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Abstract. In recognizing cursive scripts, a major un-
dertaking is segmenting cursive words into characters
and isolating merged characters. The segmentation is
usually the pivotal stage in the system to which a sizable
portion of processing is devoted and a considerable share
of recognition errors is attributed. The most notable fea-
ture of Arabic writing is its cursiveness. Compared to
other features, the cursiveness of Arabic words poses the
most difficult problem for recognition algorithms. In this
work, we describe the design and implementation of an
Arabic word recognition system. To recognize a word, the
system does not segment it into characters in advance;
rather, it recognizes the input word by detecting a set
of “shape primitives” on the word. It then matches the
regions of the word (represented by the detected prim-
itives) with a set of symbol models. A spatial arrange-
ment of symbol models that are matched to regions of
the word, then, becomes the description of the recog-
nized word. Since the number of potential arrangements
of all symbol models is combinatorially large, the sys-
tem imposes a set of constraints that pertain to word
structure and spatial consistency. The system searches
the space made up of the arrangements that satisfy the
constraints, and tries to maximize the a posteriori proba-
bility of the arrangement of symbol models. We measure
the accuracy of the system not only on words but on iso-
lated characters as well. For isolated characters, it has a
recognition rate of 99.7% for synthetically degraded sym-
bols and 94.1% for scanned symbols. For isolated words
the system has a recognition rate of 99.4% for noise-free
words, 95.6% for synthetically degraded words, and 73%
for scanned words.
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1 Introduction

Since the advent of writing as a form of communica-
tion, stone, papyrus, and then paper have prevailed as
the media for writing. Only recently have electronic me-
dia started to replace paper. Because of its improving
space efficiency and its increasing speed of access, the
use of electronic media is constantly on the rise. Paper’s
widespread use for communication and archiving, and
the amount of information already on paper, press for
quick and accurate methods to automatically read that
information and convert it into electronic form.

Optical character recognition, OCR, is the branch of
technology that deals with the automatic reading of text.
The ultimate goal of OCR is to imitate the human abil-
ity to read – at a much faster rate – by associating sym-
bolic identities with images of characters. As the em-
phasis shifts from recognizing individual characters to
recognizing whole words and pages, more general terms
being used include optical text recognition and document
image processing.

This paper discusses a symbol recognition system
that recognizes segmented noisy and cursive text words.
To recognize symbols of a word, the system does not
segment the word into characters in advance; rather, it
recognizes the input word by detecting a set of “shape
primitives” on the word. It then matches the regions of
the word (represented by the detected primitives) with a
set of symbol models. A spatial arrangement of symbol
models that are matched to regions of the word, then, be-
comes the description of the recognized word. Since the
number of potential arrangements of all symbol mod-
els is combinatorially large, the system imposes a set of
constraints that pertain to word structure and spatial
consistency. The system searches the space made up of
the arrangements that satisfy the constraints and tries
to maximize the a posteriori probability of the arrange-
ment.

1.1 Features of Arabic script

The inadequate research activity on Arabic OCR can
be attributed in part to the difficulties Arabic poses for
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Fig. 1. A sample of written Arabic showing some of its characteristics

recognition. The calligraphic nature of Arabic script sets
it apart from other languages in several ways:
– Arabic has 28 characters, of which 16 have from one

to three dots above or below them. Dots differenti-
ate otherwise similar characters. Additionally, three
characters can have a zigzag-like complementary
character (Hamza ).

– Arabic text is read and written from right to left.
– Written Arabic is cursive. Within a word, some char-

acters connect to the preceding and/or following
characters, and some do not connect. Thus a word
can have one or more connected components.

– The shape of an Arabic character depends on its po-
sition in the word. A character can have up to four
different shapes depending on whether it is isolated,
connected from the right (beginning form), connected
from the left (end form), or connected from both sides
(middle form).

– A distinguishing feature of Arabic writing is the pres-
ence of the baseline. The baseline is a horizontal line
that runs through a connected portion of a word, and
is formed from the concatenation of adjacent charac-
ters. Almost all points of connection between charac-
ters fall on this line.

– Characters in a word might overlap vertically (with-
out touching) depending on their shapes.

– Arabic characters vary in size (height and width),
even for different shapes of the same character.

– Several characters can combine vertically to form a
ligature (combined character).

– The margins of typeset Arabic are justified by elon-
gating the baselines of the words of a line, not by
inserting inter-word spaces, as in English. This is ac-
complished by inserting the elongation, tatweel , sym-
bol ( ) at different places in the word. For example,
the word ( ) is an elongated version of the
word ( ).
Figure 1 demonstrates some of these characteristics

on a typeset Arabic sentence consisting of seven words.
Reading from right to left, the first word is a ligature
made up of two characters, and the second word consists
of three characters and two connected components. The
short strokes at the top of the text are diacritic marks.
The ligature in the middle of the figure consists of three
vertically stacked characters.

Some of these characteristics greatly complicate re-
cognition. One of the hardest problems with Arabic is its
cursiveness; this is why segmentation is a crucial step for
many Arabic character recognition systems. Many recog-
nition errors are attributed to the segmentation phase,

and a large portion of processing time is allocated to it.
Recognizing isolated Arabic characters is not fundamen-
tally different from recognizing Latin text (apart from
the larger number of classes of Arabic). Surveys on Ara-
bic recognition include those by Amin [6], Shoukry [38],
and Jambi [25]. More recent and comprehensive surveys
appear in [2] and [3]. Trenkle et al. [36] discusses a recent
Arabic recognition system.

1.2 Motivation

In Arabic word recognition, the ultimate objective is to
correctly recognize the symbols of a given word. Since
Arabic words are cursive, it is not easy to determine
where one symbol ends and the next one begins. In fact,
it is possible for a symbol to end after the beginning of
a succeeding symbol, as adjacent symbols can overlap as
well as touch (as can be seen in Fig. 1).

Some recognition systems attempt to deal with the
connectivity of Arabic text by performing two steps in
order: (1) they segment a word into symbols first and
(2) they then recognize the segmented symbols. Exam-
ples of this approach are in [7,14,26,28,30]. The diffi-
culty of segmenting the symbols of a word leads to in-
accuracies in the segmentation and, as a result, in the
recognition. To overcome the difficulty in isolating the
symbols, some systems over-segment an input word into
pieces possibly smaller than symbols. It is up to the sub-
sequent recognition phase to determine the true segmen-
tation points. Under this approach, the recognition phase
usually recognizes the symbol parts and then reassembles
them to make symbols. Works that use this approach in-
clude [1,5,11,12,31,27,37,39,43].

Another approach is to scan the word in one direc-
tion (e.g., right to left) and assume that a consecutive
set of image columns is a symbol and try to recognize
that symbol, as in [33,35]. Whenever a symbol is rec-
ognized, the recognizer starts at where it left off and
repeats the process. In this approach, if the system is
unable to recognize a symbol that is in the middle of the
word, it starts recognition from the other end and tries
to recognize the symbols in reverse order.

