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Abstract

In recognizing cursive scripts, a major undertaking is segmenting cursive words into
characters and isolating merged characters. The segmentation is usually the pivotal
stage in the system to which a sizable portion of processing devoted and a considerable
share of recognition errors is attributed. The most notable feature of Arabic writing is
its cursiveness. Compared to other features, the cursiveness of Arabic words poses the
most difficult problem for recognition algorithms.

In this work, we describe the design and implementation of an Arabic word recog-
nition system. To recognize a word, the system does not segment it into characters in
advance; rather, it recoghizes the input word by detecting a set of “shape primitives”
on the word. It then matches the regions of the word (represented by the detected
primitives) with a set of symbol models. A spatial arrangement of symbol models that
are matched to regions of the word, then, becomes the description of the recognized
word. Since the number of potential arrangements of all symbol models is combina-

tdrié.]ly lafge, the system imposes a set of constraints that pertain to word structure
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and spatial consistency. The system searches the space made up of the arrangements
that satisfy the constraints, and tries to maximize the a posteriori probability of the
arrangement of symbol models.

We measure the accracy of the system not only on words but on isolated characters
as well. For isolated characters, it has a recognition rate of 99.7% for synthetically
degraded symbols and 9‘4.1‘% for scanned symbols. For isolated words the system has a

recognition rate of 99.4% for noise-free words, 95.6% for synthetically degraded words,

and 73% for scanned words.



Contents

1 Introduction
1.1 Features of Arabic'Script . . . . .. ................. P
1.2 Motivation . . . . . . . . it i e e e e e e e e e e e

2 Problem Statement
3 Preprocessing and Primitive Detection
4 The Control Module

5 The Matcher

5.1 SymbolModels . . .. .. ... ... .. ...
5.2 The Matching Process . . ... .........................
5.3 The Model-Region Match Probability . . . .. .................
5.3.1 The Joint Distribution of Indicator Variables . . . . . . .. ... ...
5.3.2 The Distribution of Matched Primitives. . . . . . ... .. ... ...

6 Experiments

6.1 Data Sets . . . . . v v i i e e e e e e e e e e e e e e e e e e e
6.2 Symbol Experiments . .. .. ... ...
6.3 Word Experiments{ S

7 Discussion and Conclusions

T1 Future Work . . . . . v o e e e e e e e e e e e e e e e e e e e e

11
14

24
24
29
29
32
35

35
36
39
40

44



1 Introduction

Since the advent of writing as a form of communication, stone, papyrus, and then paper have
prevailed as the media for writing. Only recently have electronic media started to replace
paper. Because of its improving space efficiency and its increasing speed of access, the use
of electronic media is constantly on the rise. Paper’s widespread use for communication and
archiving, and the amount: of information already on paper, press for quick and accurate
methods to automatically réa.d that information and convert it into electronic form.

Optical character recognition, OCR, is the branch of technology that deals with the
automatic reading of text. The ultimate goal of OCR is to imitate the human ability to
read—at a much faster rate—by associating symbolic identities with images of characters.
As the emphasis shifts from recognizing individual characters to recognizing whole words and
pages, more general terms Being used include optical tezt recognition and document image
processing.

This paper discusses a symbol recognition system that recognizes segmented noisy and
cursive text Words. To recqgni_ze symbols of a word, the system does not segment the word
into characters in advance; ;'ather, it recognizes the input word by detecting a set of “shape
primitives” on the word. It then matches the regions of the word (represented by the detected
priim'tives) with a set of symbol models. A spatial arrangement of symbol models that are
matched to regions of the word, then, becomes the description of the recognized word. Since
the number of potential arrangements of all symbol models is combinatorially large, the
system imposes a set of con:straints that pertain to word structure and spatial consistency.
The system searches the spai:e made up of the arrangements that satisfy the constraints and

tries to maximize the a posteriori probability of the arrangement.

1.1 Features of Arabic Script

The inadequate research actiivity on Arabic OCR can be attributed in part to the difficulties

Arabic posg_b_.‘for recogéitioﬁ. The calligraphic nature of Arabic script sets it apart from



other languages in several ways:
o Arabic has 28 characters, of which 16 have from one to three dots above or below them.
Dots differentiate otherwise similar characters. Additionally, three characters can have

a zigzag-like complementary character (Hamza s).
o Arabic text is read and written from right to left.

e Written Arabic is cursive. Within a word, some characters connect to the preceding

and/or following characters, and some do not connect. Thus a word can have one or
more connected components.
e The shape of an Arabic character depends on its position in the word. A character can

have up to four diﬁ'eréént shapes depending on whether it is isolated, connected from

the right (beginning form), connected from the left (end form), or connected from both
sides (middle form).
e A distinguishing feature of Arabic writing is the presence of the baseline. The baseline

is a horizontal line that runs through a connected portion of a word, and is formed

from the concatenation of adjacent characters. Almost all points of connection between -

characters fall on this‘line.
e Characters in a word might overlap vertically (without touching) depending on their
shapes.

o Arabic characters varj} in size (height and width), even for different shapes of the same

character.

e Several characters can combine vertically to form a ligature (combined character).

e The margins of typesét Arabic are justified by elongating the baselines of the words of a
line, not by inserting i%lter-word spaces, as in English. This is accomplished by inserting
the elongation, tatweel, symbol (-) at different places in the word. For example, the

word (L) is an elongated version of the word ({alL).
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Figure 1: A sample of written Arabic showing some of its characteristics.

Figure 1 demonstrates some of these characteristics on a typeset Arabic sentence consist-
ing of seven words. Reading from right to left, the first word is a ligature made up of two
characters, and the second word consists of three characters and two connected components.
The short strokes at the top of the text are diacritic marks. The ligature in the middle of
the figure consists of three w?}ertically stacked characters.

Some of these characteristics greatly complicate recognition. One of the hardest problems
with Arabic is its cursiveness; this is why segmentation is a crucial step for many Arabic
character recognition systerils. Many recognition errors are attributed to the segmentation
phase, and a large portion of processing time is allocated to it. Recognizing isolated Arabic
characters is not fundamentally different from recognizing Latin text (apart from the larger
number of classes of Arabic). Surveys on Arabic recognition include those by Amin 6],
Shoukry [38], and Jambi [25]. More recent and comprehensive surveys appear in [2] and [3].

Trenkle et. al.[36] discusses a recent Arabic recognition system.

1.2 Motivation

In Arabic word recognition,i the ultimate objective is to correctly recognize the symbols of
a given word. Since Arabic ‘words are cursive, it is not easy to determine where one symbol
ends and the next one begil';s. In fact, it is possible for a symbol to end after the beginning
of a succeeding symbol, as adjacent symbols can overlap as well as touch (as can be seen in

Figure 1).
Some recognition systems attempt to deal with the connectivity of Arabic text by per-




forming two steps in order: (1) they segment a word into symbols first, and (2) they then
recognize the segmented symbols. Examples of this approach are in [7; 26; 30; 28; 14]. The
difficulty of segmenting the symbols of a word leads to inaccuracies in the segmentation and,
as a result, in the recognitibn. To overcome the difficulty in isolating the symbols, some
systems over-segment an input word into pieces possibly smaller than symbols. It is up to
the subsequent recognition phase to determine the true segmentation points. Under this
approach, the recognition phase usually recognizes the symbols parts and then reassembles
them to make symbols. Works that use this approach include [5; 1; 37; 27; 39; 43; 31; 12;
11).

