting systematic or patterned
variations. Conditioning is typically applied uniformly and
is context independent.

1.2 Labeling

Labeling is based upon a model which suggests that the
informative pattern has structure as a spatial arrangement
of events, each spatial event being a set of connected pixels.
Labeling determines in what kinds of spatial events each
pixel participates. For example, if the interesting spatial
events of the informative pattern are only events of high val-
ued pixels and events of low valued pixels, then the thresh-
olding operation can be considered as a labeling operation.
Other kinds of labeling operations include edge detection,
corner finding, and identifying pixels which participate in
varieties of shape primitives.

1.3 Grouping

The labeling operation labels pixels with the kinds of
primitive spatial events the pixel participates in. The group-
ing operation identifies the events by collecting together or
identifying maximal connected sets of pixels participating
in the same kind of event. If the labels are symbolic then
the grouping is really a connected components operation. If
the labels are the gray levels, then the grouping operation is
what the vision literature calls a segmentation. If the labels
are step edges, then the grouping operation constitutes edge
linking, etc.
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The grouping operation is the operation in which there
is a change of logical data structure. The observed image,
the conditioned image, and the labeled image are all digital
image data structures. Depending on the implementation,
the grouping operation can produce an image data structure
in which each pixel is given an index which is associated
with the spatial event to which it belongs or the grouping
operation can produce a data structure which is a collection
of sets. Each set corresponds to a spatial event and contains
the pairs of (row, column) positions which participate in the
event. In either case, there is a change in the logical data
structure. The entities of interest before the grouping step
are pixels. The entities of interest after the grouping step
are sets of pixels.

1.4 Extracting

The grouping operation determines the new set of enti-
ties. But after the grouping step the new entities are naked.
The only thing they posses is their identity. The extracting
operation computes for each group of pixels a list of its
properties. Example properties might include its centroid,
its area, its orientation, its spatial moments, its gray tone
moments, its spatial-gray tone moments, its circumscribing
circle, its inscribing circle, etc. Other properties might
depend on whether the group is considered as a region or
as an arc. If the group is a region, then number of holes
might be a useful property. If the group is an arc, then the
average curvature might be a useful property.

Extracting also can measure topological or spatial rela-
tionships between two or more groupings. For example, an
extracting operation may make explicit that two groupings
touch or are spatially close or that one grouping is above
another.

1.5 Matching

After the completion of the extracting operation, the
events occurring on the image have been identified and
measured. But the events in and of themselves have no
meaning. The meaning of the observed spatial events
occurs when a perceptual organization has occurred in
which it is recognized that a specific set of spatial events
in the observed spatial organization constitutes an imaged
instance of some previously known object such as a “chair”
or the letter “A.”

It is the matching operation which determines the in-
terpretation of some related set of image events associating
these events with some given 3D object or 2D shape. The
association determined by matching establishes a correspon-
dence between each spatial event on the image in the related
set of events with some spatial event on the 3D object or
2D shape. The association is one which in some sense best
matches both the character of the spatial events and their
spatial relationships. Thus, after matching, two primitive
image events which stand in some spatial relationship will
have associated with them two object events which stand in
a similar relationship.

There is a wide variety of image operations which are
matching operations. The classic one is template matching
which is effective only if the variety of instances expected
to be encountered is limited. For example, rotation and
size variations must be very small. The background must
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be nearly uniform. Random shape deformations must be
minimal..

Simple shapes will correspond to a primitive spatial
event and the property measurement from the primitive
spatial event will often be adequate to permit recognition of
the shape. In this case, the matching operation amounts to
matching the vector of properties measured from the image
spatial event with the vector of properties of a prototype
representative. Such matching constitutes statistical pat-
tern recognition.

Complex shapes will correspond to a set of primitive
spatial events. Here, recognition must proceed by using
the property vector of each observed spatial event as well
as the spatial relationships between the events. In this
case, the matching amounts to determining a relational
homomorphism with unary constraints established by the
required matching of the property vectors of the observed
image events with the property vectors of the prototype
primitives. Such a matching is what constitutes structural
pattern recognition.

2. Segmentation

What should a good image segmentation be? Regions of
an image segmentation should be uniform and homogeneous
with respect to some characteristic such as gray tone or
texture. Region interiors should be simple and without
many small holes. Adjacent regions of a segmentation
should have significantly different values with respect to the
characteristic on which they are uniform. Boundaries of
each segment should be simple, not ragged, and must be
spatially accurate.

Achieving all these desired properties is difficult because
strictly uniform and homogeneous regions are typically full
of small holes and have ragged boundaries. Insisting that
adjacent regions have large differences in values can cause
regions to merge and boundaries to be lost.

As there is no theory of clustering, there is no theory
of image segmentation. Image segmentation techniques
are basically ad-hoc and differ precisely in the way they
emphasize one or more of the desired properties and in
the way they balance and compromise one desired property
against another.

Image segmentation techniques can be classified as:
measurement space guided spatial clustering, single link-
age region growing schemes, hybrid linkage region growing
schemes, centroid linkage region growing schemes, spatial
clustering schemes, and split and merge schemes. As can be
observed from this brief typology, image segmentation can
be viewed as a clustering process. The difference between
image segmentation and clustering is that in clustering,
the grouping is done in measurement space. In image
segmentation, the grouping is done on the spatial domain of
the image and there is an interplay in the clustering between
the (possibly overlapping) groups in measurement space and
the mutually exclusive groups of the image segmentation.

The single linkage region growing schemes are the sim-
plest and most prone to the unwanted region merge errors.
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The hybrid and centroid region growing schemes are better
in this regard. The split and merge technique is not as
subject to the unwanted region merge error. However, it
suffers from large memory usage and excessively blocky
region boundaries. The measurement space guided spatial
clustering tends to aveoid both the region merge errors
and the blocky boundary problems because of its primary
reliance on measurement space. But the regions produced
are not smoothly bounded, and they often have holes, giving
the effect of salt and pepper noise. The spatial clustering
schemes may be better in this regard, but they have not
been well enough tested. The hybrid linkage schemes ap-
pear to offer the best compromise between having smooth
boundaries and few unwanted region merges.

