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A theoretical solution to the problem “Rigid Body Motion from Depth and Optical Flow” is
uniquely determined, given four uncoplanar initial spatial points and, associated with them,
optical flow and depth information. A numerical example is given to explain the theory and
related algorithm. © 1986 Academic Press, Inc.

L. INTRODUCTION

In [1] Ballard and Kimball consider the problem “rigid body motion from depth
and optical flow.” They argue that motion parameters are computable in parallel
from depth and optical flow information and, when coupled to the flow computa-
tions, the rigid body computations can resolve difficult singularities in the flow
calculations. Although many insights which the authors propose are useful, the
method they suggest to solve motion parameters from depth and optical flow
information is not correct. In Section II, following their basic conventions, an
analysis which points out the mistake in [1] is given.

In Section III, we solve the rigid body motion from depth and optic flow problem
by a differential equation approach. It is shown that if at any time, given depth and
optic flow of four uncoplanar object points which might not be the same four points
from time to time, then the rigid body motion is uniquely determined. If these four
uncoplanar object points are not changable from time to time, then there is a
straightforward approach to recover the motion as seen from the argument in the
section. Finally, a numeric example is used to explain the theory and related
algorithm,

In summary, the problem, “rigid body motion from depth and optical flow” is
solved without the assumption that the body is not subject to large external forces,
which is required by the authors in [1] and also without the assumption that the
depth and optic flow come from the same object points from time to time.

II. BALLARD AND KIMBALL'S METHOD

The perspective transform describes how points in 3-dimensional space are
projected onto the retina. Figure 1 shows an imaging system with the lens located at
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Fig. 1. Viewing geometry.

position f on the z axis and the image focal plane or retina is at z = 0. Points with
negative z values are imaged.

Referring to the figure, the retinal position X’ = (x’, y") is related to a given
3-dimensional point X = (x, y, z)T by

o g —2) (1)

where f is the optical focal length. Differentiating these equations with respect to
time results in a relationship between optical flow and what we call 3D flow. The
optical flow describes the field of instantaneous retinal velocities of a group of
retinal points { X”}. Optical flow is denoted by

dx’
x| =(u(x'<r),y'<r),r))
a | @ |7 o(x(0), y(0),0)
dr
and 3D flow by
d_x
di v (x(1), y(1), 2(2), )
“- = N (ACORIOEON)
ry V,(x(1), »(2), 2(2), 1)
Z

The following equations hold as [1] indicates: .

(f = 2)u=uv,f +xt,
(f = 2)o =0,/ + y,. | @
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Assume that depth information =z(x’(¢), p’(z), t) and optical flow
(u(x'(z), y'(1), t), v(x’'(2), (1), 1)) are known. Then, the 3D position information
s X(x', y', 1) = (x(x'(1), y/(1), 1), (1), p'(0), 1), 2(x"(0), y'(£), )7, and 3D
flow are known by

“(f—z(x', y’ L d
x(f (f,y,t))jy(f (f’y’t)),z(x’,y',f) ()

X(x', y'st) =(

and letting z,. denote the partial of z with respect to x’, z . denote the partial of z
with respect to y’, and z, denote the partial of z with respect to ¢,

V= (v, uz)T
3 ( { f= z)w— ozt gpoden,)
f 3
(F~ zlo— y (740 +z0+ 2,)

f

, Bgittet 2 ez, (4)

as the authors in [1] demonstrate.

Let b be a fixed point with respect to the rigid body motion. There is a fixed
coordinate frame F centered at b with respect to the rigid body. The motion of an
arbitrary point X with respect to the world coordinate frame can be represented as
the sum of the motion x,(#) of the fixed point b plus the rotation of X around and
axis through b.

X(1) = X%,(1) + p(2) = X, (1) + R*(1)p(0) (5)

where R*(r) is an orthogonal matrix with det(R*(¢)) = 1, p(¢) represents the
vector X(¢) in F at the time #; X(r) represents the point X on the rigid body at the
time ¢ in the world coordinate frame.

An alternative way is to describe the rigid body motion as the sum of the
translation plus the rotation around an axis through the origin 0;

X(t) = R(1)X(0) + T(). (5")
Especially,
Xb(t) = R(f)Xb(O) + T(t) (5")

Combining (5), (5’), (5”) together leads to R*(¢) = R(z) and T(¢) = X,(¢) —
R(1) X,(0). Think about the instantaneous rigid body motion from the time ¢ to the
time ¢t + At with At small enough. Then, the rigid body experiences two kinds of
motion: a small translation along the orientation of V,(t), X, (¢ + tA) — X,(¢) =
V,(¢) At and a small rotation around some axis through b with an orientation
w(t)|w| = 1) by a small angle Af, p(r + At) — p(1) = Aw(r) X p(t) (Remember a
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small rotation could be approximated by a cross product!). Thus,

dp(t)
dt

X p(t).