Another approach is to 'scan the word in one direction (e.g., right to left) and assume
that a consecutive set of image columns is a symbol and try to recognize that symbol, as
in [35; 33]. Whenever a symbol is recognized, the recognizer starts at where it left off and
repeats the process. In this: approach if the system is unable to recognize a symbol that is
in the middle of the word, 1t starts recognition from the other end and tries to recognize the
symbols in reverse order.

A better approach is the recursive segmentation-recognition approach [13]. Whenever the
recognition step fails to recognize a segmented piece of text (symbol or part of a symbol),
the word is re-segmented, and the process is repeated. The last approach is that of whole
word recognition (e.g., [8]). :,This requires using features of the whole word and recognizing
the whole word as a unit. To do this, a system must be trained to recognize the shapes of
all the different words it shc}uld recognize.

The problem with all of :the above approaches is that there is no recourse if a symbol is
recognized incorrectly, par't'-'icularlyiwhen the error is due to segmentation. The preceding
approaches find the solution that is best on a symbol-by-symbol basis, or that is best for
the particular local area thé.t contains (at most) a pair of symbols. Another way to state
the problem is that these approaches are sequential: the recognition of a subsequent sym-

bol depends on its correct segmentation and sometimes on the recognition of its preceding

symbol.



The solution discussed here is to optimize both segmentation and recognition with respect
to the whole word. The emphasis is on finding a recognition solution that maximizes an a
posteriori word probability. The system uses state-space search to find the best recognition of
the word. In our approach, symbol recognition precedes boundary detection. Because symbol
boundaries are not known,ithe search successively proposes sets of symbol boundaries. A

competing approach to the one discussed here is the hidden Markov Model approach[29)].

2 Problem Staéement

This section formalizes the word recognition problem as a state-space search problem. Let P
be a set of predefined primitive types. Let £ be a set of symbol classes, which is the symbol
set that the system recognizes. When recognizing printed characters, it is the set of all the
shapes to be recognized. A: symbol is defined to be the shape or glyph of a character. In
Arabic, a letter might have up to four shapes. Each symbol class has a model that defines it
in terms of instances of thegiprimitive types, P, and their locations relative to one another.
Let M be the set of symboi models that correspond to the symbols in £. Further, let X’ be
the set of all points in the Cartesiah space, X = Z x Z, where Z ={0,1,2,...} .

When recognizing a parigicula,i' word, the input to the search problem is the image of the
word, I, and the set, S, of ];rimitive instances detected on the word.

‘The system’s goal is to spatially arrange the symbol models in the word space and find
the spatial arrangement of symbol models with the maximum a posteriori probability. The
system achieves its goal by matching symbol models with local regions in the word image.

Posing the problem as a state-space search problem, X, we can characterize it by four

components:

T =(T,w,s,G).
"The components have the following mea).ning:

o T is a set of states, 7 : £ x S, where £ = (M x X) is a sequence of zero or more pairs

of symbols models and translations.



e w is an operator that operates on a state and returns a set of states, w : 7 — 27,

e s € T is the start stafze.
e G C T is a set of goal states.

Each state ¢ has two elements: (1) a sequence of pairs of models and their translations,

and (2) a set of unmatched primitives, as follows:
l= ((Ml’z1>’ Tty (Mn"zn), S)

where n is the number of symbol models already arranged (matched) in state t. The set S
is the set of primitive instances from S that is not yet matched. As such, a state specifies a
string of characters that is a (partial) solution to the recognition problem. This sequence of

n models represents a strinf{ of symbols or a potential word that is ordered in word reading

order.
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Figure 2: The components of a state. The models are indicated by boxes with dashed lines.



Figure 2 illustrates theg components of a state. The state has four matched models,
M,, ..., My, indicated by dashed boxes. Their respective translations, i, ..., Z4, are relative
to the origin of the word’s bounding box. The set of unmatched primitives, S, consists of
the gray primitives. The partial word represented by the string of models is I; ... l4, where

l; is the symbol class of model M;.

The start state, s, which is the root of the search tree, has no arranged symbol models.
Its set of unmatched primitives equals the whole set of detected primitives, s = (0, S).

Applying the operator w to state t returns a set of states R. A state 7 in R uses a
group of primitive instances from S to match an additional symbol model to a word region.
This means that a descendent state r has one more translated model than its parent state

t. Therefore:
j;‘I" e ((Mh 181); Y (M"+1’z"+1>’ T) ’

where T is the set of primi;:ives remaining after matching model M,;; at translation z,.4;
with the primitives in set S. 7

A goal state u € G is a leaf of the tree. The string of models of a goal state, u, must
satisfy the word structure constraints specified below. -

In this characterization of the recognition problem, segmentation and recognition are
interleaved, while maintaining a global view of the process. The rest of this paper describes
the design and implementation of and experiments conducted on a system that recognizes
Arabic words using the word optimization recognition methodology. The system has three
major components, shown as ovals in Figure 3: (1) the primitive detector, (2) the control
module, and (3) the matcher.

To recognize a given Woéd, the system detects a predefined set of shape primitives on the
isolated image of the word. Preprocessing and primitive detection are explained in detail in
Section 3.

The control module takgs the detected primitives of a word and hypothesizes a number
of alternative strings as the irecognition of the word. It then chooses the one that maximizes

an a posteriori probability By condgctigg a state-space search in the space of symbol model

{
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arrangements.
At any particular point in the search, the control module decides on (1) a set of symbols

that is expected at that location, and (2) a location where it should match the next symbol
model. It then asks the matcher to match each symbol model in the set with that particular
region in the word. The co@trbl model is explained in detail in Section 4.

The matcher operates in two major modes: the training mode and the testing or recog-
nition mode. During tra.lmng, the matcher processes a training set comprised of a large
number of degraded symbols that are labeled with their identity. The training mode essen-
tially teaches the system the description of each symbol in terms of primitives.

During execution, the control module gives the matcher a symbol model and a translation
of the model onto the word image. The matcher’s job is to compute the probability of a
match between the symbol model and the word image at the particular translation. The
matcher is explained in detail in Section 5.

Prior work on search and model matching for hand writting recognition applications
can be found in[44; 45]. Some later work can can found in [16; 23]. For the idea of using

primitives in cursive script recognition see [32]. Fang and Hull[15] suggested the use of the

A* algorithm to accomplish the search.

3 Preprocessing and Primitive Detection

The word recognition systen; is designed to recognize isolated Arabic words on binary images.
Thus, it is assumed that input words have been isolated and have minimal skew.

The system uses information about the baseline of text to arrange the symbols. The
baseline of Arabic text is the line at which the characters connect to one another. It usually
coincides with the row of the word image with the highest density of black pixels. For that,

the system detects the baseline using the horizontal projection profile.