The remainder of the paper briefly describes the main
ideas behind the major image segmentation techniques and
gives example results for several of them. Some of the
techniques can produce some very small regions. Additional
image segmentation surveys can be found in Zucker (1976),
Riseman and Arbib (1977), Kanade (1980), and Fu and Mui
(1981).

2.1 Measurement Space Guided Spatial Clustering

This technique for image segmentation uses the mea-
surement space clustering process to define a partition in
measurement space. Then each pixel is assigned the label
of the cell in the measurement space partition to which it
belongs. The image segments are defined as the connected
components of the pixels having the same label.

The accuracy of the measurement space clustering im-
age segmentation process depends directly on how well
the objects of interest on the image separate into distinct
measurement space clusters. Typically the process works
well in situations where there are a few kinds of distinct
objects having widely different gray tone intensities (or gray
tone intensity vectors, for multi-band images) and these
objects appear on a near uniform background.

Clustering procedures which use the pixel as a unit
and compare each pixel value with every other pixel value
can require excessively large computation time because of
the large number of pixels in an image. Iterative parti-
tion rearrangement schemes, such as ISODATA, have to
go through the image data set many times and if done
without sampling can also take excessive computation time.
Histogram mode seeking, because it requires only one pass
through the data, probably involves the least computation
time of the measurement space clustering techniques, and it
is the one we discuss here.

Histogram mode seeking is 2 measurement space clus-
tering process in which it is assumed that homogeneous
objects on the image manifest themselves as the clusters in
measurement space. Image segmentation is accomplished by
mapping the clusters back to the image domain where the
maximal connected components of the mapped back clusters
constitute the image segments. For images which are single
band images, calculation of this histogram in an array is
direct. The measurement space clustering can be accom-
plished by determining the valleys in this histogram and
declaring the clusters to be the interval of values between
valleys. A pixel whose value is in the ith interval is labeled
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with index ¢ and the segment it belongs to is one of the
connected components of all pixels whose label is 2.

Figure 1 illustrates an example image which is the right
kind of image for the measurement space clustering image
segmentation process. It is an enlarged image of a polished
mineral ore section. The width of the field is about 1mm.
The ore is from Ducktown, Tennessee and shows subhedral
to enhedral pyrite porophyroblests (white) in a matrix of
pyrorhotite (gray).

This example image is one which is not ideal for mea-
surement space clustering image segmentation. Figure 2
shows its histogram which has three modes and two val-
leys, and Figure 3 shows the corresponding segmentation.
Notice the multiple boundary area. It is apparent that
the boundary between the grain and background is in fact
shaded dark and there are many such border regions which
show up as dark segments. In this case, we do not desire
the edge borders to be separate regions and although the
segmentation procedure did exactly as it should have done
the results are not what we desired. This illustrates that
segmentation into homogeneous regions is not necessarily a
good solution to a segmentation problem.

Figure 4 illustrates an image of a section of an F-15
bulkhead. It is clear that the image has distinct parts such
as webs and ribs. Figure 5 shows the histogram of this
image. It has two well separated modes. The narrow one
on the right with a long left tail corresponds to specular
reflection points. The main mode has three valleys on its
left side and two valleys on its right side. Defining the
depth of a valley to be the probability difference between
the valley bottom and the lowest valley side and eliminating
the two shallowest valleys produces the segmentation shown
in Figure 6. The problem in the segmentation is apparent.
Since the clustering was done in measurement space, there
was no requirement for good spatial continuation and the
resulting boundaries are very noisy and busy. Separating
the main mode to its two most dominant submodes produces
the segmentation of Figure 7. Here the boundary noise is
less, the resulting regions more satisfactory, but the detail
provided is much less.

Ohlander (1975) refines the clustering idea in a recursive
way. He begins by defining a mask selecting all pixels on the
image. Given any mask, a histogram of the masked image
is computed. Measurement space clustering enables the
separation of one mode of the histogram set from another
mode. Pixels on the image are then identified with the
cluster to which they belong. If there is only one measure-
ment space cluster, then the mask is terminated. If there is
more than one cluster, then each connected component of
all pixels with the same cluster is, in turn, used to generate
a mask which is placed on a mask stack. During successive
iterations the next mask in the stack selects pixels in the
histogram computation process. Clustering is repeated for
each new mask until the stack is empty.

Figure 8 illustrates this process which we call a recursive
histogram directed spatial clustering. Figure 9 illustrates
a recursive histogram directed spatial clustering technique
applied to the bulkhead image of Figure 4. It produces
a result with boundaries being somewhat busy and many
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Figure 4 is an image of a section of an F-15 bulkhead. Figure 5 is a histogram of the bulkhead image of Fig.4

-
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Figure 6 is the segmentation of the bulkhead induced
by a measurement space clustering into 5 clusters.
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Figure 1 is an enlarged raw mineral ore section; the
bright areas are grains of pyrite; the gray areas constitute a
matrix of pyrorhotite; the black areas are holes. Because
some of the boundaries between regions are shadowed,
homogeneous region segmentation may not produce the
desired segmentation.

Figure 2 shows the histogram of the image in Fig. 1.

Figure 3 shows the segmentation produced by cluster-
ing the histogram of Fig. 2.

Figure 7 shows the segmentation of the bulkhead in-
duced by a measurement space clustering into 3 clusters.

Figure 8 depicts the recursive histogram directed spa-
tial clustering scheme of Ohlander.

Figure 9 shows the results of the histogram directed
spatial clustering when applied to the bulkhead image.

Figure 10 shows the results of performing an §&-
connected shrink operation followed by a fill operation on
the segmentation of Fig. 9.

small regions in areas of specular reflectance. Figure 10
illustrates the results of performing a morphological opening
with a 3 x 3 square structuring element on the segmentation
of Figure 9. The tiny regions are removed in this manner,
but several important long, thin regions are also lost.