- |G

Hence, (1) defined by [(d6/dr) w(t)] represents the instantaneous angular velocity
of rotation around the axis through b with the orientation w(z). As a result,

V(e) = V() + (1) = V() + 9(t) x p(0). (6)
Another expression for ¥(¢) comes from (5):
V(1) = R(1)X(0) + T(). 6)
It could be easily verified that
V(1) = R(1) X,(0) + 7(1) (1)
R(RT(1)p (1) = () X p(1). (8)

Noticing R(1)R"(z) = I; and hence R(¢)R™(z) = —(R(2)R™(1))T, we realize that
the matrix (R(7)R(1)) is skew-symmetric. It is easy to directly verify by using (8).

(Fys 13) (F3, 1)
Q(t) = —|[<{AHm) (Fy,1r3) (9)
(hony | =\ {fh, )

(see (6')) where

n
R=1|%|, and {-,-)
L£]

is the scalar product between two vectors. Furthermore, we could obtain the
expression for acceleration a(r):

a(e) = a,(e) + (dQ(e)/de) x p() + (2(¢) - p(1))Q(2) =1Q(1) "0 (2). (10)
Equations (5), (6), and (10) are established in [1], too, where §(¢) - p(¢) is the scalar
product between the two column vectors 2(¢) and p(z).

The problem discussed in [1] is: given depth information z{x’, y*, t) and optical
flow (x’, y’; u, v), determine a procedure which computes the motion parameters
X, (1), Vy (), and 2(¢). Given depth information z,(¢) and optical flow (x(¢), yi(?);
u, (1), v,(r)) which correspond to X,(z), both X,(¢) and V,(¢) can be calculated by
(3) and (4) as authors in [1] show. In this case, only 2(¢) needs to be determined.
There they assume that

ay(1) = 0 1)
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and
dQ (1)
=0 17
r (11)
Then they correctly show
a(t)Q(t) = 0. (12)

Based on the approximate equality (12) they proceed as follows: let

a, = a(t + At),
a,=a(t+ 2At). (13)
Then they argue
a, = a, a, =a. (14)
Thus, by (12) we have
a, -2 =0, a, =10, (15)

that is, £ is approximately perpendicular to both a, and a,. It is always true that
2
|2 - (a; X a,)|” +|2 X (g ><c‘12)|2=|9|2|a1><af2|2 (16)
and
QX (a; X a,)=a (R a,)—a,(2-aq). (17)

Itis obvious that @ is parallel to @, X a, iff @ X (4, X a,) = 0. Henceif @ - a, = 0
and @ - a; =0, they conclude that [Q - (a, X a,)|* = |Q|%|a; X a,|* which would
make { parallel to a; X a,. Unfortunately, this reasoning is not correct. Some care
has to be taken due to the fact that the approximations are only first order.
Carefully tracking the approximation under the exact assumption a-Q =0 we
easily obtain not only

a - Q=Aw-Q

a, - Q=2Ata-Q (18)
but also

a; X a, = Ata X a. (19)

Equation (18) means & is perpendicular to both a;, and a, to within a first-order
infinitesimal. Thus, & is parallel to g, X a, to within a first-order infinitesimal (see
the identity (17)). However, (19) does mean that a, X a, itself is also a first-order
infinitesimal. In this case, it is hard to say whether or not § is approximately
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parallel to a; X a,. To explain this error concretely we work out the correct answers
for the special case

=0 (20)

and show that in this case that it is necessary to have d, = 0 in order for @ to be
pflirallel to a; X a,. From (10), (11), (11",

a(t) = (Q(1) - p(0))Q(1) ~12() 0 (1)
a(r) = a,(1) + (2(1) - p(1))2(0) —12(e) "5 (1). (21)

But p(t) = Q(7) X p(r). Hence

a(r) = a,(t) + (1) - [8(0) X p()])R(1) ~[2(e) P[2(1) X p(1)]

=a, = |9*[Q x p] (22)
axa=aXa,—[(2-p)Q—|0%] xQ2[2 X p]
=aXa,+|Q%x [2Xp] —|2°|pcos #Q X [2 X p]. (23)