‘ }
The task of the primitive detector is to find instances of a set of shape primitives on a text.

image. Instances of primitives are found by applying the erosion morphological transform
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to an input block. A shape primitive is usually a small connected set of pixels that has a
simple geometric structure. A shape primitive represents a structuring-element for erosion.

To detect instances of a shape primitive on a text image, the primitive detector morpho-
logically erodes the image using the shape primitive as a structuring element. This produces
a new image, with instances of the shape primitive showing up as blobs at different locations.
Each blob, which is a connected set of pixels, is termed a primitive instance. Each pixel in
a blob specifies the location where an occurrence of the primitivé was detected on the im-
age. Gillies[18] and Stentiford [41] also use mathematical morphology to extract primitives.
Other approaches that are more graded include.[42; 17]

Figure 4 shows the letter “A” and the structuring-elements for three shape primitives,
which can be used to recognize the letter. Figure 5 shows the three images that result from
detecting each of the three s:ha.pe primitives on the image of the letter “A.” In this example,
each shape primitive had exactly one instance (blob).

Information about the blobs is extracted from the resulting image by a connected com-
ponents labeling operation. .’ The labeling operation assigns a unique label to each adjacent
set of foreground pixels. Here we use eight-neighbors, which means that diagonal pixels are
taken to be neighbors.

The relevant information about a primitive instance (blob) is the location of its centroid
and its area in pixels. Hence, the application of the operator that defines shape primitive p
to a text image results in a number of primitive instance tuples of the form (p,r, c,a), where
(r,c) are the row and column coordinates of the centroid of the primitive instance relative
to image coordinates (the upper left corner), and a is the area of the instance in pixels.

In this system, shape pﬁmitives, or structuring-elements, are specified symbolically. A
structuring-element can be’a line, corner, or arc. For an example, a corner is defined by
specifying the lengths of ifs':.tv-vo liI;es, the angle of the first line relative to the horizontal,
and the angle of the second line relative to the first line. The origin of a corner structuring-
element is the intersection (origination) point of the two lines.

The shapes of the primitives (or structuring-elements) that we use include lines of different

12
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Figure 4: An example of the definition and detection of shape primitives. On the left is an

image of the character “A”, and on the right are structuring-elements that designate three

shape primitives, P1, P2, and P3, with their center points marked.
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Figure 5: The result of eroding the above image with each of the three structuring-elements,

P1, P2, and P3. The blobs.are the detected instances of the shape primitives.
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Figure 6: The shape primitives (structuring elements) used by the system. Each square

H
corresponds to an image pixel. The origin of each shape is indicated by a cross.

lengths and angles; corners (where each corner is formed by two lines that share an endpoint)
of different line lengths and angles; elliptic arcs of different radii and beginning and extent

angles; and circles and disks of different radii. Figure 6 shows a set of shape primitives.

4 The Control Module

When recognizing a pa,rticﬁlar word, the input to the search problem is the image of the
word, I, and the set of primitive instances detected on the word, S. The task of the control
module is to search for the spatial arrangement of symbol models with the maximum posterior
probability. This spatial a,rr;a,ngement of models specifies a string of symbols, or a recognition
of the word.

The space to be searched is that of sets of translated symbol models. Since this space
is exponentially large, the search algorithm must be efficient and effective in finding a good

solution.
The search algorithm used here is a variant of depth-first branch-and-bound. It employs

14



a list size cutoff to reduce the space of the search. The cutoff reduces the branching factor
of the search and hence reduces the base of the exponent for the worst case time complexity.
This strategy differs from beam search. In our approach, the cutoff is applied locally to the
ordered list of descendents of a state; in beam search, the cutoff is applied to the open list,
which is an ordered list of all nodes that have been generated but not expanded. When
the cutoff is used, both sedirch strategies are not guaranteed to find the optimal solution.
The size of the list can be experimentally varied up to infinity (no cutoff) to find the best

performance/time.

The tasks undertaken by search algorithm include:

1. Expanding a state and generating its successors by applying the operator w to the

state

2. Checking if a state n sa goal state by satisfying the word constraints, W(n) = true
3. Computing the posterior probability of a goal state n (word), Pr(n)

4. Ranking a set of states using the state ordering function 7
i

Before advancing to the next sections that address these constraints and functions, we
provide the following definitions that are used in the discussion. A state ¢ in the search space

has two components: a sequence of model-translation pairs, and a set of unused primitives:
t=((My,z1), -, (Mn,2n),S).

Let the name of the symb(;l represented by model M be denoted as I(M). The string of
symbols represented by the symbol models at state ¢ is then I(M)...I(M,).

State expansion is the process of applying the operator w to a state ¢t and generating a
set of new states R. In this problem domain, state expansion is the process of creating a set
of new states, where each s;tate has an additional new model-translation pair added to the

end of the string of models of the original state. This involves: (1) examining the region of

15



the word image as well as the primitives that are unused by previous symbol models, and
(2) proposing a set of translated symbol models that are compatible with the current state.

The strategy of the search is to suggest models in a right-to-left order, so that the first
model of a state will correspond to the first symbol of the word and the last model will
correspond to the last symbol of the word. At the state expansion level, this translates to
proposing symbols in locations just to the left of the leftmost symbol model in the current
state.

The space of all possible symbol model-translation pairs is very large. Further, many
pairs are incompatible with parent states or are very unlikely to be part of a correct Arabic
word. To reduce the number of searched states, we use a large lexicon of Arabic words
and incorporate a number of constraints on word structure and the spatial arrangement of
models. The advantage of using the word constraints at the state expansion level is to reduce
the number of searched states. Kimura et. al.[39] based their algorithm for unconstrained
handwriting using a lexicon. Shridhar et. al.[24] also found it useful to use a lexicon in his
comparison of lexicon free and lexicon directed word recognition for handwritten words.

The lexicon constrains state expansion to propose symbol models that will construct
words of the lexicon. It is ;ustomary in lexicons and dictionaries for Arabic to sort words
in the root-pattern form, after stripping the prefixes and suffixes. This method is more
compact than spelling out the words but is more complex when looking up words. - Here,
the lexicon as a list of words represented as a trie.[40] A base word might be included more
than once to represent the ?Word with different prefixes and/or suffixes. The Arabic lexicon
that we use here is constructed from two sources: a corpus of about 212,000 words, and a
set of 25 pages that were entered in-house. The lexicon has a total of over 42,000 different
words. For comparison, the“ Unix spell command has around 50,000 (unique) words [9]. The

sources of the corpus are Arabic-language newspapers, news magazines, and books. The

root of the lexicon trie is the empty string and the children at the first level are all possible

first characters of words. Subsequent levels branch off at character positions where lexicon

words differ.
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Table 1: The structural compatibility table for symbol models.

model n : model n +1

0, digits, punctuation | isolated & beginning forms, digits, punctuation

beginning & middle forms | middle & ending forms

isolated & ending forms digits, punctuation

Figure 7 shows an example of a trie for nine Arabic words. As used here, the trie can be
thought of as a finite state machine for recognition. Recognition starts at the empty string.
Whenever a symbol is proposed, it advances to its state in the trie. Recognition can stop
at any state that designates the end of a word (indicated by a double oval in the figure).
Thus, when expanding a certain state, the symbol models to be proposed correspond to the
characters that are the descendents of the trie node of the parent state.