2.2 Thresholding

If the image contains a bright object against a dark
background and the measurement space is one-dimensional,
measurement space clustering amounts to determining a
threshold such that all points smaller than or equal to the
threshold are assigned to one cluster and the remaining
points are assigned to the second cluster. In the easiest cases
a procedure to determine the threshold need only examine
the histogram and place the threshold in the valley between
the two modes. Unfortunately, it is not always the case
that the two modes are nicely separated by a valley. To
handle this kind of situation a variety of techniques can
be used to combine the spatial information on the image
with the gray tone intensity information to help in threshold
determination.
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Chow and Kaneko (1972) suggest using a threshold
which depends on the histogram determined from the spa-
tially local area around the pixel to which the threshold
applies. Thus, for example, a neighborhood size of 33 by
33 or 65 by 65 can be used to compute the local histogram.
Chow and Kaneko avoided the local histogram computation
for each pixel’s neighborhood by dividing the image into
mutually exclusive blocks, computing the histogram for
each block, determining an appropriate threshold for each
histogram and then spatially interpolating the threshold
values to obtain a spatially adaptive threshold for each pixel.

Weszka, Nagel, and Rosenfeld (1974) suggest determin-
ing a histogram for only those pixels having a high Laplacian
magnitude. They reason that there will be a shoulder of the
gray tone intensity function at each side of the boundary.
The shoulder has high Laplacian magnitude. A histogram of
all shoulder pixels will be a histogram of all interior pixels
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just next to the interior border of the region. It will not
involve those pixels in between regions which help make the
histogram valley shallow. It will also have a tendency to
involve equal numbers of pixels from the object and from the
background. This makes the two histogram modes about
the same size. Thus the valley seeking method for threshold
selection has a chance of working on the new histogram.

Weszka and Rosenfeld (1978) describe one method for
segmenting white blobs against a dark background by a
threshold selection based on busyness. For any threshold,
busyness is the percentage of pixels having a neighbor whose
thresholded value is different from their own thresholded
value. A good threshold is that point near the histogram
valley between the two peaks which minimizes the busyness.

Watanabe (1974) suggests choosing a threshold value
which maximizes the sum of gradients taken over all pixels
whose gray level equals the threshold value. Kohler (1981)
suggests a modification of the Watanabe idea. Instead of
choosing a threshold which maximizes the sum of gradient
magnitudes taken over all pixels whose gray tone intensity
equals the threshold value, Kohler suggests choosing that
threshold which detects more high contrast edges and fewer
low contrast edges than any other threshold.

Kohler defines the set F(T) of edges detected by a
threshold 7" to be the set of all pairs of neighboring pixels
one of whose gray tone intensities is less than or equal to T'
and one of whose gray tone intensities is greater than 7

E(T) ={((i,1), (K, D))
(1) pixels (¢,5) and (k,{) are neighbors
(2) min {1(3,5), I(k,1)} < T < max{(i,5),1(k,1)}}.
(1)
The total contrast C(T') of edges detected by threshold T is
given by

C(T) - mm{lI(z,J)—T|,[I(k,l)—T|}

((1.4),(k,D)E E(T)

(2)

The average contrast of all edges detected by threshold T'
is then given by C(T)/#E(T). The best threshold T, is
determined by that value is maximizes C(T})/# E(T}).

Milgram and Herman (1979) reason that pixels which
are in between regions probably have in between gray tone
intensities. If it is these pixels which are the cause of the
shallow valleys, then it should be possible to eliminate their
effect by only considering pixels having small gradients.
They take this idea further and suggest that by examining
clusters in the two-dimension measurement space consisting
of gray tone intensity and gradient magnitude, it is even
possible to determine multiple thresholds when more than
one kind of object is present.

Panda and Rosenfeld (1978) suggest a related approach
for segmenting a white blob against a dark background.
Consider the histogram of gray levels for all pixels which
have small gradients. If a pixel has a small gradient, then
it is not likely for it to be an edge. If it is not an edge, then
it is either a dark background pixel or a bright blob pixel.
Hence, the histogram of all pixels having small gradients will
be bimodal and for pixels with small gradients, the valley
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Figure 11. Illustrates how the threshold of the Panda
and Rosenfeld technique depends on the gradient magni-
tude.

between the two modes of the histogram is an appropriate
threshold point. Next consider the histogram of gray levels
for all pixels which have high gradients. If a pixel has a high
gradient, then it is likely for it to be an edge. If it is an edge
separating a bright blob against a dark background and if
the separating boundary is not sharp but somewhat diffuse,
then the histogram will be unimodal, the mean being a
good threshold separating the dark background pixels from
the bright blob pixels. Thus Panda and Rosenfeld suggest
determining two thresholds: one for low gradient pixels and
one for high gradient pixels. By this means they perform
the clustering in the two dimensional measurement space
consisting of gray tone intensity and gradient. The form of
the decision boundary in the two dimensional measurement
space is shown in Figure 11.

Figure 12 illustrates a FLIR image from the NATO data
base which one might think has the right characteristics

Figure 12 shows a FLIR image from the NATO data
base. To reduce noise it was filtered with a Gaussian filter
with a sigma of 1.5 and neighborhood size of 15.

Figures 13a & 13b show the FLIR image of Fig. 12
thresholded at gray tone intensity 159(1) and 190 (b).

Figure 14 shows the pixels of the FLIR image having
large gradient magnitude.

Figure 15 shows a scattergram of the gray tone
intensity-gradient measurement space for the image of Fig.
12. The gray tone intensity is the y axis and the gradient
is the x axis. Notice the nicely bimodal gray tone intensity
distribution for small gradient magnitude.