A better approach is the recursive segmentation re-
cognition approach [13]. Whenever the recognition step
fails to recognize a segmented piece of text (symbol or
part of a symbol), the word is re-segmented, and the
process is repeated. The last approach is that of whole
word recognition (e.g., [8]). This requires using features
of the whole word and recognizing the whole word as a
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unit. To do this, a system must be trained to recognize
the shapes of all the different words it should recognize.

The problem with all of the above approaches is that
there is no recourse if a symbol is recognized incorrectly,
particularly when the error is due to segmentation. The
preceding approaches find the solution that is best on a
symbol-by-symbol basis, or that is best for the particular
local area that contains (at most) a pair of symbols. An-
other way to state the problem is that these approaches
are sequential: the recognition of a subsequent symbol
depends on its correct segmentation and sometimes on
the recognition of its preceding symbol.

The solution discussed here is to optimize both seg-
mentation and recognition with respect to the whole
word. The emphasis is on finding a recognition solution
that maximizes an a posteriori word probability. The
system uses a state-space search to find the best recog-
nition of the word. In our approach, symbol recognition
precedes boundary detection. Because symbol bound-
aries are not known, the search successively proposes
sets of symbol boundaries. A competing approach to the
one discussed here is the hidden Markov Model approach
[29].

2 Problem statement

This section formalizes the word recognition problem as
a state-space search problem. Let P be a set of predefined
primitive types. Let L be a set of symbol classes, which
is the symbol set that the system recognizes. When rec-
ognizing printed characters, it is the set of all the shapes
to be recognized. A symbol is defined to be the shape or
glyph of a character. In Arabic, a letter might have up to
four shapes. Each symbol class has a model that defines
it in terms of instances of the primitive types, P, and
their locations relative to one another. Let M be the set
of symbol models that correspond to the symbols in L.
Further, let X be the set of all points in the Cartesian
space, X = Z × Z, where Z = {0, 1, 2, . . . } .

When recognizing a particular word, the input to the
search problem is the image of the word, I, and the set,
S, of primitive instances detected on the word.

The system’s goal is to spatially arrange the symbol
models in the word space and find the spatial arrange-
ment of symbol models with the maximum a posteriori
probability. The system achieves its goal by matching
symbol models with local regions in the word image.

Posing the problem as a state-space search problem,
Σ, we can characterize it by four components:

Σ = 〈T , ω, s,G〉.
The components have the following meaning:

– T is a set of states, T : E × S, where E = 〈M × X〉
is a sequence of zero or more pairs of symbol models
and translations.

– ω is an operator that operates on a state and returns
a set of states, ω : T → 2T .

– s ∈ T is the start state.
– G ⊆ T is a set of goal states.

primitive
matchedunmatched

primitive

M4 M3 M2 M1

x1
x2

x3

word bounding box

x4

(0,0)

Fig. 2. The components of a state. The models are indicated
by boxes with dashed lines

Each state t has two elements: (1) a sequence of pairs
of models and their translations and (2) a set of un-
matched primitives, as follows:

t = (〈M1, x1〉, . . . , 〈Mn, xn〉, S)

where n is the number of symbol models already ar-
ranged (matched) in state t. The set S is the set of prim-
itive instances from S that is not yet matched. As such,
a state specifies a string of characters that is a (partial)
solution to the recognition problem. This sequence of n
models represents a string of symbols or a potential word
that is ordered in word reading order.

Figure 2 illustrates the components of a state. The
state has four matched models, M1, . . . , M4, indicated
by dashed boxes. Their respective translations, x1, . . . ,
x4, are relative to the origin of the word’s bounding box.
The set of unmatched primitives, S, consists of the gray
primitives. The partial word represented by the string of
models is l1 . . . l4, where li is the symbol class of model
Mi.

The start state, s, which is the root of the search tree,
has no arranged symbol models. Its set of unmatched
primitives equals the whole set of detected primitives,
s = (∅,S).

Applying the operator ω to state t returns a set of
states R. A state r in R uses a group of primitive in-
stances from S to match an additional symbol model
to a word region. This means that a descendent state r
has one more translated model than its parent state t.
Therefore:

r = (〈M1, x1〉, . . . , 〈Mn+1, xn+1〉, T ) ,

where T is the set of primitives remaining after matching
model Mn+1 at translation xn+1 with the primitives in
set S.

A goal state u ∈ G is a leaf of the tree. The string of
models of a goal state, u, must satisfy the word structure
constraints specified below.

In this characterization of the recognition problem,
segmentation and recognition are interleaved, while
maintaining a global view of the process. The rest of this
paper describes the design and implementation of ex-
periments conducted on a system that recognizes Arabic
words using the word optimization recognition method-
ology. The system has three major components, shown as
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Fig. 3. Block diagram of the recognition system. The
ovals designate processes, while the rectangles designate data
structures

ovals in Fig. 3: (1) the primitive detector, (2) the control
module, and (3) the matcher.

To recognize a given word, the system detects a pre-
defined set of shape primitives on the isolated image of
the word. Preprocessing and primitive detection are ex-
plained in detail in Section 3.

The control module takes the detected primitives of
a word and hypothesizes a number of alternative strings
as the recognition of the word. It then chooses the one
that maximizes an a posteriori probability by conduct-
ing a state-space search in the space of symbol model
arrangements.

At any particular point in the search, the control
module decides on (1) a set of symbols that is expected
at that location and (2) a location where it should match
the next symbol model. It then asks the matcher to
match each symbol model in the set with that partic-
ular region in the word. The control model is explained
in detail in Section 4.

The matcher operates in two major modes: the train-
ing mode and the testing or recognition mode. During
training, the matcher processes a training set comprised
of a large number of degraded symbols that are labeled
with their identity. The training mode essentially teaches
the system the description of each symbol in terms of
primitives.

During execution, the control module gives the mat-
cher a symbol model and a translation of the model
onto the word image. The matcher’s job is to compute
the probability of a match between the symbol model

and the word image at the particular translation. The
matcher is explained in detail in Section 5.

Prior work on search and model matching for hand-
writing recognition applications can be found in [44,45].
Some later work can can found in [16,23]. For the idea
of using primitives in cursive script recognition see [32].
Fang and Hull [15] suggested the use of the A* algorithm
to accomplish the search.

3 Preprocessing and primitive detection

The word recognition system is designed to recognize iso-
lated Arabic words on binary images. Thus, it is assumed
that input words have been isolated and have minimal
skew.

The system uses information about the baseline of
text to arrange the symbols. The baseline of Arabic text
is the line at which the characters connect to one an-
other. It usually coincides with the row of the word im-
age with the highest density of black pixels. For that,
the system detects the baseline using the horizontal pro-
jection profile.

The task of the primitive detector is to find instances
of a set of shape primitives on a text image. Instances
of primitives are found by applying the erosion morpho-
logical transform to an input block. A shape primitive is
usually a small connected set of pixels that has a sim-
ple geometric structure. A shape primitive represents a
structuring-element for erosion.

To detect instances of a shape primitive on a text
image, the primitive detector morphologically erodes the
image using the shape primitive as a structuring-element.
This produces a new image, with instances of the shape
primitive showing up as blobs at different locations. Each
blob, which is a connected set of pixels, is termed a prim-
itive instance. Each pixel in a blob specifies the location
where an occurrence of the primitive was detected on the
image. Gillies [18] and Stentiford [41] also use mathemat-
ical morphology to extract primitives. Other approaches
that are more graded include [17,42].