The constraints on word structure include:

e The font type and size are consistent within a word.

e A word begins with a beginning form and ends with an ending form.

e All adjacent positional shapes are compatible within a word.

Word structure constraints restrict the set of symbol models proposed to those compatible
with the last (leftmost) model in the parent state. Table 1 shows the types of symbol models
that are proposed (second icolumn) based on the last symbol model in the parent state
being expanded (first column). An additional model that is considered a middle form is the

elongation (tatweel -) symbol. The system permits a tatweel to occur between any pair of

connecting letters.

Spatial constraints govern the location of the bounding boxes of symbol models relative

to one another and to the word’s bounding box. The spatial constraints specify that:

e The characters of a word are collinear; their baselines must coincide with the word’s

baseline.

18



e Bounding boxes of a.djacent symbols have minimal overlap with one another.
¢ Bounding boxes of adjacent symbols have only small gaps between them.

¢ Bounding boxes of symbols are almost totally enclosed in the bounding box of the

word.

Spatial constraints reduce the number of searched states because they remove states that
will have low match probability. For example, one of the spatial constraints is to ensure that
two symbol bounding boxes do not coincide. When two models coincide, the later one is
bound to have a very low match probability because many of its primitives will have been
used. |

Now that we have a set of proposed symbols models that are structurely sound and can
lead to a lexicon word, we propose translations for the models. To limit the number of
descendent nodes to those likely to lead to a good solution, each proposed model will have
only one translation. To find the best translation for a given model, we use the spatial
constraints to find the most likely position of the model.

Since there is no gua.raﬁtee that a proposed position, (z,y), of the symbol model is the
best position, we try the set of adjacent positions {(z = m,y £ n)|0 < m,n < i}, where
i is a small integer. At each of these translations, we match the model and retain the
translation that produces the largest match probability. The assumption here is that the
local optimization is likely ;to lead to the global optimum. The price paid for reducing the
number of translations per. model to one is possibly forsaking the optimal solution for a
suboptimal one.

A goal state of the search tree is an arrangement of symbol models that corresponds to a
word. This section addresses the constraints on a state that make it a goal and the posterior
word probability model that is used to evaluate goal states.

Since the states are exp;.nded under the lexicon, structural, and spatial constraints, the
only remaining conditions tillat make a state a goal state are that the characters of the state

make a proper lexicon word (and not only a subset) and that the last symbol model is an
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ending form.
* In this problem, note that a goal state is not necessarily a leaf state. A string that might

qualify as a word could be a substring of other words. This happens when the ending form
and middle form of the last character of the word are the same as in the word “.4;”, which is
also a substring of the word;s “sa” and “Qi.&g”, as can be seen in Figure 7. For this reason,
when such states satisfy thé goal constraints, they should be searched further.

Furthermore, the first correct word to be found in the search might not be the best word.
So reaching a goal state does not qualify as the termination condition. The algorithm must
search all nodes that are not pruned. For this reason, it is important for the search algorithm
to be effective in pruning as many states as possible, but it must take care not to prune a
state that leads to that besf solution.

The system computes the word posterior probability for states that satisfy the word
constraints. The posterior f‘)robability of such a state is the joint probability of each of its
symbol models matching th; region onto which it has been translated. The word probability

is expressed as:

Pr({(M,tr),..., (Ma,ta)}, S 1)

The probability of each symbol matching the word region onto which it has been trans-
lated is determined by the matcher and is returned on an independent call to the matcher.
Hence, we take the probability of each symbols’ match to be independent of the other sym-
bols matches. (The only iri:terdependence results from restrictions lon model selection and

translation that an earlier model poses on a newer one). If we assume that the symbols were

matched in increasing subscript order, then the probability distribution is:

Pr({(Mut), .., (Mata)},§ 1 1) = T1Pr((Mat) | 1)

=1

x Pr(S | I). (1)

The first term on the righ_t is the product of the model match probabilities. The model
match probability distribution is detailed in Section 5.3.

20



When computing the word probability of a goal state, the detected primitives that remain
unmatched are considered extraneous primitives. The probability of the extraneous primi-
tives, Pr(S | I), is the product of the probabilities of the individual extraneous primitives.
Let the primitive instance (p,7,c,a) € S be an extraneous primitive instance, where p is its
type, (r,c) is its centroid, and a is its area. We assume that extraneous primitives have a

distribution that is similar to the primitive match distribution:
Pr((p,r,¢,0)) = k(8)e™*, - (2)

where § is the parameter of the distribution and k(§) is the probability normalizing constant.
We make é the minimum v;lue for the exponential parameter, a, of the match probability
over all primitives and models (Section 5.3.2), and we divide by an empirically determined
constant.

The state ranking function, 7, is essentially a heuristic function that allows selecting
states that are more likely to lead to the optimal solution. In this problem we are not
interested in the goodness of the path to the solution, but in the goodness of the solution
itself.

The figure of merit for & goal in this problem domain is the posterior probability of the
goal state, formulated in Equation (1). Maximizing the merit of a solution is equivalent to
minimizing the cost of the solution with a negated heuristic function [34].

For a heuristic function to be guaranteed to lead the search to the optimal solution, it
should not underestimate tlf1e merit of any state. When a state is thought to be worse than
it really is, the state that léa.ds to the optimal solution might be pruned. This concept is
analogous to the admissibility criteria of the heuristic of the A* algorithm.

Since the objective hen; is to maximize the probability of the solution, we compose a
heuristic function of two parts: (1) g(ﬂ), the actual match probability of the models in node
n, and (2) h(n), an (over-)estimate of the match probability of the remaining part of the
word. For the heuristic to fulfill jts rule in speeding up the search, it must be much faster

to compute than expanding the node. For that, we define the probability per width, pw, of
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a symbol model, m, to be the ratio of the maximum possible match probability of m (i.e.,
under ideal conditions) to the width of the model. The match probability fora symbol model
is maximal when it is matched with a noise-free image of the symbol.

The maximum probability per width over all symbol models is
mpw = max puw(m).

We then take the estimate of the match probability of the remaining part of the word, h(n),
to be the product of the width of the yet unmatched part of the word, w(n), times the

maximum probability per width:
h(n) = w(n) x mpw. 3)

This assumes that the remaining part of the word can be matched with multiple instances
of the symbol model that have the highest probability per width ratio, which is clearly an
overestimate of the match probability. Putting all the parts together, the state evaluation

function for state t is:
(1) = f_[Pr (M, 1) | T)| x [w(2) x mpu], (4)

where w(t) is the width of the unmatched part of the word at state t. By taking the log of

7, we can see the similarity between it and the A* heuristic:

log(7(2)) = Z’;log(PT ((Mi, t:) | 1)) + log(w(2) x mpw) ()

— 2

~

T
Term 1 is the actual merit of the part of the word already matched in the state, while Term
2 is an over-estimate of the merit of the expected match with the remaining portion of the

word.
Figure 8 shows a block diagram of the control model. As mentioned earlier, the algorithm
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Figure 8: Block diagram of the control model. The ovals designate processes, and the

fectangles represent data structures.
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terminates when it searches all the states of the space that are not pruned. When the
algorithm returns, it prints out the best word as the solution to the recognition problem.