Figure 16 shows the segmentation of the image in Fig.
12 using the Panda and Rosenfeld scheme.
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for this type of segmentation algorithm. Figures 13a and
13b illustrate the FLIR image thresholded at 159 and 190,
respectively. Figure 14 shows the pixels having a large
gradient magnitude, where the gradient is computed as the
square root of the sum of the squares of the linar coefficients
arising from a gray tone intensity cubic fit in a 7x 7 window.
Figure 15 shows the horseshoe shaped cluster in the two-
dimensional gray tone intensity-gradient space where the
gray tone intensities and the gradient values have been equal
interval quantized.

Figure 16 illustrates the resulting segmentation. Notice
that because there is a bright object with a slightly darker
appendage on top, the assumption of a homogenous object
on a dark background is not met. The result is that only
the boundary of the appendage is picked up. A survey of
threshold techniques can be found in Weszka (1978).

2.3 Multidimensional Space Clustering

For multiband images such as LANDSAT or Thematic
Mapper, determining the histogram in a multi-dimensional
array is not feasible. For example, in a six band image where
each band has intensities between 0 and 99, the array would
have to have 1005 = 10'? locations. A large image might be
10,000 pixels per row by 10,000 rows. This only constitutes
10® pixels, a sample too small to estimate probabilities in
a space of 10'? values were it not for some constraints of
reality: (1) there is typically a high correlation between the
band-to-band pixel values, and (2) there is a large amount
of spatial redundancy in image data. Both these factors
create a situation in which the 108 pixels can be expected
to contain only between 10¢ and 10° distinct 6-tuples. Based
on this fact, the counting required for the histogram is easily
done by hashing the 6-tuples into an array.

Clustering using the multidimensional histogram is
more difficult than univariate histogram clustering. Gold-
berg and Shlien (1977, 1978) threshold the multidimen-
sional histogram to select all N-tuples situated on the most
prominent modes. Then they perform a measurement space
connected components on these N-tuples to collect together
all the N-tuples in the top of the most prominent modes.
These measurement space connected sets form the cluster
cores. The clusters are defined as the set of all N-tuples
closest to each cluster core.

An alternate possibility (Narendra and Goldberg, 1977)
is to locate peaks in the multi-dimensional measurement
space and region grow around them, constantly descending
from each peak. The region growing includes all successive
neighboring N-tuples whose probability is no higher than
the N-tuple from which it is growing. Adjacent mountains
meet in their common valleys.

Rather than accomplish the clustering in the full mea-
surement space, it is possible to work in multiple lower order
projection spaces and then reflect these clusters back to the
full measurement space. Suppose, for example, that the
clustering is done on a four band image. If the clustering
done in bands 1 and 2 yields clusters €1, €2, ¢z and the clus-
tering done in bands 3 and 4 yields clusters cs and ¢s than
each possible 4-tuple from a pixel can be given a cluster label
from the set {{c1,c4), (1, ¢5), (c2, ¢4), (€3, ¢5), (s, €4), (€3, ¢5)}.
A 4-tuple (1,22,73,72) gets the cluster label (caycq) if

46

(z1,%2) is in cluster ¢, and (za, T4) is in cluster .

3. Region Growing

3.1 Single Linkage Region Growing

Single linkage region growing schemes regard each pixel
as a node in a graph. Neighboring pixels whose properties
are similar enough are joined by an arc. The image seg-
ments are maximal sets of pixels all belonging to the same
connected component. Single linkage image segmentation
schemes are attractive for their simplicity. They do, how-
ever, have a problem with chaining, because it takes only
one arc leaking from one region to a neighboring one to
cause the regions to merge.

The simplest single linkage scheme defines similar
enough by pixel difference. Two neighboring pixels are
similar enough if the absolute value of the difference between
their gray tone intensity values is small enough. Bryant
(1979) defines similar enough by normalizing the difference
by the quantity (square root of 2) times the root mean
square value of neighboring pixel differences taken over the
entire image.

For pixels having vector values, the obvious generaliza-
tion is to use a vector norm of the pixel difference vector.
Instead of using a Euclidean distance, Asano and Yokoya
(1981) suggest that two pixels be joined together if the
absolute value of their difference is small enough compared
to the average absolute value of the center pixel minus
neighbor pixel for each of the neighborhoods the pixels
belong to. The ease with which unwanted region chaining
can occur with this technique limits its potential on complex
or noisy data.

3.2 Hybrid Linkage Region Growing

Hybrid single linkage techniques are more powerful than
the simple single linkage technique. The hybrid techniques
seek to assign a property vector to each pixel where the
property vector depends on the K x K neighborhood of
the pixel. Pixels which are similar are so because their
neighborhoods in some special sense are similar. Similarity
is thus established as a function of neighboring pixel values
and this makes the technique better behaved on noisy data.

One hybrid single linkage scheme relies on an edge
operator to establish whether two pixels are joined with
an arc. Here an edge operator is applied to the image
labeling each pixel as edge or non-edge. Neighboring pixels,
neither of which are edges, are joined by an arc. The initial
segments are the connected components of the non-edge
labeled pixels. The edge pixels can either be left assigned
edges and be considered as background or they can be
assigned to the spatially nearest region having a label.

The quality of this technique is highly dependent on
the edge operator used. Simple operators such as the
Roberts and Sobel operators may provide too much region
linkage, for a region cannot be declared as a segment unless
it is completely surrounded by edge pixels. Haralick and
Dinstein (1975), however, do report some success using
this technique on LANDSAT data. They perform a region
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Figure 17 shows the second directional derivative zero-
crossing operator using a gradient threshold of 4, a 9 x 9
neighborhood and a zero- crossing radius of 0.85 applied to
the bulkhead image of Fig. 4.

Figure 18 shows a hybrid linkage region growing
scheme in which any pair of neighboring pixels, neither
of which are edge pixels can link together. The resulting
segmentation consists of the connected components of the
non-edge pixels and where edge pixels are assigned to their
nearest connected component. This result was obtained
from the edge image of Fig. 17.

Figure 19 shows the results of overlaying an edge image
on the segmentation (Fig. 15) of the bulkhead image of Fig.
4, applying a connected components operator, and removing
small regions.

growing of the edge pixels in order to close gaps before
performing the connected components operator. Perkins
(1980) uses a similar technique.