Figure 4 shows the letter “A” and the structuring-
elements for three shape primitives, which can be used to
recognize the letter. Figure 5 shows the three images that
result from detecting each of the three shape primitives
on the image of the letter “A”. In this example, each
shape primitive had exactly one instance (blob).

Information about the blobs is extracted from the
resulting image by a connected components labeling op-
eration. The labeling operation assigns a unique label to
each adjacent set of foreground pixels. Here we use eight
neighbors, which means that diagonal pixels are taken
to be neighbors.

The relevant information about a primitive instance
(blob) is the location of its centroid and its area in pix-
els. Hence, the application of the operator that defines
shape primitive p to a text image results in a number
of primitive instance tuples of the form (p, r, c, a), where
(r, c) are the row and column coordinates of the centroid
of the primitive instance relative to image coordinates
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Image P1 P2 P3

Fig. 4. An example of the definition and de-
tection of shape primitives. On the left is an
image of the character “A”, and on the right
are structuring-elements that designate three
shape primitives, P1, P2, and P3, with their
center points marked

Fig. 5. The result of eroding the above image
with each of the three structuring-elements,
P1, P2, and P3. The blobs are the detected
instances of the shape primitives

(the upper left corner), and a is the area of the instance
in pixels.

In this system, shape primitives, or structuring-ele-
ments, are specified symbolically. A structuring-element
can be a line, corner, or arc. As an example, a corner
is defined by specifying the lengths of its two lines, the
angle of the first line relative to the horizontal, and the
angle of the second line relative to the first line. The
origin of a corner structuring-element is the intersection
(origination) point of the two lines.

The shapes of the primitives (or structuring-elements)
that we use include: lines of different lengths and angles;
corners (where each corner is formed by two lines that
share an endpoint) of different line lengths and angles;
elliptic arcs of different radii and beginning and extent
angles; and circles and disks of different radii. Figure 6
shows a set of shape primitives.

4 The control module

When recognizing a particular word, the input to the
search problem is the image of the word, I, and the set
of primitive instances detected on the word, S. The task
of the control module is to search for the spatial arrange-
ment of symbol models with the maximum a posteriori
probability. This spatial arrangement of models specifies
a string of symbols or a recognition of the word.

The space to be searched is that of sets of translated
symbol models. Since this space is exponentially large,
the search algorithm must be efficient and effective in
finding a good solution.

The search algorithm used here is a variant of depth-
first branch-and-bound. It employs a list size cutoff to
reduce the space of the search. The cutoff reduces the
branching factor of the search and hence reduces the
base of the exponent for the worst-case time complexity.

P0

P1

P5
P12

P11

P9

P10
P2

P3

P4

P6

P7

P8

Fig. 6. The shape primitives (structuring-elements) used by
the system. Each square corresponds to an image pixel. The
origin of each shape is indicated by a cross

This strategy differs from beam search. In our approach,
the cutoff is applied locally to the ordered list of descen-
dents of a state; in beam search, the cutoff is applied to
the open list, which is an ordered list of all nodes that
have been generated but not expanded. When the cutoff
is used, neither search strategy is guaranteed to find the
optimal solution. The size of the list can be experimen-
tally varied up to infinity (no cutoff) to find the best
performance/time.

The tasks undertaken by search algorithm include:

1. Expanding a state and generating its successors by
applying the operator ω to the state.

2. Checking if a state n is a goal state by satisfying the
word constraints, W (n) = true.
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3. Computing the a posteriori probability of a goal state
n (word), Pr(n).

4. Ranking a set of states using the state ordering func-
tion τ .

Before advancing to the next sections that address
these constraints and functions, we provide the following
definitions that are used in the discussion. A state t in the
search space has two components: a sequence of model-
translation pairs and a set of unused primitives:

t = (〈M1, x1〉, . . . , 〈Mn, xn〉, S) .

Let the name of the symbol represented by model M be
denoted as l(M). The string of symbols represented by
the symbol models at state t is then l(M1) . . . l(Mn).

State expansion is the process of applying the oper-
ator ω to a state t and generating a set of new states R.
In this problem domain, state expansion is the process of
creating a set of new states, where each state has an ad-
ditional new model-translation pair added to the end of
the string of models of the original state. This involves:
(1) examining the region of the word image as well as
the primitives that are unused by previous symbol mod-
els and (2) proposing a set of translated symbol models
that are compatible with the current state.

The strategy of the search is to suggest models in a
right-to-left order, so that the first model of a state will
correspond to the first symbol of the word and the last
model will correspond to the last symbol of the word.
At the state-expansion level, this translates to propos-
ing symbols in locations just to the left of the leftmost
symbol model in the current state.

The space of all possible symbol model-translation
pairs is very large. Further, many pairs are incompatible
with parent states or are very unlikely to be part of a
correct Arabic word. To reduce the number of searched
states, we use a large lexicon of Arabic words and incor-
porate a number of constraints on word structure and
the spatial arrangement of models. The advantage of us-
ing the word constraints at the state expansion level is
to reduce the number of searched states. Kimura et al.
[39] based their algorithm for unconstrained handwrit-
ing using a lexicon. Shridhar et al. [24] also found it
useful to use a lexicon in his comparison of lexicon-free
and lexicon-directed word recognition for handwritten
words.

The lexicon constrains state expansion to propose
symbol models that will construct words of the lexicon.
It is customary in lexicons and dictionaries of Arabic to
sort words in the root-pattern form, after stripping the
prefixes and suffixes. This method is more compact than
spelling out the words but is more complex when look-
ing up words. Here, the lexicon as a list of words repre-
sented as a trie [40]. A base word might be included more
than once to represent the word with different prefixes
and/or suffixes. The Arabic lexicon that we use here is
constructed from two sources: a corpus of about 212 000
words, and a set of 25 pages that were entered in-house.
The lexicon has a total of over 42 000 different words. For
comparison, the Unix spell command has around 50 000
(unique) words [9]. The sources of the corpus are Arabic-

Table 1. The structural compatibility table for symbol mod-
els

Model n Model n + 1
∅, digits, punctuation Isolated and beginning

forms, digits, punctuation
Beginning and middle forms Middle and ending forms
Isolated and ending forms Digits, punctuation

language newspapers, news magazines, and books. The
root of the lexicon trie is the empty string and the chil-
dren at the first level are all possible first characters of
words. Subsequent levels branch off at character posi-
tions where lexicon words differ.

Figure 7 shows an example of a trie for nine Ara-
bic words. As used here, the trie can be thought of as a
finite state machine for recognition. Recognition starts
at the empty string. Whenever a symbol is proposed, it
advances to its state in the trie. Recognition can stop at
any state that designates the end of a word (indicated
by a double oval in the figure). Thus, when expanding a
certain state, the symbol models to be proposed corre-
spond to the characters that are the descendents of the
trie node of the parent state.

The constraints on word structure include:

– The font type and size must be consistent within a
word.

– A word must begin with a beginning form and end
with an ending form.

– All adjacent positional shapes must be compatible
within a word.