It is easy to verify

2 — |2|cos #
p X [ X p] = |Rlo{sin 01205
Viel1012 — (p2)?
= |pl(|p|2 — |Qcos bp) (24)
cos 8 — |8
2 x [Q X p] =|Q%|plsin 8 L | |P2
Viel1212 - (o2)
= |2|(|plcos 62 — |2p) (25)

where @ is the angle between & and p, 0 < § < 7. Thus, we obtain

axa=axa,+|Q°%|{|p|2 — |Qcos §p — |p|cos?IR + |Rcos Gp }
=a X a, + |9*p|*sin’0Q
(- p)(2 X a,) — [2*(p X a,) + 9% p|*sin’ 69 (26)

Combining (26) with a, X a, = a X a(At), we conclude that for arbitrary choice of
p, § can be approximately parallel to a, X a, only if

&, = 0. (27)
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Otherwise, the vector

(20)(2 % a,) = [2(p x a,) = [pI{(2 - p/]p])(2 X ;)
— 1212 ((p/1pl) x a,)}
= lpI{1Qeos (2 x a,) — 122((p/10]) X 4,)} (28)

could have various orientations so that a X a has significantly different orientations
from {2’s orientation. It should be pointed out that the condition (27) is not implied
by the small external forces assumption: a, =0 and Q = 0. Even when the
condition (27) is added in, concluding that a, X a, is parallel to  is not always
reliable. When p is nearly parallel to the rotation vector € (in this case § = 0),
a, X a, would produce an estimation of £’s orientation with large deviation since it
is probable to have

la X @ —|Q]*|p|*sin*0Q| > ||Q*|p|2sin*0|. (29)

Therefore, when a, a;, a, all come from the same rigid body motion, the idea that
$2/|2| should be the same as (a; X a,)/(|a, X a,|) within the accuracy of the
measurement is not correct in general.

ExampLE. The rigid body motion is determined by

X, (1) = —esint®,, &> 0small,
V,(t) = —ecostQ,,
ﬂ(t) = QO’ |Q’OI = 17

t> 0. (30)
From (29), we have
a,(t) = esintQ,,  a,(0) =0, (31)
a,(1) = ecos1Qy,  a,(0) = &, (32)
Qi)=8) =0 (33)
a(0) = (2 - p(0)) 2 — 12,)%(0) (34)
a(0) = ey — [2]*[24 X p(0)] (35)

a(0) X a(0) = (o - P(0))(2 X e24) — [29]*(p(0) X ¢2,)
+120]*lp (0) | sin? .

—el@*(p(0) X £) + (2] 0(0) | sin? 6%,

—¢(p(0) X 2;) +p(0) [* sin? 62, (36)

Il
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The two vectors p(0) X €, and 2, are perpendicular to each other. And

|—e(p(0) X )| = ¢[p(0) |sind (37)

| 1p(0) | sin” 69 | = p(0) |* sin? 6. (38)
When 0 < 8 < ¢ and |p(0)| = 1, we obtain
|—2(p(0) X 2)|>[10(0)|? sin? 6%, . (39)

Therefore, in this case the angle a between 4(0) X 4(0) and £ should be in the
interval (7 /4, 7 /2). For this kind p(0), a(0) X 4(0) is absolutely not parallel to Q.
Furthermore

a,(0) X a,(0) = a(At) x a(2A1)
= At(a(0) x a(0)) (40)

implies that for any fixed p(0),(a, X a,)’s orientation approaches the orientation of
(a(0) x a(0)) when At — 0. Therefore, for p(0) with |p(0)] = 1,0 < 8 < ¢ and At
small enough, since the angle between a(0) X 4(0) and £, is in the interval
(w/4, m/2), a; X a, is absolutely not parallel to &,, too.

In summary, the previous analysis and semi-numeric example indicate that the
idea considering £ /|Q| being the same as (a; X a,)/(|a; X a,|) within the accuracy
of the measurement is not correct in general even under the stronger assumptions:
ag, ag, Q, Q=0.

In the following section, we develop a general procedure to solve the problem
“Rigid Body Motion from Depth and Optical Flow.” The procedure does not use
any assumptions like the small external forces and X,(0), V(1) known.