Haralick (1982, 1984) discusses a very sensitive zero-
crossing of second directional derivative edge operator. In
this technique, each neighborhood is least squares fitted
with a cubic polynomial in two variables. The first and
second partial derivatives are easily determined from the
polynomial. The first partial derivatives at the center pixel
determine the gradient direction. With the direction fixed to
be the gradient direction, the second partials determine the
second directional derivative. If the gradient is high enough
and if in the gradient direction, the second directional
derivative has a negatively sloped zero-crossing inside the
pixel’s area, then an edge is declared in the neighborhood’s
center pixel.

Figure 17 shows the edges resulting from the second
directional derivative zero-crossing operator using a gradient
threshold of 4, a 9 x 9 neighborhood, and a zero-crossing
radius of .85. The edges are well placed and a careful
examination of pixels on perceived boundaries which are not
classified as edge pixels will indicate the step edge pattern
to be either non-existent or weak. A connected components
of the non-edge pixels accomplishes the initial segmenta-
tion. After the connected components operation, the edge
pixels are assigned to their spatially closest component by a
region filling operation. Figure 18 shows the boundaries
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from the region filled image. Obviously, there are some
regions which have been merged together. However, those
boundaries which are present are placed correctly and they
are reasonably smooth. Lowering the gradient threshold of
the edge operator could produce an image with more edges
and thereby reduce the edge gap problem. But this solution
does not really solve the gap problem in general.

Although the connected components of the non-edge
pixels of the edge operator may not yield an adequate
segmentation, the edges can be used in combination with
other segmentation techniques to improve the segmentation
derived from those techniques. For example, the Ohlander
technique discussed in Section II segments on the basis of
measurement space clusters, but can lose some important
edges. Such a segmentation will be improved if the edges
can be used to refine it. To this end, we started with the
Ohlander segmentation and overlaid the binary edge image
shown in Fig. 18. This was achieved by starting with a sym-
bolic image of the segmentation (where each pixel’s value is
its region number) and multiplying this image on a pixel
by pixel basis with the binary edge image. The resultant
image has pixels with value zero where the edges were, and
all the rest of the pixels still show their region numbers.
We then applied a connected components operator to the
non-edge pixels of this image, and removed small regions.
The result is shown in Figure 19. Note that Figure 19
shows a better segmentation than Figure 15 because several
important straight lines that were missing have been put in.
However, this technique does not always work as well. The
same approach applied to the Ohlander segmentation of an
image which had more specular reflection was less effective.
There were many extraneous edges which were put back into
the segmentation.

Yakimovsky (1976) assumes regions are normally dis-
tributed and uses a maximum likelihood test to determine
edges. Edges are declared to exist between pairs of con-
tiguous and exclusive neighborhoods if the hypothesis that
their means are equal and their variances are equal has to
be rejected. For any pair of adjacent pixels with mutu-
ally exclusive neighborhoods R; and R, having N — 1 and
N, pixels, respectively, the maximum likelihood technique
computes the mean

(3)
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and the scatter

Si= Y (X-X) (4)

XeR;

as well as the grand mean

1

v_ 1 5
* Ni+ Ny Xe%.-EJR, = L
and grand scatter
Sa= > (X-X) (6)
XeR,UR,

The likelihood ratio test statistic 7' is given by

_ [/ (N + Ny) [t
r= [S3/ Ny [S2/N,JN= (7)

Edges are declared between any pair of adjacent pixels when
the T' statistic from their neighborhoods is high enough. As
N, and N, get large, 2log T is asymptotically distributed as
a chi-squared variate with 2 degrees of freedom.

If it can be assumed that the variances of the two region
are identical, then the statistic

P (N + Ny — 2)N, N, (71_72)? (8)
BN /T A

has an F' distribution with 1 and N, + N, — 2 degrees of
freedom under the hypothesis that the means of the regions
are equal. For an F value which is sufficiently large, the
hypothesis can be rejected and an edge declared to exist
between the regions.

Haralick (1980) suggests fitting a plane to the neighbor-
hood around the pixel, and testing the hypothesis that the
slope of the plane is zero. Edge pixels correspond to pixels
between neighborhoods in which the zero slope hypothesis
has to be rejected. To determine a roof or V-shaped edge,
Haralick suggests fitting a plane to the neighborhoods on
either side of the pixel and testing the hypothesis that the
coefficients of fit, referenced to a common framework, are
identical.

Another hybrid technique first used by Levine and
Leemet (1976) is based on the Jarvis and Patrick (1973)
shared nearest neighbor idea. Using any kind of reasonable
notion for similarity, each pixel examines its K x K neighbor-
hood and makes a list of the N pixels in the neighborhood
most similar to it. Call this list the similar neighbor list,
where we understand neighbor to be any pixel in the K x K
neighborhood. An arc joins any pair of immediately neigh-
boring pixels if each pixel is in the other’s shared neighbor
list and if there are enough pixels common to their shared
neighbor lists, that is, if the number of shared neighbors is
high enough.

To make the shared neighbor technique work well each
pixel can be associated with a property vector consisting of
its own gray tone intensity and a suitable average of the
gray tone intensity of pixels in its K x K neighborhood.
For example, we can have (z,a) and (y,b) denote the
property vectors for two pixels if z is the gray tone intensity
value and a is the average gray tone intensity value in

1 y

Figure 20 illustrates the region growing geometry for
one pass scan left- right, top-bottom region growing. Pixel
¢ belongs to region R; whose mean is X;,1=1,2,3, and 4.
Pixel y is added to a region R; if by a T-test the difference
betwen y and X; is small enough. If for two regions R;
and Rj, the difference is small enough, and if the difference
between X; and X; is small enough, regions R; and R; are
merged together, and y is added to the merged region. If
the difference between X; and X; is significantly different,
then y is added to the closest region.

the neighborhood of the first pixel and y is the gray tone
intensity value and b is the average gray tone intensity value
in the neighborhood of the second pixel. Similarity can be
established by computing

S:w,(m—y)2+wz(:v—b)2-f«wa(y*a)z, (9)

where wy,w., and w; are non-negative weights. The pixels
are called similar enough for small enough values of .