Word structure constraints restrict the set of symbol
models proposed to those compatible with the last (left-
most) model in the parent state. Table 1 shows the types
of symbol models that are proposed (second column)
based on the last symbol model in the parent state be-
ing expanded (first column). An additional model that
is considered a middle form is the elongation (tatweel )
symbol. The system permits a tatweel to occur between
any pair of connecting letters.

Spatial constraints govern the location of the bound-
ing boxes of symbol models relative to one another and to
the word’s bounding box. The spatial constraints specify
that:

– The characters of a word are collinear; their baselines
must coincide with the word’s baseline.

– Bounding boxes of adjacent symbols have minimal
overlap with one another.

– Bounding boxes of adjacent symbols have only small
gaps between them.

– Bounding boxes of symbols are almost totally en-
closed in the bounding box of the word.

Spatial constraints reduce the number of searched states
because they remove states that will have low match
probability. For example, one of the spatial constraints
is to ensure that two symbol bounding boxes do not co-
incide. When two models coincide, the later one is bound
to have a very low match probability because many of
its primitives will have been used.
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Fig. 7. An example of a trie for
a set of nine Arabic words (shown
at the top). The nodes with double
ovals designate complete words

Now that we have a set of proposed symbol models
that are structurally sound and can lead to a lexicon
word, we propose translations for the models. To limit
the number of descendent nodes to those likely to lead
to a good solution, each proposed model will have only
one translation. To find the best translation for a given
model, we use the spatial constraints to find the most
likely position of the model.

Since there is no guarantee that a proposed position,
(x, y), of the symbol model is the best position, we try
the set of adjacent positions {(x ± m, y ± n)|0 ≤ m, n ≤
i}, where i is a small integer. At each of these transla-
tions, we match the model and retain the translation that
produces the largest match probability. The assumption
here is that the local optimization is likely to lead to the
global optimum. The price paid for reducing the number
of translations per model to one is possibly forsaking the
optimal solution for a suboptimal one.

A goal state of the search tree is an arrangement of
symbol models that corresponds to a word. This section
addresses the constraints on a state that make it a goal

and the a posteriori word probability model that is used
to evaluate goal states.

Since the states are expanded under the lexicon,
structural, and spatial constraints, the only remaining
conditions that make a state a goal state are that the
characters of the state make a proper lexicon word (and
not only a subset) and that the last symbol model is an
ending form.

In this problem, note that a goal state is not neces-
sarily a leaf state. A string that might qualify as a word
could be a substring of other words. This happens when
the ending form and middle form of the last character of
the word are the same as in the word “ ”, which is also

a substring of the words “ ” and “ ”, as can be
seen in Fig. 7. For this reason, when such states satisfy
the goal constraints, they should be searched further.

Furthermore, the first correct word to be found in the
search might not be the best word. So reaching a goal
state does not qualify as the termination condition. The
algorithm must search all nodes that are not pruned. For
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this reason, it is important for the search algorithm to
be effective in pruning as many states as possible, but it
must take care not to prune a state that leads to that
best solution.

The system computes the word a posteriori proba-
bility for states that satisfy the word constraints. The a
posteriori probability of such a state is the joint proba-
bility of each of its symbol models matching the region
onto which it has been translated. The word probability
is expressed as:

Pr ({〈M1, t1〉, . . . , 〈Mn, tn〉}, S | I) .

The probability of each symbol matching the word
region onto which it has been translated is determined
by the matcher and is returned on an independent call
to the matcher. Hence, we take the probability of each
symbols’ match to be independent of the other symbol
matches. (The only interdependence results from restric-
tions on model selection and translation that an earlier
model poses on a newer one.) If we assume that the sym-
bols were matched in increasing subscript order, then the
probability distribution is:

Pr ({〈M1, t1〉, . . . , 〈Mn, tn〉}, S | I) =
n∏

i=1

Pr (〈Mi, ti〉 | I)

×Pr(S | I). (1)
The first term on the right is the product of the model
match probabilities. The model match probability dis-
tribution is detailed in Section 5.3.

When computing the word probability of a goal state,
the detected primitives that remain unmatched are con-
sidered as extraneous primitives. The probability of the
extraneous primitives, Pr(S | I), is the product of the
probabilities of the individual extraneous primitives. Let
the primitive instance (p, r, c, a) ∈ S be an extraneous
primitive instance, where p is its type, (r, c) is its cen-
troid, and a is its area. We assume that extraneous prim-
itives have a distribution that is similar to the primitive
match distribution:

Pr((p, r, c, a)) = k(δ)e−δa, (2)

where δ is the parameter of the distribution and k(δ)
is the probability-normalizing constant. We make δ the
minimum value for the exponential parameter, α, of the
match probability over all primitives and models (Sec-
tion 5.3.2), and we divide by an empirically determined
constant.

The state ranking function, τ , is essentially a heuris-
tic function that allows selecting states that are more
likely to lead to the optimal solution. In this problem
we are not interested in the goodness of the path to the
solution, but in the goodness of the solution itself.

The figure of merit for a goal in this problem domain
is the a posteriori probability of the goal state, formu-
lated in Equation 1. Maximizing the merit of a solution
is equivalent to minimizing the cost of the solution with
a negated heuristic function [34].

For a heuristic function to be guaranteed to lead the
search to the optimal solution, it should not underesti-
mate the merit of any state. When a state is thought

to be worse than it really is, the state that leads to the
optimal solution might be pruned. This concept is anal-
ogous to the admissibility criteria of the heuristic of the
A* algorithm.

Since the objective here is to maximize the probabil-
ity of the solution, we compose a heuristic function of
two parts: (1) g(n), the actual match probability of the
models in node n and (2) h(n), an (over)estimate of the
match probability of the remaining part of the word. For
the heuristic to fulfill its rule in speeding up the search,
it must be much faster to compute than expanding the
node. For that, we define the probability per width, pw,
of a symbol model, m, to be the ratio of the maximum
possible match probability of m (i.e., under ideal condi-
tions) to the width of the model. The match probability
for a symbol model is maximal when it is matched with
a noise-free image of the symbol.

The maximum probability per width over all symbol
models is

mpw = max
m∈M

pw(m).

We then take the estimate of the match probability of the
remaining part of the word, h(n), to be the product of
the width of the yet unmatched part of the word, w(n),
times the maximum probability per width:

h(n) = w(n) × mpw. (3)

This assumes that the remaining part of the word can
be matched with multiple instances of the symbol model
that have the highest probability per width ratio, which
is clearly an overestimate of the match probability. Put-
ting all the parts together, the state evaluation function
for state t is:

τ(t) =

[
n∏

i=1

Pr (〈Mi, ti〉 | I)

]
× [w(t) × mpw] , (4)

where w(t) is the width of the unmatched part of the
word at state t. By taking the log of τ , we can see the
similarity between it and the A* heuristic:

log(τ(t)) =
n∑

i=1

log (Pr (〈Mi, ti〉 | I))

︸ ︷︷ ︸
1

+ log(w(t) × mpw)︸ ︷︷ ︸
2

.

(5)

Term 1 is the actual merit of the part of the word already
matched in the state, while Term 2 is an overestimate
of the merit of the expected match with the remaining
portion of the word.