The next section discusses the operation of the matcher.

5 The Matcher

The matcher compares a certain symbol model to a region in a word image onto which it
has been translated. Called by the control model, the matcher is expected to return the
probability of the symbol model matching the region. This chapter explains the components

of symbol models, details how they are used in matching word regions, and describes how

the match probability is computed.

5.1 Symbol Models

The model for a particular symbol is a complete description of the primitives of an ideal
image of the symbol, termed the ideal primitives, and the deformations expected under an
assumed noise model. The sS'mbol model contains the information necessary for the matcher
to measure the similarity between its primitives and those of the match region of the word.
The match region of the word is defined as the region covered by the bounding box of the
symbol model when it is translated onto the word image. The matcher works by finding the
correspondence between the primitives of the symbol model and the detected primitives that
are in the match region of the word.

To find the detected primitives that correspond to a particular model primitive, each
model primitive has a correspondence region. The correspondence region of a model primitive
is a region that includes the expected deformations of the primitive, under the assumed noise

model.
A symbol model contains a bounding box and a set of primitive specifications. The
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model, M, of a symbol is defined as:
: M = (‘h’w) {(p.',‘r,-, G, A;, Rl)}:;l .

Components of the symbol model are:
o The height and width of the bounding box of the symbol, (k,w)

e The description of a set of n model primitives, each having the following components:

— The shape primitive, p

— The location of the centroid of the primitive relative to the model’s upper left
corner, (7,c)

— The area of the ideal primitive, A

— The correspondence region of the primitive, R

The number of primitives per model, n, can vary from model to model.

. The components of a symbol model are found by processing an ideal image of the symbol.
The bounding box is taken to be the smallest box that includes the image of the symbol.
The ideal primitives are found by detecting all the primitive operations of P on the idéal
symbol image. The resulting connected components are the ideal primitives. In Figure 9,
(a) is the ideal image of a symbol. Some of the ideal primitives of the symbol are shown in
(d) and (h) for primitives (c) and (g), respectively. Looking at the connected components in
(d) and (h), the symbol has two ideal primitives of shape primitive (c) and four of primitive
(8)-

Computing the corresporidence region of a primitive depends upon an assumed underlying
process that generates noiss. From observing a large number of degraded documents, one
notices that the most visible degradation to words occurs near the boundary of text, and
that the intensity of degradation is inversely proportional to the distance from the boundary.

Degradation here refers to the occurrence of artifacts that are not part of the ideal text image.
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Figure 9: Generating the model of the isolated form of symbol Ba. (a) The ideal image of
the symbol. (b) The result of dilating image (a) with a disk of radius 2. (c) A horizontal line
structuring element (shown enlarged). (d) The result of eroding image (a) with element (c).
(e) The result of eroding image (b) with element (c). (f) The result of labeling image (c)
with a unique label for every correspondence region. (g) A vertical line structuring element
(shown enlarged). (h) The result of eroding image (a) with element (g). (i) The result of
eroding image (b) with element (g). (j) The result of labeling image (i) with a unique label

for every correspondence region.
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The advantage of using 2 noise-generation model is the ability to predict the character-
istics of the observed noise; The noise-generation model used here is the one explained in
[21]. In that noise model, the probability of a pixel changing value due to noise is inversely
proportional to its distance from the boundary of text. Further, noise is correlated, in that
noise usually affects groups of adjacent pixels.

This noise model is used to degrade text images when training the matcher and when
testing the performance of the system. In Figure 10, (a) shows an ideal paragraph of text,
while (b) shows the same p"éragraph after being degraded with noise generated according to
the noise model.

The noise radius of text is the range of distance from the boundary in which noise is likely
to occur. The noise radius defines the correspondence region of primitives and is estimated
from degraded images of text.

To determine the corresi)ondence region of a model primitive, one works from the ideal
image, corrupts it with noise that conforms to the specifications of the noise-generation
model, and finds the effect on the primitive. Assume that the ideal image is I, the structuring
element is S, and the ideal primitive is P. To simplify notation, we first assume that there
is one and only one instance of the primitive in the image; we later relax this assumption.

The primitive is computed as:

P=I6S.

The correspondence region, R, for an erosion primitive, P, and noise radius, r, is com-
puted by dilating the ideal ;image with a disk of radius r and applying the primitive to this

expanded image. Formally:
R=(I®D,)o S, (6)

where D, is a disk of radius r.

Figure 9 shows the prOCESs of computing the correspondence regions for some primitives
of a symbol. The two corrésf:ondence regions of the primitives in (d) are shown in (f), labeled

with different shades. Likewise, the four correspondence regions of the primitives in () are
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Figure 10: Samples of input images. (a) ideal (noise-free) text; (b) synthetically degraded

text (at degradation parameters a = 8 = 1.5, ap = fo = 1.0, o = 0, and e = 3); and (c)

scanned text.
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shown in (j). Image (f) arises from image (e) by labeling the pixels with the identity of the
nearest region of (d) (and likewise for sequence (h), (i), and (j)).
In the next sections, we discuss how to use a symbol model to match a word region and

then how to estimate the parameters of and compute the match probability.

5.2 The Matching Process

This section addresses how‘ to compute the match measurements for the match between a
symbol model, M = (h, w,{(p;,7;, i, Ai, Ri)},), translated by point ¢ and a region of a
word image I. The bounding box of a symbol model that has been translated onto a word
image delineates a match region in the image.

The process of model-region matching entails matching the detected primitives on the
region to the model’s primifives; A particular model primitive matches the detected primi-
tives, or the parts of them, that are both: (1) of the same shape primitive, and (2) fall into
its correspondence region.

When matching a particular model primitive, its match nieasurement is the total area
(in pixels) of the intersection between its correspondence region and the detected primitives.
The detected primitives, or parts of them, that are matched are considered to be used or
consumed. They cannot be used in subsequent matches. An example of the process of
measuring the match is displayed in Figure 11 for two correspondence regions, Rl and R2,
that are to be matched with two detected primitives. In the figure, the match measurement
for correspondence region Rl is a; = C4. The measurement for R2 is a; = C: + C;. The
area C3 is the unmatched part of P1.

Figure 12 shows a scann;d word being matched with the model of symbol 1. The match

measurements are number of pixels in from the black areas in the images.

5.3 The Model-Region Match Probability

When matching a symbol model to a word region, and after calculating the match measure-

ments for each model primitive, the matcher must compute and return the match probability.
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Figure 11: Matching two détected primitives, P1 and P2, with two correspondence regions,
R1 and R2.