Pong et al. (1984) suggest an approach to segmentation
based on the facet model of images. The procedure starts
with an initial segmentation of the image into small regions.
Each region with associated property vector is considered
a unit. In a series of iterations, the property vector of a
region is replaced by a property vector that is a function
of its neighboring regions. Then adjacent regions having
similar final property vectors are merged. This gives a
new segmentation which can then be used as input to the
algorithm, Thus a sequence of coarser and coarser seg-
mentations are produced. Useful variations are to prohibit
merging across strong edge boundaries or when the variance
of the combined region would become too large.

3.3 Centroid Linkage Region Growing

In centroid linking region growing, in contrast with
single linkage region growing, pairs of neighboring pixels are
not compared for similarity. Rather, the image is scanned in
some predetermined manner such as left-right top-bottom.
A pixel’s value is compared to the mean of an already
existing but not necessarily completed neighboring segment.
If its value and the segment’s mean value are close enough,
then the pixel is added to the segment and the segment’s
mean is updated. If there is more than one region which is
close enough, then it is added to the closest region. However,
if the means of the two competing regions are close enough,
the two regions are merged and the pixel is added to the
merged region. If no neighboring region has its mean close
enough, then a new segment is established having the given
pixel’s value as its first member. Figure 20 illustrates the
geometry of this scheme.



Segmentation and its Place in Machine Vision

Keeping track of the means and scatters for all region as
they are being determined does not require large amounts
of memory space. There cannot be more regions active at
one time than the number of pixels in a row of the image.
Hence, a hash table mechanism with the space of a small
multiple of the number of pixels in a row can work well.

Another possibility is a single band region growing
technique using the T-test. Let R be a segment of N pixels
neighboring a pixel with gray tone intensity y. Define the
mean X and scatier S? by

X= % > I(re)

(rc)ER

(10)

and

8= 3" (I(r,c)-X).

(rc)eR

(11)

Under the assumption that all the pixels in R and
the test pixel y are independent and identically distributed
normals, the statistic

(N-1)N 3
= |t (y — X)?/5?
) WX

has a Twy_; distribution. If 7' is small enough y is added
to region R and the mean and scatter are updated using y.

The new mean and scatter are given by

Ynew = (Nyold + y)/(N + 1)

T (12)

(13)

and
5’2

new

L szld + (y = y)z + N(—X-new = yolci)2' (14)

If T is too high the value y is not likely to have
arisen from the population of pixels in R. If y is different
from all of its neighboring regions then it begins its own
region. A slightly stricter linking criterion can require
that not only must y be close enough to the mean of the
neighboring regions, but that a neighboring pixel in that
region must have a close enough value to y. This combines
a centroid linkage and single linkage criterion. The next
section discusses a more powerful combination technique,
but first we want to develop the concept of “significantly
high.”

To give a precise meaning to the notion of too high a
difference, we use an « level statistical significance test. The
fraction o represents the probability that a T statistic with
N —1 degrees of freedom will exceed the value ty_i(a). If
the ohserved T is larger than ty_:(c), then we declare the
difference to be significant. If the pixel and the segment
really come from the same population, the probability that
the test provides an incorrect answer is a.

The significance level « is a user-provided parameter.
The value of ty_1() is higher for small degrees of freedom
and lower for larger degrees of freedom. Thus, region
scatters considered to be equal, the larger a region is, the
closer a pixel’s value has to be to the region’s mean in
order to merge into the region. This behavior tends to
prevent already large regions from attracting to it many
other additional pixels and tends to prevent the drift of the
region mean as the region gets larger. Figure 21 plots 5 (cx)
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Figure 21 illustrates how the T-test threshold changes
as a function of its degrees of freedom for a fixed significance
level.

as a function of M, the number of degrees of freedom for a
few different values of .

Note that all regions initially begin as one pixel in size.
To avoid the problem of division by 0 (for 5? is necessarily
0 for one pixel regions and 0 for regions having identically
valued pixels) a small positive constant can be added to 52.
One convenient way of determining the constant is to decide
on a prior variance V' > 0 and an initial segment size V.
The initial scatter for a new one-pixel region is then given
by NV and the new initial region size is given by N. This
mechanism keeps the degrees of freedom of the T-statistic
high enough so that a significant difference is not the huge
difference required for a T-statistic with a small number
of degrees of freedom. Figure 22 illustrates the resulting
segmentation of the bulkhead image for a .2% significance
level test after all region smaller than 25 pixels have been
removed.

Pavlidis (1972) suggests a more general version of this
idea. Given an initial segmentation where the regions are
approximated by some functional fit guaranteed to have
a small enough error, pairs of neighboring regions can be
merged if for each region, the sum of the squares of the
differences between the fitted coefficients for this region
and the corresponding averaged coefficients, averaged over
both regions, is small enough. Pavlidis gets his initial
segmentation by finding the best way to divide each row
of the image into segments with a sufficiently good fit. He
also describes a combinatorial tree search algorithm to ac-
complish the merging which guarantees a best result. Kettig
and Landgrebe (1975) successively merge small image blocks
using a statistical test, They avoid much of the problem of
zero-scatter by considering only cells containing a 2x 2 block
of pixels.

Gupta, Kettig, Landgrebe, and Wintz (1973) suggest
using a T-test based on the absolute value of the difference
between the pixel and the nearest region as the measure
of dissimilarity. Kettig and Landgrebe (1975) discuss the
multi-band situation leading to the F-test and report good
success with LANDSAT data.

Nagy and Tolaba (1972) just examine the absolute value
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between the pixel’s value and the mean of a neighboring
region formed already. If this distance is small enough, the
pixel is added to the region. If there is more than one region,
then the pixel is added to that region with smallest distance.