Figure 8 shows a block diagram of the control model.
As mentioned earlier, the algorithm terminates when it
searches all the states of the space that are not pruned.
When the algorithm returns, it prints out the best word
as the solution to the recognition problem. The next sec-
tion discusses the operation of the matcher.

5 The matcher

The matcher compares a certain symbol model to a re-
gion in a word image onto which it has been translated.
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Fig. 8. Block diagram of the control
model. The ovals designate processes, and
the rectangles represent data structures

Called by the control model, the matcher is expected
to return the probability of the symbol model match-
ing the region. This section explains the components of
symbol models, details how they are used in matching
word regions, and describes how the match probability
is computed.

5.1 Symbol models

The model for a particular symbol is a complete de-
scription of the primitives of an ideal image of the sym-
bol, termed the ideal primitives, and the deformations
expected under an assumed noise model. The symbol
model contains the information necessary for the mat-
cher to measure the similarity between its primitives and
those of the match region of the word. The match region
of the word is defined as the region covered by the bound-
ing box of the symbol model when it is translated onto
the word image. The matcher works by finding the cor-
respondence between the primitives of the symbol model
and the detected primitives that are in the match region
of the word.

To find the detected primitives that correspond to a
particular model primitive, each model primitive has a
correspondence region. The correspondence region of a
model primitive is a region that includes the expected
deformations of the primitive, under the assumed noise
model.

A symbol model contains a bounding box and a set
of primitive specifications. The model, M , of a symbol
is defined as:

M = (h, w, {(pi, ri, ci, Ai, Ri)}n
i=1) .

Components of the symbol model are:

– The height and width of the bounding box of the
symbol, (h, w)

– The description of a set of n model primitives, each
having the following components:
– The shape primitive, p
– The location of the centroid of the primitive rel-

ative to the model’s upper left corner, (r, c)
– The area of the ideal primitive, A
– The correspondence region of the primitive, R.

The number of primitives per model, n, can vary from
model to model.

The components of a symbol model are found by pro-
cessing an ideal image of the symbol. The bounding box
is taken to be the smallest box that includes the image of
the symbol. The ideal primitives are found by detecting
all the primitive operations of P on the ideal symbol im-
age. The resulting connected components are the ideal
primitives. In Fig. 9, (a) is the ideal image of a symbol.
Some of the ideal primitives of the symbol are shown
in (d) and (h) for primitives (c) and (g), respectively.
Looking at the connected components in (d) and (h),
the symbol has two ideal primitives of shape primitive
(c) and four of primitive (g).

Computing the correspondence region of a primitive
depends upon an assumed underlying process that gen-
erates noise. From observing a large number of degraded
documents, one notices that the most visible degradation
to words occurs near the boundary of text, and that the
intensity of degradation is inversely proportional to the
distance from the boundary. Degradation here refers to
the occurrence of artifacts that are not part of the ideal
text image.

The advantage of using a noise-generation model is
the ability to predict the characteristics of the observed
noise. The noise-generation model used here is the one
explained in [21]. In that noise model, the probability of
a pixel changing value due to noise is inversely propor-
tional to its distance from the boundary of text. Further,
noise is correlated, in that noise usually affects groups of
adjacent pixels.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 9a–j. Generating the model of the isolated form of symbol Ba. a The ideal image of the symbol. b The result of dilating
image a with a disk of radius 2. c A horizontal line structuring-element (shown enlarged). d The result of eroding image a
with element c. e The result of eroding image b with element c. f The result of labeling image c with a unique label for every
correspondence region. g A vertical line structuring-element (shown enlarged). h The result of eroding image a with element
g. i The result of eroding image b with element g. j The result of labeling image i with a unique label for every correspondence
region

This noise model is used to degrade text images when
training the matcher and when testing the performance
of the system. In Fig. 10, (a) shows an ideal paragraph
of text, while (b) shows the same paragraph after being
degraded with noise generated according to the noise
model.

The noise radius of text is the range of distance from
the boundary in which noise is likely to occur. The noise
radius defines the correspondence region of primitives
and is estimated from degraded images of text.

To determine the correspondence region of a model
primitive, one works from the ideal image, corrupts it
with noise that conforms to the specifications of the
noise-generation model, and finds the effect on the prim-
itive. Assume that the ideal image is I, the structuring-
element is S, and the ideal primitive is P . To simplify
notation, we first assume that there is one and only one
instance of the primitive in the image; we later relax this
assumption. The primitive is computed as:

P = I 	 S.

The correspondence region, R, for an erosion prim-
itive, P , and noise radius, r, is computed by dilating
the ideal image with a disk of radius r and applying the
primitive to this expanded image. Formally:

R = (I ⊕ Dr) 	 S, (6)

where Dr is a disk of radius r.
Figure 9 shows the process of computing the corre-

spondence regions for some primitives of a symbol. The
two correspondence regions of the primitives in (d) are
shown in (f), labeled with different shades. Likewise, the
four correspondence regions of the primitives in (h) are
shown in (j). Image (f) arises from image (e) by labeling
the pixels with the identity of the nearest region of (d)
(and likewise for sequence (h), (i), and (j)).

In the next sections, we discuss how to use a symbol
model to match a word region and then how to estimate
the parameters of and compute the match probability.

5.2 The matching process

This section addresses how to compute the match mea-
surements for the match between a symbol model, M =
(h, w, {(pi, ri, ci, Ai, Ri)}m

i=1), translated by point t and
a region of a word image I. The bounding box of a sym-
bol model that has been translated onto a word image
delineates a match region in the image.

The process of model-region matching entails match-
ing the detected primitives on the region to the model’s
primitives. A particular model primitive matches the de-
tected primitives, or the parts of them, that are both:
(1) of the same shape primitive and (2) fall into its cor-
respondence region.

When matching a particular model primitive, its
match measurement is the total area (in pixels) of the
intersection between its correspondence region and the
detected primitives. The detected primitives, or parts of
them, that are matched are considered to be used or
consumed. They cannot be used in subsequent matches.
An example of the process of measuring the match is
displayed in Fig. 11 for two correspondence regions, R1
and R2, that are to be matched with two detected prim-
itives. In the figure, the match measurement for corre-
spondence region R1 is a1 = C4. The measurement for
R2 is a2 = C1 + C2. The area C3 is the unmatched part
of P1.

Figure 12 shows a scanned word being matched with
the model of symbol . The match measurements are the
number of pixels in from the black areas in the images.

5.3 The model-region match probability

When matching a symbol model to a word region, and
after calculating the match measurements for each model
primitive, the matcher must compute and return the
match probability.
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(a)

(b)

(c)

Fig. 10a–c. Samples of input images:
a ideal (noise-free) text; b synthet-
ically degraded text (at degradation
parameters α = β = 1.5, α0 = β0 =
1.0, c0 = 0, and e = 3); and c scanned
text

R1

C4

C3

R2

C1

C2
P2

P1

Fig. 11. Matching two detected primitives, P1 and P2, with
two correspondence regions, R1 and R2

Assume that the matcher matched the Nm primitives
of symbol model m, and that the match measurements
for the primitives were a1, . . . , aNm

. Let s1, . . . , sNm
be

indicator variables, such that:

si =
{

1 if ai > Ti

0 otherwise,

where Ti ≥ 0 is the indicator threshold that is experi-
mentally set in the next section. Typical values of Ti are
0 and Ai/2, where Ai is the ideal area of the primitive.
After matching, we perform a change of variables and
rewrite the model match probability as:

Pr (〈m, t〉 | I) = Pr(a1, . . . , aNm
, s1, . . . , sNm

).