Assume that the matcher matched the Ny, primitives of symbol model m, and that
the match measurements for the primitives were a,...,an,,. Let s1,...,sn,, be indicator
variables, such that:

1 ife;>T:
8 =

0 otherwise,

where T > 0 is the indicator threshold that is experimentally set in the next chapter. Typical
values of T; are 0 and A;/2, where A; is the ideal area of the primitive. After matching, we

perform a change of variables and rewrite the model match probability as:
Pr({m,t) | I) = Pr(ai,...,aNmn, 51, -1 SN )-
The probability of symbol model m at translation ¢ matching a region in I is then:

Pr(ai,...,aNp; 8153 SNn) = Pr(ay,...,an,|51,.--,5N,)
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Figure 12: Matching a scanned word with symbol model 1. The top left image shows the
scanned word. The other images in reading order correspond to the primitives of Figure 6.
Each image shows primitives detected on the word in light gray, the correspondence regions

of the model in dark gray, and the areas in common in black.
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XPr(s1,y...,8N), (N

by the probability chain rule. The match probability factors into the conditional probability
of the matched primitives, Pr(ai,...,an,|s1,...,3n,), and the conditional probability of
the indicator variables, Pr(sy, ..., SN,,)-

To simplify the model so that is could be computed, we assume that matched primitive

probabilities are independent of one another and the indicators. So the distribution reduces

to:

N
Pr(ai,...,GNp, 51,1 SNp) = HPr(a,-)

=1

XPr(s1,...ySNnm), (8)

which are the distribution of each matched model primitive and the joint distribution of

indicator variables, respectively. In the following sections, we will develop each of these

distributions.

5.3.1 The Joint Distribution of Indicator Variables

Since indicator variables are binary, their joint probability distribution can be formulated
in tabular form. The tables can be simply calculated from training instances of symbols.
However, when using this simple scheme, the probability of an unseen configuration of indi-
cators (in the training data) is zero. Since the number of variables (primitives) is large (on
the order of 20-60), and the training sample size per symbol is on the order of 100, there are
bound to be some possible configurations that do not show up in the training sample. To
take care of this, we employ two modifications: (1) we reduce the joint probability model
using the theory of probabilistic graphical models, and (2) we use Bayesian estimation to
estimate the table entries.

Simplifying an indicator model is illustrated by an example: Let a hypothetical vector
of indicators have five indicators, s;,...,ss. The complete table for the frequencies of the

indicators is shown in Table 2. The maximum likelihood estimator of the probability of the
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configuration s; = 1,3, =0, 83 = 1,34 =0, and s5 = 0 is:
Pr(slz. = 1)32 = 0;33 = 1)34 = 0’35 = 0) = EZIE)

where t = Y, ;.

Table 2: The probability table for a hypothetical set of five indicators.

s4
0 1

s2 s2

sl sl sl sl

o|l110]110]1)10]1
0 I'x1 | x2|x3|x4]x5]|x6]|x7|x8

0 s3 _
5 -1 | x9 |x10|x11|x12|x13 [x14|x15|x16

S 2
3 0 |x17(x18]x19|x20]x21[x22|x23 |x24
S

1 |x25 x26 x27 [x281x29 |x30|x31 |x32

By reducing the joint prc")ba.bi‘lity model using the theory of graphical models [46], assume
that the simplified probability model is in Figure 13. The model has been simplified from
one large clique of five variables into three cliques of three, two, and one variables. The
probability model that corresponds to this graphical model is:

Pr(sy,...,ss) = Pr(sy, sa, 33)1-)5"(7‘;(33)3,35) . Pr(s4).

It can be seen here that the table of dimension 25 = 32 (Table 2) has been reduced to
tables with largest being of dimension 2* = 8. Now to compute the probability of the
above configuration of the five variables, we need to compute Pr(s; = 1,s; = 0,s3 = 1),

Pr(s3 =1,s5 =0), Pr(ss =0), and Pr(s3 = 1).
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Figure 13: The generated graphical model for the indicator example.

After finding an appropriate model expressed as a set of cliques and separators, we
estimate the distribution of cach clique and separator. Since all the variables in a clique or
separator are interdependent, the joint distribution of a set of binary variables of a clique or
separator can be estimated by the maximum likelihood estimator: construct a table for the
variables of the clique from the training sample; the probability of a certain configuration of
variables is the count of the number of training cases with that configuration divided by the
total number of training cases.

This simple method, however, in inadequate when the number of variables (the dimen-
sion) is high, as the number of possible configurations is exponential in the number of vari-
ables and the data will be sparse. Hence, we will assume that cells of a table are distributed
as a multinomial distribution and use Bayesian estimation to estimate the parameters of the

distribution given the data. The maximum likelihood estimator for Pr(s3=1,s5 =0) is:

Z%:.s-s Ty

t )
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while the Bayesian estimator for the same probability is:

1+ Xz
44+t

5.3.2 The Distribution. of Matched Primitives

The remaining component of the match probability is the distribution of matched primitives.
We assume that the distribution of a model primitive, (p, 7, ¢, A, R), that has been matched

to some detected primitives is a function of the measured area of match, a:

a—A

Pr(a) = k(a)e™%, ©)

where a > 0 and k(a) > 0 are the parameters of the distribution, and Ag is the total area
of the correspondence region. This form assumes that the probability of a measured area is
the maximum when it equals the ideal area, and the probability is inversely proportional to
the difference in area, normalized by the size of the correspondence region.

A more detailed description of the probability models and how their parameters are

estimated can be found in [4].

i
i

6 Experiments

The system is currently implemented in C and runs on Unix workstations. It comprises
almost 8,000 line of code, éxcluding image reading and conversion and morphology code.
The experiments were run on Sun Sparc 10 workstations.

The system operates in two major modes: a training mode and a recognition mode.
During training, the system estimates the noise radius and generates the symbol models by
computing the primitives of gach model, including the measurements of the ideal primitives
and their correspondence regions. The symbol models are the basis on which all parts of the

systems depend.

The experiments performed on the system are of two types: recognizing individual sym-
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bols and recognizing whole words. The first type tests the matcher, which is presented
with a subimage containing exactly one symbol. The second type tests the performance of
the whole system, which is presented with a subimage containing exactly one word. The

experimental protocol followed here is explained in detail in [20].

6.1 Data Sets

Experiments were conducted on three types of document images: ideal (noise-free), synthet-
ically degraded, and scanned documents. Ideal documents come from synthetic images that
are generated on an Apple Macintosh that has the Arabic language system installed. The
ideal images are in Postscript and are converted to bitmap format using Ghostscript and the
PBMPlus package.

The synthetically degraded images were generated from the ideal image using the noise
model of Kanungo et. al.[21] By using this process, it is easy to generate many versions of
the same passage of text that have different degradation parameters. The degradation model
parameters were set as follows: a = 1.5, ap = 1.0, 8 = 1.5, Bo = 1.0, ¢o = 0.0, and e = 3. For
the same ideal image and the same degradation parameters, different degraded images are
generated by using different seeds for the random number generator. In Figure 10: (a) shows
a noiseless image of a text ;;a.ragraph, and (b) shows the same paragraph after synthetically
degrading it with the above degradation parameters.