The Levine and Shaheen scheme (1981) is similar. The
difference is that Levine and Shaheen attempt to keep
regions more homogeneous and try to keep the region scatter
from getting too high. They do this by requiring the
differences to be more significant before a merge takes place
if the region scatter is high. For a user specified value 6,
they define a test statistic 7" where

T: ‘y_erwl_(l—S/_X—new)g (15)

If T < 0 for the neighboring region R in which |y~ X] is the
smallest, then y is added to B. If T > 0 for the neighboring
region in which |y — X| is the smallest, then y begins a new
region. Readers of the Levine and Shaheen paper should
note that there are misprints in the formulas given for region
scatter and regicn scatter updating.

Brice and Fennema (1970) accomplish the region grow-
ing by partitioning the image into initial segments of pixels
having identical intensity. They then sequentially merge all
pairs of adjacent regions if a significant fraction of their
common border has a small enough intensity difference
across it.

Simple single-pass approaches which scan the image in
a left- right, top-down manner are, of course, unable to
make the left and right sides of a V-shaped region belong
to the same segment. To be more effective, the single pass
must be followed by some kind of connected components
merging algorithm in which pairs of neighboring regions
having means which are close enough are combined into the
same segment. This is easily accomplished by using the
two pass label propagation logic of the Lumia et.al. (1983)
connected components algorithm.

After the top-bottom, left-right scan, each pixel has
already been assigned a region label. In the bottom-up,
right-left scan, the means and scatters of each region can be
recomputed and can be kept in a hash table. Whenever a
pair of pixels from different regions neighbor one another,
a T-test can check for the significance of the difference
between the region means. If the means are not significant,
then they can be merged. A slightly stricter criterion
would insist not only that the region means be similar, but
also that the nieghboring pixels from the different regions
must be similar enough. Figure 23 shows the resulting
segmentation of the bulkhead image for a .2% significance
level after one bottom-up, right-left merging pass and after
all regions smaller than 25 pixels have been removed.

One potential problem with region growing schemes is
their inherent dependence on the order in which pixels and
regions are examined. A left-right, top-down scan does not
yield the same initial regions as a right-left, bottom-up scan
or for that matter a column major scan. Usually, however,
differences caused by scan order are minor.
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4. Hybrid Linkage Combinations

The previous section mentioned the simple combination
of centroid linkage and single linkage region growing. In
this section we discuss the more powerful hybrid linkage
combination techniques.

The centroid linkage and the hybrid linkage can be
combined in a way which takes advantage of their relative
strengths. The strength of the single linkage is that bound-
aries are placed in a spatially accurate way. Its weakness
is that edge gaps result in excessive merging. The strength
of centroid linkage is its ability to place boundaries in weak
gradient areas. It can do this because it does not depend
on a large difference between the pixel and its neighbor to
declare a boundary. It depends on a large difference between
the pixel and the mean of the neighboring region to declare
a boundary.

The combined centroid hybrid linkage technique does
the obvious thing. Centroid linkage is only done for non-
edge pixels, that is region growing is not permitted across
edge pixles or saying it another way edge pixels are not
permitted to be assigned to any region and cannot link
to any region. Thus if the parameters of centroid linkage
were set so that any difference, however large, between
pixel value and region mean was considered small enough to
permit merging, the two pass hybrid combination technique
would produce a connected components of the non edge
pixels. As the difference criterion is made more strict, the
centroid linkage will produce boundaries in addition to those
produced by the edges.

Figure 24 illustrates a one pass scan combined centroid
and hydrid linkage segmentation scheme using a significance
level test of .2%. Edge pixels are assigned to their closest
labeled neighbor and regions having fewer than 25 pixels are
elimated. Notice that the resulting segmentation is much
finer than that shown in Figures 22 and 23. Also the
dominant boundaries are nicely curved and smooth. Figure
25 illustrates the two pass scan combined centroid and
hybrid linkage region growing scheme using a significance
level test of .2%. The regions are somewhat simpler because
of the merging done in the second pass.

5. Spatial Clustering

It is possible to determine the image segments by simul-
taneously combining clustering in measurement space with
a spatial region growing. We call such a technique spatial
clustering. In essence, spatial clustering schemes combine
the histogram mode seeking technique with a region growing
or a spatial linkage technique,

Haralick and Kelly (1969) suggest the segmentation
be done by first locating, in turn, all the peaks in the
measurement, space histogram, and then determining all
pixel locations having a measurement on the peak. Next,
beginning with a pixel corresponding to the highest peak
not yet processed, both spatial and measurement space re-
gion growing are simultaneously performed in the following
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Figure 22 shows the one pass centroid linkage segmen-
tation of the bulkhead image of Fig. 4. A significance level
of 0.2% was used.

Figure 23 shows the two pass centroid segmentation of
the bulkhead image of Fig. 4. A significance level of 0.2%
was used on both passes.

Figure 24 shows the one pass combined centroid and
hybrid linkage segmentation of the bulkhead image of Fig.
4. A significance level of 0.2% was used.

Figure 25 shows the two pass combined centroid and
hybrid linkage segmentation of the bulkhead image of Fig.
4. A significance Jevel of 0.2% was used on both passes.

Figure 26 shows a split and merge segmentation of the
bulkhead image of Fig. 4.

manner. Initially, each segment is the pixel whose value is
on the current peak. Consider for possible inclusion into this
segment a neighbor of this pixel (in general, the neighbors of
the pixel we are growing from) if the neighbor’s value (an N-
tuple for an NV band image) is close enough in measurement
space to the pixel’s value and if its probability is not larger
than the probability of the value of the pixel we are growing
from. Matsumoto, Naka, and Yamamoto (1981) discuss a
variation on this idea. Milgram (1979) defines a segment
for a single band image to be any connected component of
pixels, all of whose values lie in some interval I and whose
border has a higher coincidence with the border created by
an edge operator than for any other interval I. The technique
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has the advantage over the Haralick and Kelly technique
in that it does not require the difficult measurement space
exploring done in climbing down a mountain. However, it
does have to try many different intervals for each segment.
Extending it to efficient computation in multiband images
appears difficult. However, Milgram does report good re-
sults of segmenting white blobs against a black background.
Milgram and Kahl (1979) discuss embedding this technique
into the Ohlander (1975) recursive control structure.