The probability of symbol model m at translation t
matching a region in I is then:

Pr(a1, . . . , aNm , s1, . . . , sNm)
= Pr(a1, . . . , aNm |s1, . . . , sNm)

×Pr(s1, . . . , sNm
), (7)

by the probability chain rule. The match probability
factors into the conditional probability of the matched
primitives, Pr(a1, . . . , aNm

|s1, . . . , sNm
), and the condi-

tional probability of the indicator variables, Pr(s1, . . . ,
sNm

).
To simplify the model so that is could be computed,

we assume that matched primitive probabilities are in-
dependent of one another and the indicators. So the dis-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Fig. 12a–n. Matching a scanned word with symbol model . The top left image shows the scanned word. The other images
in reading order correspond to the primitives of Fig. 6. Each image shows primitives detected on the word in light gray, the
correspondence regions of the model in dark gray, and the areas in common in black

tribution reduces to:

Pr(a1, . . . , aNm , s1, . . . , sNm) =
Nm∏
i=1

Pr(ai)

×Pr(s1, . . . , sNm), (8)
the factors on the right-hand side being the distribution
of each matched model primitive and the joint distribu-
tion of indicator variables, respectively. In the following
sections, we will develop each of these distributions.

5.3.1 The joint distribution of indicator variables. Since
indicator variables are binary, their joint probability dis-
tribution can be formulated in tabular form. The ta-
bles can be simply calculated from training instances

of symbols. However, when using this simple scheme,
the probability of an unseen configuration of indicators
(in the training data) is zero. Since the number of vari-
ables (primitives) is large (on the order of 20-60), and
the training sample size per symbol is on the order of
100, there are bound to be some possible configurations
that do not show up in the training sample. To take care
of this, we employ two modifications: (1) we reduce the
joint probability model using the theory of probabilistic
graphical models and (2) we use Bayesian estimation to
estimate the table entries.

Simplifying an indicator model is illustrated by an
example. Let a hypothetical vector of indicators have
five indicators, s1, . . . , s5. The complete table for the
frequencies of the indicators is shown in Table 2. The
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Table 2. The probability table for a hypothetical set of five
indicators

0 1 0 1 0 1 0 1

s3

s3

0

1

0

1

0 1
s4

s5

0

1

s1 s1s1 s1
0 1 0 1

s2 s2

x1 x2

x9 x11

x3 x4

x12

x5

x13

x6

x14 x15

x7 x8

x16

x24x23x22x21

x30 x31 x32x28

x20x19

x27

x18

x26

x17

x25

x10

x29

s1 s2

s3

s4 s5

Fig. 13. The generated graphical model for the indicator
example

maximum likelihood estimator of the probability of the
configuration s1 = 1, s2 = 0, s3 = 1, s4 = 0, and s5 = 0
is:

Pr(s1 = 1, s2 = 0, s3 = 1, s4 = 0, s5 = 0) =
x10

t
,

where t =
∑

i xi.
By reducing the joint probability model using the

theory of graphical models [46], assume that the simpli-
fied probability model is as shown in Fig. 13. The model
has been simplified from one large clique of five vari-
ables into three cliques of three, two, and one variables.
The probability model that corresponds to this graphical
model is:

Pr(s1, . . . , s5) =
Pr(s1, s2, s3) · Pr(s3, s5) · Pr(s4)

Pr(s3)
.

It can be seen here that the table of dimension 25 = 32
(Table 2) has been reduced to other tables, the largest
of which has dimension 23 = 8. Now to compute the
probability of the above configuration of the five vari-
ables, we need to compute Pr(s1 = 1, s2 = 0, s3 = 1),
Pr(s3 = 1, s5 = 0), Pr(s4 = 0), and Pr(s3 = 1).

After finding an appropriate model expressed as a set
of cliques and separators, we estimate the distribution
of each clique and separator. Since all the variables in a
clique or separator are interdependent, the joint distri-
bution of a set of binary variables of a clique or separator

can be estimated by the maximum likelihood estimator:
construct a table for the variables of the clique from the
training sample; the probability of a certain configura-
tion of variables is the count of the number of training
cases with that configuration divided by the total num-
ber of training cases.

This simple method, however, is inadequate when
the number of variables (the dimension) is high, as the
number of possible configurations is exponential in the
number of variables and the data will be sparse. Hence,
we will assume that cells of a table are distributed as
a multinomial distribution and use Bayesian estimation
to estimate the parameters of the distribution given the
data. The maximum likelihood estimator for Pr(s3 =
1, s5 = 0) is: ∑16

i=9 xi

t
,

while the Bayesian estimator for the same probability is:

1 +
∑16

i=9 xi

4 + t
.

5.3.2 The distribution of matched primitives. The re-
maining component of the match probability is the dis-
tribution of matched primitives. We assume that the dis-
tribution of a model primitive, (p, r, c, A, R), that has
been matched to some detected primitives is a function
of the measured area of match, a:

Pr(a) = k(α)e−α
|a−A|

AR , (9)

where α > 0 and k(α) > 0 are the parameters of the
distribution, and AR is the total area of the correspon-
dence region. This form assumes that the probability of
a measured area is a maximum when it equals the ideal
area, and the probability is inversely proportional to the
difference in area, normalized by the size of the corre-
spondence region.

A more detailed description of the probability models
and how their parameters are estimated can be found in
[4].

6 Experiments

The system is currently implemented in C and runs on
Unix workstations. It comprises almost 8000 line of code,
excluding image reading and conversion and morphology
code. The experiments were run on Sun Sparc 10 work-
stations.

The system operates in two major modes: a train-
ing mode and a recognition mode. During training, the
system estimates the noise radius and generates the sym-
bol models by computing the primitives of each model,
including the measurements of the ideal primitives and
their correspondence regions. The symbol models are the
basis on which all parts of the systems depend.

The experiments performed on the system are of two
types: recognizing individual symbols and recognizing
whole words. The first type tests the matcher, which is
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Fig. 14. The font sheet for the Nadeem
font showing, the symbol shapes on which
the system was trained

presented with a subimage containing exactly one sym-
bol. The second type tests the performance of the whole
system, which is presented with a subimage containing
exactly one word. The experimental protocol followed
here is explained in detail in [20].

6.1 Data sets

Experiments were conducted on three types of document
images: ideal (noise-free), synthetically degraded, and
scanned documents. Ideal documents come from syn-
thetic images that are generated on an Apple Macintosh
that has the Arabic language system installed. The ideal
images are in Postscript and are converted to bitmap
format using Ghostscript and the PBMPlus package.