The ideal images for the symbol experiments are the font contact sheets that are used to
train the system. Figure 14 shows the font contact sheet for the Nadeem font. Each symbol
(character shape) is surroungied by space and segmented automatically using the vertical and
horizontal projection histog;'ams. The symbol identities are stored as a list and correspond
to symbol images, in a one-,;to-one manner. The degraded images that are used to test the
system are different (i.e., us;e different seeds) from the ones used to train the system.

The ideal images for the word fgcognition experiments are those generated by typesetting
the text of seven pages (desicribed l:elow). After converting the pages into images, the words

are isolated using the vertical and horizontal projections.
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Figure 14: The font sheet for the Nadeem font showing, the symbol shapes on which the

system was trained.
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The scanned document; are a set of seven pages selected from a news magazine. By
visual inspection, it was determined that these pages were most similar to the Macintosh
Nadeem font type at a font 81ze of 12 points. These pages were scanned at 300 dots-per-inch,
in house. They were then zoned and their text was entered by two independent typists and
verified. The details of the prepa.ra.tlon process can be found in [10]. In Figure 10, (c) shows
a paragraph scanned from one of these documents.

When using scanned documents to train the system, words must be segmented into
symbols. All the symbols on each of the seven pages were manually delineated by bounding
boxes, and each box was la.i;eled with the symbol identity. This allows training the matcher
and also testing the r'ecognifion raté of the individual symbols.

The document images described above are packaged into several sets and then used to
train and test the system. In devising the sets, care is taken to eliminate any overlap between
the training and testing sets.

The training sets are syrbol-based—i.e., in the form of symbols delineated by bounding

boxes—because they are used for training the matcher. Two different training sets are

alternatively used to train the system:

1. The degraded set consists of the symbols in 500 synthetically degraded instances of

the font contact sheet (Figure 14), each degraded with a different random seed. Since

the font has 156 symbols, the total number of symbols is 78,000.

2. The mixed set consists of symbols in four of the seven scanned pages. These pages
include 10,712 symbois. In addition, the set includes the symbols of 75 synthetically
degraded images of the font contact sheet. This was necessary to increase the number of

training symbols and to represent some of the symbols that were not on the documents.

The total number of SYmbols in this set is 22,412.

The second training set is used to find the effect of training with scanned symbols on the

recognition of scanned symbols and words.

The testing sets are of two types. Symbol testing sets are used to test the performance of
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the matcher; each symbol is delineated by a bounding box. The word testing sets are used

to test the performance of the whole system; each word is delineated by a bounding box.

The two symbol test sets are:

1. The synthetic set consists of the symbols in 100 synthetically degraded images of the
font contact sheet. The random seeds used to generate these images differ from the

seeds of the two training set. This set contains a total of 15,600 symbols.

2. The scanned set consists of symbols in three of the seven scanned pages. These pages

include 10,267 symbols.

The three word test sets are:

1. The ideal set consists of the words of the seven ideal document pages described above.

This set includes a total of 4,317 words.

2. The degraded set coﬁsists of the words of a synthetically degraded version of the above

set.

3. The scanned set consists of the words in the seven scanned pages.

The number. of words tested from each set is listed below.

6.2 Symbol Experiments

In the symbol experiments, many settings for the system parameters were tried. A full
description of the parameters and the experiments can be fouﬁd in [4]. Table 3 summarizes
the best results attained fo’g each test set. The table also shows a 95% confidence interval
for each rate. The method for computing the confidence interval assumes that experiments
are independent Bernoulli trials with identical success probability and then uses the normal
approximation to the binomial distribution.

The experiments indica.%;ed that a larger set of shape primitives significantly improves

performance. The results #‘136 indicate that when all the indicators of the indicator joint
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Table 3: Symbol recognition experiments and results.

test set | rec. rate | conf. inter.
ideal 100%

degraded | 99.69% 0.1%
scanned 94.1% 0.5%

probability (last term of Eqﬁa.tion (8)) are assumed to be independent (no use of graphical
models), the performance becomes significantly worse. And that when this term is removed
altogether, is performance is insignificantly different.

Table 4 lists the most frequent confusion pairs, which account for 70% of the errors for
a test run on scanned symbols. Fiéuré 15 shows the discrepancy in the match for the most
frequent error of the table., The bottom row shows that the primitives that belong to the
left stem of the symbol (white) do not fall in the correspondence regions (gray). This is due
to the different angle of the stem in the scanned font compared to the training font.

The frequency of these errors can be reduced by making the correspondence regions
more true to the font of the scanned symbols. For this, we try a new method of generating
correspondence regions. Using this method, we extract all the shape primitives from all
training instances. For every symbol model and for every shape primitive, we create an
image that is the union of ail training images for the symbol and primitive. This image then

serves as the expanded image from which to construct the correspondence regions. Using

this method, the recognition rate increased by 1.14%.

6.3 Word Expérirrients

Table 5 summarizes the experiments that have been conducted on words. The time figures
should be treated very cautiously, since they assume that the time to recognize a word is

within the clock limit of 36 minutes. This means that time figures are lower bounds on the

true time.
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Table 4: Confusion pairs for the scanned set. This table accounts for 70% of the errors.

true | recognized | % of
identity | identity | total
b 7.3%
5.9%
4.7%
3.8%
3.7%
3.5%
2.6%
2.5%
« » 2.5%
‘ 2.5%
| ! 2.2%
| 2.2%
2.2%
2.1%
3 > 2.0%
2.0%
) ) 1.8%
1.8%
1.8%
; ’ 1.7%
1.4%
1.4%
1.4%
1.4%
5 > 1.3%
1.2%
‘ . 1.0%
| 0.9%
0.9%
0.9%

—_ v (\'
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Figure 15: The matched primitives for the most frequent error case of Table 4. Each image
shows the correspondence ?egions of the model (in shades of gray) and the primitives of
the actual symbol (superimhi)osed in white). The top row shows the model with the highest
probability, while the bottom row shows the correct model. The images in columns 1 to 4

are for primitives P0-P3 of Figure 6, respectively. The last column is for primitive P12.

Table 5: Word recognitioxi-experiments and results. The average time is in milliseconds.

test set | # words | rec. rate time/word (ms.) | conf. inter.
ideal 3787 | 99.39% 16,718 0.3%
degraded | 3522 | 95.60% 59,760 0.7%
scanned | 830 | 73.13% 924,593 6%
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The most noteworthy observation from the word experiments is that the search process
in word recognition takes an extremely long time. Table 5 shows that even for noise-free
words it takes on average more than 16 seconds to recognize one word. Recognition time
is almost 4 times larger fof synthetically degraded words, and many more times larger for
scanned words. These times are for un-optimized program code.

For the ideal and the degraded test sets, the words are of the same font and are formated
identically, which means that their search spaces are identical. The difference is in the order
and number of states that are searched from that space. When the symbols are degraded,
the dissimilarity between symbols, measured by the match probability, becomes less. This
reduces the effectiveness of pruning and the heuristic function in trimming the states, both
of which exploit variation in match probability.