Minor and Sklansky (1981) make more active use of the
gradient edge image than Milgram, but restrict themselves
to the more constrained situation of small convex-like seg-
ments. They begin with an edge image in which each edge
pixel contains the direction of the edge. The orientation is so
that the higher valued gray tone is to the right of the edge.
Then each edge sends out for a limited distance a message
to nearby pixels and in a direction orthogenal to the edge
direction. The message indicates what is the sender’s edge
direction. Pixels which pick up these messages from enough
different directions must be interior to a segment.

The spoke filter of Minor and Sklansky counts the num-
ber of distinct directions appearing in each 3 x 3 neighbor-
hood. If the count is high enough they mark the center pixel
as belonging to an interior of a region. Then the connected
components of all marked pixels is obtained. The gradient
guided segmentation is then completed by performing a
region growing of the components. The region growing must
stop at the high gradient pixels, thereby assuring that no
undesired boundary placements are made.

Burt, Hong, and Rosenfeld (1981) describe a spatial
clustering scheme which is a spatial pyramid constrained
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ISODATA kind of clustering. The bottom layer of the
pyramid is the original image. Each successive higher layer
of the pyramid is an image having half the number of pixels
per row and half the number of rows of the image below it.
Initial links between layers are established by linking each
parent pixel to the spatially corresponding 4 x 4 block of
child pixels. Each pair of adjacent parent pixels has 8 child
pixels in common. Each child pixel is linked to a 2 x 2 block
of parent pixels. The iterations proceed by assigning to each
parent pixel the average of his child pixels. Then each child
pixel compares his value with each of his parent’s values
and links himself to his closest parent. Each parent’s new
value is the average of the children to which he is linked, etc.
The iterations converge reasonably quickly and for the same
reason the ISODATA iterations converge. If the top layer
of the pyramid is a 2 x 2 block of great grandparents, then
these are at most 4 segments which are the respective great
grandchildren of these 4 great grandparents. Pietikainen
and Rosenfeld (1981) extend this technique to segment an
image using textural features.

6. Split and Merge

The split method for segmentation begins with the en-
tire image as the initial segment. Then it successively splits
each of its current segments into quarters if the segment
is not homogeneous enough. Homogeneity can be easily
established by determining if the difference between the
largest and smallest gray tone intensities is small enough.
Algorithms of this type were first suggested by Roberston
(1973) and Klinger (1973). Kettig and Landgrebe (1975) try
to split all non-uniform 2x2 neighborhoods before beginning
the region merging. Fukada (1980) suggests successively
splitting a region into quarters until the sample variance
is small enough. Efficiency of the split and merge method
can be increased by arbitrarily partitioning the image into
square regions of a user selected size and then splitting these
further if they are not homogeneous.

Because segments are successively divided into quarters,
the boundaries produced by the split technique tend to
be squarish and slightly artificial. Sometimes adjacent
quarters coming from adjacent split segments need to be
joined rather than remain separate. Horowitz and Pavlidis
(1976) suggest a split and merge strategy to take care of this
problem. Muerle and Allen (1968) suggest merging a pair
of adjacent regions if their gray tone intensity distributions
are similar enough. They recommend the Kolmogorov-
Smirnov test. Figure 26 illustrates the result of a Horowitz
and Pavlidis type type split and merge segmentation of the
bulkhead image.

Chen and Pavlidis (1980) suggest using statistical tests
for uniformity rather than a simple examination of the
difference between the largest and smallest gray tone in-
tensities in the region under consideration for splitting.
The uniformity test requires that there be no significant
difference between the mean of the region and each of its
quarters. The Chen and Pavlidis tests assume that the
variances are equal and known.
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Let each quarter have K pixels, X;; be the jth pixel in
the ith region, X; be the mean of the ith quarter and X..
be the grand mean of all the pixels in the 4 quarters. Then
in order for a region to be considered homogeneous, Chen
and Pavlidis require that

IXi-X.|<e, = i=1,2,34. (16)

We give here the F-test for testing the hypothesis
that the mean and variances of the quarters are identical.
The value of variance is not assumed known. Under the
assumption that the regions are independent and identically
distributed normals, the optimal test is given by the statistic
F which is defined by

- K Z?:z(Xf' = X..)2/3
i1 Doy (X ~ X0 )24(K = 1)

(17)

It has a F 41y distribution. If F is too high the region is
declared not uniform.

The data structures required to do a split and merge on
images larger than 512 x 512 are extremely large. Execution
of the algorithm on virtual memory computers results in
so much paging that the dominant activity may be paging
rather than segmentation. Browning and Tanimoto (1982)
give a description of a split and merge scheme where the
split and merge is first accomplished on mutually exclusive
subimage blocks and the resulting segments are then merged
between adjacent blocks to take care of the artificial block
boundaries.

7. Conclusion

We have briefly surveyed the place of segmentation in
vision algorithms as well as common techniques of mea-
surement space clustering, single linkage, hybrid linkage,
region growing, spatial clustering, and split and merge used
in image segmentation. We have noted that they can be
made to be more powerful if they are based on some kind
of statistical test for equality of means.

Not discussed as part of image segmentation is the fact
that it might be appropriate for some segments to remain
apart or to be merged not on the basis of the gray tone
distributions, but on the basis of the object sections which
they represent. The use of this kind of semantic informa-
tion in the image segmentation process is essential for the
higher level image understanding work. When segmentation
problems are specified without the semantic or application
information, they tend to be ill-posed problems. Ill-posed
means that none of the techniques such as those discussed
in this paper are likely to work, because these techniques do
not take into account such application specifics. It would be
useful for future segmentation work to integrate in a unified
way both the syntax of the segmentation with the kinds or
general forms of the semantics which are associated with
particular applications.
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