The synthetically degraded images were generated
from the ideal image using the noise model of Kanungo
et al. [21]. By using this process, it is easy to generate
many versions of the same passage of text that have dif-
ferent degradation parameters. The degradation model
parameters were set as follows: α = 1.5, α0 = 1.0, β =
1.5, β0 = 1.0, c0 = 0.0, and e = 3. For the same ideal
image and the same degradation parameters, different
degraded images are generated by using different seeds
for the random-number generator. In Fig. 10: (a) shows
a noiseless image of a text paragraph, and (b) shows the
same paragraph after synthetically degrading it with the
above degradation parameters.

The ideal images for the symbol experiments are the
font contact sheets that are used to train the system. Fig-
ure 14 shows the font contact sheet for the Nadeem font.
Each symbol (character shape) is surrounded by space
and segmented automatically using the vertical and hor-
izontal projection histograms. The symbol identities are
stored as a list and correspond to symbol images, in a
one-to-one manner. The degraded images that are used

to test the system are different (i.e.,use different seeds)
from the ones used to train the system.

The ideal images for the word recognition experi-
ments are those generated by typesetting the text of
seven pages (described below). After converting the pa-
ges into images, the words are isolated using the vertical
and horizontal projections.

The scanned documents are a set of seven pages se-
lected from a news magazine. By visual inspection, it
was determined that these pages were most similar to
the Macintosh Nadeem font type at a font size of 12
points. These pages were scanned at 300 dots per inch,
in-house. They were then zoned, and their text was en-
tered by two independent typists and verified. The de-
tails of the preparation process can be found in [10]. In
Fig. 10, (c) shows a paragraph scanned from one of these
documents.

When using scanned documents to train the system,
words must be segmented into symbols. All the symbols
on each of the seven pages were manually delineated by
bounding boxes, and each box was labeled with the sym-
bol identity. This allows training the matcher and also
testing the recognition rate of the individual symbols.

The document images described above are packaged
into several sets and then used to train and test the
system. In devising the sets, care is taken to eliminate
any overlap between the training and testing sets.

The training sets are symbol-based – i.e., in the form
of symbols delineated by bounding boxes – because they
are used for training the matcher. Two different training
sets are alternatively used to train the system:

1. The degraded set consists of the symbols in 500 syn-
thetically degraded instances of the font contact sheet
(Fig. 14), each degraded with a different random seed.
Since the font has 156 symbols, the total number of
symbols is 78 000.
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Table 3. Symbol recognition experiments and results

Test Set Recognition Rate Confidence Interval
Ideal 100%
Degraded 99.69% 0.1%
Scanned 94.1% 0.5%

2. The mixed set consists of symbols in four of the seven
scanned pages. These pages include 10 712 symbols.
In addition, the set includes the symbols of 75 syn-
thetically degraded images of the font contact sheet.
This was necessary to increase the number of train-
ing symbols and to represent some of the symbols
that were not on the documents. The total number
of symbols in this set is 22 412.

The second training set is used to find the effect of train-
ing with scanned symbols on the recognition of scanned
symbols and words.

The testing sets are of two types. Symbol testing sets
are used to test the performance of the matcher; each
symbol is delineated by a bounding box. The word test-
ing sets are used to test the performance of the whole
system; each word is delineated by a bounding box.

The two symbol test sets are as follows:

1. The synthetic set consists of the symbols in 100 syn-
thetically degraded images of the font contact sheet.
The random seeds used to generate these images dif-
fer from the seeds of the two training sets. This set
contains a total of 15 600 symbols.

2. The scanned set consists of symbols in three of the
seven scanned pages. These pages include 10 267 sym-
bols.

The three word test sets are as follows:

1. The ideal set consists of the words of the seven ideal
document pages described above. This set includes a
total of 4317 words.

2. The degraded set consists of the words of a syntheti-
cally degraded version of the above set.

3. The scanned set consists of the words in the seven
scanned pages.

The number of words tested from each set is listed below.

6.2 Symbol experiments

In the symbol experiments, many settings for the system
parameters were tried. A full description of the param-
eters and the experiments can be found in [4]. Table 3
summarizes the best results attained for each test set.
The table also shows a 95% confidence interval for each
rate. The method for computing the confidence interval
assumes that experiments are independent Bernoulli tri-
als with identical success probability and then uses the
normal approximation to the binomial distribution.

The experiments indicated that a larger set of shape
primitives significantly improves performance. The re-
sults also indicate that when all the indicators of the
indicator joint probability (last term of Equation 8) are

Table 4. Confusion pairs for the scanned set. This table
accounts for 70% of the errors

assumed to be independent (no use of graphical models),
the performance becomes significantly worse, and that
when this term is removed altogether, is performance is
insignificantly different.

Table 4 lists the most frequent confusion pairs, which
account for 70% of the errors for a test run on scanned
symbols. Figure 15 shows the discrepancy in the match
for the most frequent error of the table. The bottom row
shows that the primitives that belong to the left stem
of the symbol (white) do not fall in the correspondence
regions (gray). This is due to the different angle of the
stem in the scanned font compared to the training font.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 15a–j. The matched primitives for the most frequent error case of Table 4. Each image shows the correspondence regions
of the model (in shades of gray) and the primitives of the actual symbol (superimposed in white). The top row shows the model
with the highest probability, while the bottom row shows the correct model. The images in columns 1 to 4 are for primitives
P0–P3 of Fig. 6, respectively. The last column is for primitive P12

Table 5. Word recognition experiments and results. The average time is in milliseconds

Test Set # Words Recognition Rate Time/Word (ms) Confidence Interval
Ideal 3787 99.39% 16 718 0.3%
Degraded 3522 95.60% 59 760 0.7%
Scanned 830 73.13% 224 593 6%

The frequency of these errors can be reduced by mak-
ing the correspondence regions more true to the font of
the scanned symbols. For this, we try a new method of
generating correspondence regions. Using this method,
we extract all the shape primitives from all training in-
stances. For every symbol model and for every shape
primitive, we create an image that is the union of all
training images for the symbol and primitive. This image
then serves as the expanded image from which to con-
struct the correspondence regions. Using this method,
the recognition rate increased by 1.14%.

6.3 Word experiments

Table 5 summarizes the experiments that have been con-
ducted on words. The time figures should be treated very
cautiously, since they assume that the time to recognize a
word is within the clock limit of 36 minutes. This means
that time figures are lower bounds on the true time.

The most noteworthy observation from the word ex-
periments is that the search process in word recognition
takes an extremely long time. Table 5 shows that even
for noise-free words it takes on average more than 16 sec-
onds to recognize one word. Recognition time is almost
four times larger for synthetically degraded words, and
many more times larger for scanned words. These times
are for un-optimized program code.

For the ideal and the degraded test sets, the words
are of the same font and are formatted identically, which
means that their search spaces are identical. The dif-
ference is in the order and number of states that are

searched from that space. When the symbols are de-
graded, the dissimilarity between symbols, measured by
the match probability, becomes less. This reduces the ef-
fectiveness of pruning and the heuristic function in trim-
ming the states, both of which exploit variation in match
probability.

The increase in search time is even more for scanned
words. One reason is that the matcher is less effective in
identifying scanned symbols because the scanned font is
different from the font used to generate the synthetic im-
ages. Another equally important reason is the increased
length of the scanned words. The scanned words come
from magazine columns. Many of the words have been
elongated using the tatweel symbol to align the mar-
gins of the columns (see Section 1.1). The presence of
the elongation symbol adversely affects recognition time
in two ways. First, it obviously increases the length of
the word to be recognized. The amount of time needed
to recognize a word is proportional to its length, as the
depth of the search tree is determined by the length of
the word. Second, it obscures the process of proposing
translations for symbols.