The increase in search time is even more for scanned words. One reason is that the
matcher is less effective in i?:ientifying scanned symbols because the scanned font is different
from the font used to generai'te the synthetic images. Another equally important reason is the
increased length of the scanned words. The scanned words come from magazine columns.
Many of the words have been elongated using the tatweel symbol to align the margins of
the columns (see Section 1.1). The presence of the elongation symbol adversely affects
recognition time in two ways. First, it obviously increases the length of the word to be
recognized. The amount of time needed to recognize a word is proportional to its length, as
the depth of the search tree is determined by the length of the word. Second, it obscures
the process of proposing translations for symbols.

The recognition rate figures for word experiments show that the system is effective in
recognizing noise-free words and synthetically degraded words. Using the method of [19],
the recognition rate for noiée—frée words is determined to be above 99% with a certainty of

94%. The recognition rate is above 95% with even higher certainty.
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7 Discussion and Conclusions

The most distinguishing feature of this work is that it does not follow the classical recognition
paradigm of a sequence of segmentation, feature extraction, and classification steps, which is
sometimes hooked up in a feedback loop. The premise underlying this work is that accurate
segmentation is difficult. For that the system does not commit itself to a segmentation of
the word, rather it simulates trying different segmentation points and then chooses the best
set of segmentation points that provides the best recognition. As we explain in Section 1.2
this system optimizes the segmentation with respect to the whole word. The price paid for
the optimization is having to use a time-consuming search.

This system successfully uses primitives extracted by mathematical morphology opera-
tions to recognize words. The features we use are structural and statistical at the same time.
They are structural in the sénsé that they indicate the presence shape primitives in the inpﬁt
image. They are statistical __jn that they indicate the size of the matched primitives and are
used to calculate niatch prcii)abilities.

At the outset, the matching technique used here resembles template matching in the
there is a reference template (symbol models here) that is matched with local regions in
the word. The main difference, though, is that matcher does not analyze the whole region
covered by the symbol mozlel; it analyzes only the region covered by the correspondence
regions of the symbol model. Detected primitives that are covered by a symbol model but
not within a correspondence region can be used again to match another symbol model or
are considered extraneous primitives if left unused. Other differences are that the quality of
match is computed according to an assumed probability model and that the match is flexible
because the co'rrespondencé regions were constructed according to an assumed noise model.

When using probabilitiés for character recognition, a common practice is to assume the
conditional independence of the components of a text segment. This simplifies the estimation
procedure and calculating the probabilities. The other extreme is not to assume indepen-
dence and take all variables that correspond to components to be dependent. This is very

hard to estimate and calculate for more than a few variables, and is harder when variables
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can take more than two values. Even if it were computationally feasible to do so, it is not
necessarily the best model é? explain the data.

Here, we sought a middle ground. We break down the match probability into an area
part and indicator part. Though we assume the areas to be conditionally independent given
the indicators, we use the theory of graphical models to find a suitable model for the joint
distribution of the indicators. The experiments did not show a significant difference in
performance among the casés of using graphical models and not using the indicators at all.
However, assuming that all indicators are independent had an adverse effect on performance.

During the process of generating ground truth for the seven scanned pages, we have
experienced firsthand the amount of work required to prepare the pages. Not only the text
had to be entered, but also words had to be manually segmented into symbols. We have used
a graphical tool, built in ho’uyse, to delineate the symbols with bounding boxes. Though this
tool simplified matters, the process was still very time consuming, taking a few hours per
page just to segment the symbols. A similar experience is reported in [22] when generating
their training set.

One of the design goalg of this system was to reduce the effort needed in preparing
the training set. For that ’;ve have relied on a noise model to degrade an ideal version of
the symbols and produce many degraded instances of the symbols. Using the synthetically
degraded symbols to train {the system, the system achieved a matched symbol recognition
rate of over 90%. The use of mixed symbols, however, boosted the rate by about 4%. This
indicates that the noise model need to be modified to better resemble actual symbols.

The main theoretical contribution of this work is in laying the foundation for a
segmentation-free a.pproa.chf for Arabic word recognition. Recognition is based on maxi-
mizing the probability of the word given thé detected primitives. In this work we have
integrated the use of morphological primitives, with state space search, a noise generation
model, a noise effect model, graphical probabilistic models and Bayesian estimation.

The main practical contributions of this work are in implementing a system that satisfies

its performance requirements for noise-free and synthetically degraded text. The system also
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requires minimal effort to train. Though the performance was not impressive for scanned
text, several ways are suggested to improve it performance on such text. This work should
be regarding as the beginning of a path that is to lead to an alternate and better recognition
strategy. |

The highest symbol recognition rates that were attained in the experiments were 99.69%
for synthetic symbols and 94% for scanned symbols. The number of data points used to
calculate those two rates are above 10,000 cases each.

When comparing the performance of this system to other systems one runs into difficulty.
The test sets are different, the performance measures are not clearly defined (nor necessarily
similar), and many of the results reported lack statistical analysis. Most systems report on
experiments conducted on a few data samples, and a few tens at most. Further, it is not
made clear whether the training and testing sets are mutually exclusive as they should be.
For the reason of limited tést data sets, and because the systems in the literature seldom
report on the type, font, size, and source of their test sets, and also on the definition of
recognition rate, one cannot directly compare the percentages reported for different systems.
Many works in the literature report recognition rates of up to 99%. Some of those results
are listed in the surveys p;pers of [3] and [2]. It is interesting to note that on the first
data set on which the system was tested, the system had a 100% success rate. On further

experimentation on a large sample the system was found to have a much smaller rate.

7.1 Future Work ,

In this work we have assumed that the words were already segmented from document pages
and that they were not rotated. A practical recognition system must be able to robustly
extract the words and align skew. Because of time and resource issues, we did not deal with

these aspects which are discussed in the research literature.

To improve the speed of search, one can search less states of the space, reduce the space
of the search, or reduce the time necessary to generate and expand a state. To reduce the

number of searched states, a better heuristic is needed. The heuristic must be more effective
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in pruning states that do nbt lead to the correct solution. The other two options require-

more radical changes to the design of the system.

One way to reduce the space of the search is to examine the word to be recognized
and suggest a small set of segmentation points, instead of trying out many translations for
symbols. The object of the search or optimization would be then find the best subset of
segmentation points. If the set of proposed segmentation points always includes the true
segmentation points, then, in addition to reducing the space of the search, this approach can
find the optimal solution. It remains to be investigated how this method actually performs.
The use of segmentation points can also help in solving the problem of inaccurate translations
describes above, since it uses more information.

The key to optimizing ;iord recognition is in evaluating the word probability and not
just considering the goodness of match of individual symbols or local regions. By doing so,
the word probability can take into account the probability of the segmentation points being
the true ones.

At the time that this study was done, there was a lack of fully ground truthed! Arabic
document image data bases. So we made do with synthetically generated and syntheticaly
degraded Arabic document}images whose ground truth would be automatically created at
the time of image generation. However, the font used for this generation and the font that
appeared in the real scanned images had differences. We believe that these differences are
a major contributor to the .}fower recognition rate on the real scanned images when we used
the real scanned images forj the test data set. It would be appropriate to repeat this study

using an extensive set of real scanned Arabic document images.
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