The recognition-rate figures for word experiments
show that the system is effective in recognizing noise-
free words and synthetically degraded words. Using the
method of [19], the recognition rate for noise-free words
is determined to be above 99% with a certainty of 94%.
The recognition rate is above 95% with even higher cer-
tainty.
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7 Discussion and conclusions

The most distinguishing feature of this work is that it
does not follow the classical recognition paradigm of a se-
quence of segmentation, feature extraction, and classifi-
cation steps, which is sometimes hooked up in a feedback
loop. The premise underlying this work is that accurate
segmentation is difficult. For that the system does not
commit itself to a segmentation of the word, rather it
simulates trying different segmentation points and then
chooses the best set of segmentation points that provides
the best recognition. As we explained in Section 1.2 this
system optimizes the segmentation with respect to the
whole word. The price paid for the optimization is having
to use a time-consuming search.

This system successfully uses primitives extracted by
mathematical morphology operations to recognize words.
The features we use are structural and statistical at the
same time. They are structural in the sense that they in-
dicate the presence of shape primitives in the input im-
age. They are statistical in that they indicate the size of
the matched primitives and are used to calculate match
probabilities.

At the outset, the matching technique used here re-
sembles template matching in that there is a reference
template (symbol models here) that is matched with lo-
cal regions in the word. The main difference, though,
is that the matcher does not analyze the whole region
covered by the symbol model; it analyzes only the re-
gion covered by the correspondence regions of the symbol
model. Detected primitives that are covered by a sym-
bol model but not within a correspondence region can be
used again to match another symbol model or are con-
sidered extraneous primitives if left unused. Other differ-
ences are that the quality of match is computed accord-
ing to an assumed probability model and that the match
is flexible because the correspondence regions were con-
structed according to an assumed noise model.

When using probabilities for character recognition,
a common practice is to assume the conditional inde-
pendence of the components of a text segment. This
simplifies the estimation procedure and calculating the
probabilities. The other extreme is not to assume inde-
pendence and take all variables that correspond to com-
ponents to be dependent. This is very hard to estimate
and calculate for more than a few variables, and is harder
when variables can take more than two values. Even if
it were computationally feasible to do so, it is not nec-
essarily the best model to explain the data.

Here, we sought a middle ground. We break down
the match probability into an area part and indicator
part. Though we assume the areas to be conditionally
independent given the indicators, we use the theory of
graphical models to find a suitable model for the joint
distribution of the indicators. The experiments did not
show a significant difference in performance among the
cases of using graphical models and not using the indi-
cators at all. However, assuming that all indicators are
independent had an adverse effect on performance.

During the process of generating ground truth for
the seven scanned pages, we have experienced firsthand

the amount of work required to prepare the pages. Not
only the text had to be entered, but also words had to
be manually segmented into symbols. We have used a
graphical tool, built in-house, to delineate the symbols
with bounding boxes. Though this tool simplified mat-
ters, the process was still very time consuming, taking
a few hours per page just to segment the symbols. A
similar experience is reported in [22] when generating a
training set.

One of the design goals of this system was to re-
duce the effort needed in preparing the training set.
For that we have relied on a noise model to degrade an
ideal version of the symbols and produce many degraded
instances of the symbols. Using the synthetically de-
graded symbols to train the system, the system achieved
a matched symbol recognition rate of over 90%. The use
of mixed symbols, however, boosted the rate by about
4%. This indicates that the noise model needs to be mod-
ified to better resemble actual symbols.

The main theoretical contribution of this work is in
laying the foundation for a segmentation-free approach
for Arabic word recognition. Recognition is based on
maximizing the probability of the word given the de-
tected primitives. In this work we have integrated the
use of morphological primitives, with state-space search,
a noise generation model, a noise effect model, graphical
probabilistic models and Bayesian estimation.

The main practical contributions of this work are
in implementing a system that satisfies its performance
requirements for noise-free and synthetically degraded
text. The system also requires minimal effort to train.
Though the performance was not impressive for scanned
text, several ways are suggested to improve its perfor-
mance on such text. This work should be regarded as
the beginning of a path that is to lead to an alternative
and better recognition strategy.

The highest symbol recognition rates that were at-
tained in the experiments were 99.69% for synthetic sym-
bols and 94% for scanned symbols. The number of data
points used to calculate those two rates are above 10 000
cases each.

When comparing the performance of this system to
other systems one runs into difficulty. The test sets are
different, the performance measures are not clearly de-
fined (nor necessarily similar), and many of the results
reported lack statistical analysis. Most systems report on
experiments conducted on a few data samples, and a few
tens at most. Further, it is not made clear whether the
training and testing sets are mutually exclusive as they
should be. For the reason of limited test data sets, and
because the systems in the literature seldom report on
the type, font, size, and source of their test sets, and also
on the definition of recognition rate, one cannot directly
compare the percentages reported for different systems.
Many works in the literature report recognition rates of
up to 99%. Some of those results are listed in the review
papers of [2] and [3]. It is interesting to note that on the
first data set on which the system was tested, the system
had a 100% success rate. On further experimentation on
a large sample the system was found to have a much
lower success rate.
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7.1 Future work

In this work we have assumed that the words were al-
ready segmented from document pages and that they
were not rotated. A practical recognition system must
be able to robustly extract the words and align skew.
Because of time and resource issues, we did not deal
with these aspects which are discussed in the research
literature.

To improve the speed of search, one can search fewer
states of the space, reduce the space of the search, or re-
duce the time necessary to generate and expand a state.
To reduce the number of searched states, a better heuris-
tic is needed. The heuristic must be more effective in
pruning states that do not lead to the correct solution.
The other two options require more radical changes to
the design of the system.

One way to reduce the space of the search is to exam-
ine the word to be recognized and suggest a small set of
segmentation points, instead of trying out many transla-
tions for symbols. The object of the search or optimiza-
tion would then be to find the best subset of segmenta-
tion points. If the set of proposed segmentation points
always includes the true segmentation points, then, in
addition to reducing the space of the search, this ap-
proach can find the optimal solution. It remains to be
investigated how this method actually performs. The use
of segmentation points can also help in solving the prob-
lem of inaccurate translations described above, since it
uses more information.

The key to optimizing word recognition is in evalu-
ating the word probability and not just considering the
goodness of match of individual symbols or local regions.
By doing so, the word probability can take into account
the probability of the segmentation points being the true
ones.

At the time that this study was done, there was a lack
of fully ground truthed1 Arabic document image data
bases. So we made do with synthetically generated and
synthetically degraded Arabic document images whose
ground truth would be automatically created at the time
of image generation. However, the font used for this gen-
eration and the font that appeared in the real scanned
images had differences. We believe that these differences
are a major contributor to the lower recognition rate on
the real scanned images when we used the real scanned
images for the test data set. It would be appropriate to
repeat this study using an extensive set of real scanned
Arabic document images.
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