III. A DIFFERENTIAL EQUATION APPROACH FOR SOLVING THE RIGID
BODY MOTION FROM DEPTH AND OPTICAL FLOW

In this section, we use the world coordinate system as shown in Fig. 1. For
convenience, we change the notational conventions a little bit. Let P = (x, y, z)7
and p’ = (x’, y')T. Assume that P’(r) is a set of retinal points { p’(¢)} and
P(t) = {P(p'(¢), 1)} is a corresponding set of object points determined from P’(z)
and the depth information z( p’(t), t), where P(¢) might not be the same object
points from time to time. The rigid body motion is represented as

P(t) = R(2)P(0) + T(¢) (41)

where P(z) and P(0) represent spatial coordinates of the same object point on the
rigid body at times ¢ and 0, respectively. R(z) is the rotation matrix and T(¢) the
translation vector. According to the convention, R(0) = I (a 3 X 3 identity matrix)
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and T(0) = 0. As known, R(z) is an orthonormal matrix (R(+)R™(t) = I) with
det(R(1)) = 1.

Assume that for each p'(r) € P’(1) the depth information z( p’(¢), 1) and the
optical flow (u( p’(1), 1), v( p(2), 1)) are given. Then, P(p’(¢),t) and f’(p’(r), 1)
(denoted by w( p’(¢), t)) are determined respectively by

P(x’, y,,[) _ (x (f—z(; :ys[)),y (f_Z(;,y’,t)),Z(x’, y’,!) (42)

w(p'(2),8) = (wi(p/(1), 1), wa(pr (1), 1), wy ( /(1) 1))

_ ( (f—2)u—x"(z u+ 20+ 2;)

7 )
(f=z)o—y(zu+ z,v+z,)
7 3
T
zou+z,0+ z,) . (43)

To determine the motion parameters R(¢) and T(r), we only need to establish the
differential equations which govern them since the initial values R(0) = / and
T(0) = 0 are known in advance. Consider

P(t+ At) = R(t + At)P(0) + T(¢ + Ar) (44)
= G(t, At)P(t) + H(t, Ar) (45)

where the rotation G(z, Ar) and the translation H(z, At) represent the rigid body
motion from the time ¢ to the time ¢ + Ar. Substituting R(1)P(0) + T(r) for P(1)
in (45) results in
{R(t+ At) — G(¢, At)R(2)} P(0)
+{T(¢ + Ar) — G(z, Ar)T(¢) — H(z, Ar)) = 0. (46)
Since P(0) comes from the rigid body with nonzero volume, (46) implies
R(r+ At) = G(¢, At)R(1) (47)
and
T(t + At) = G(z, At)T(t) + H(z, Ar). (48)
Thus

G(t,At) = R(z + At)R™(z) (49)
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and
H(t,At) = T(t+ At) — R(t + Ar)R™(1)T(r). (50)
Noticing
R(r + Ar) = R(t) + R(¢) At (51)
and
T(r + At) = T(¢) + T(t) At (52)
we have
G(r, At) =1+ R(t)RT(¢) At (53)
and
H(t, Ar) = (T(1) = R(1)R™(1)T(1)) At (54)

Thus, combining (53), (54) with (45), we obtain

P(t + At) — P(2)
At

= R()RT(£) P(¢) + (T(2) = R(DRT(1)T(1)). (55)
Let

S(t) = R(t)R™(¢) (56)
K(1) =T(t) — S(¢)T(¢). (57)

Letting Ar approach to zero, finally we obtain

w(t) = S(2)P(¢t) + K(2), (58)

where S(7) and K(¢) actually represent the instantaneous description of motion.

Assume that P’(T) contains points { p/(z); i = 1,2, 3,4} so that the correspond-
ing four object points { P,(1) = P(p/(t), t); i =1,2,3,4} C P(z) are not coplanar.
Denote the corresponding velocities w( pi(1), t) by w,(¢t). Pi(t)’s and w,(1)’s are
uniquely determined from the optical flow information {u,(1) = u(p{(¢), 1), v,(1) =
v(pit), t); i=1,2,3,4} and the depth information {z,(¢) = z(p{(1),t); i=
1,2,3,4) by using formulas (42) and (43). Once w,’s and P,’s are determined, S(¢)
and K(r) can be uniquely determined as

S(t) = [Wz_WbWsJWpW‘t_Wl][P2*P1=P3_P1>P4—P1]_ls g (59)
K(t) =w = S()Py. {60)
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Here the inverse matrix [P, — P, P, — P, P, — P,]™! exists since the vectors
P, P,, Py, P, are not coplanar. Hence, it is clear that the instantaneous description
of motion can be simply recovered from depth and optic flow of four uncoplanar
object points.

If four points P,, P,, P,, P, are coplanar, we have to require that there are three
within them, for instance P;, P,, P; such that the corresponding determinant
det[ P,, P,, P,] is nonzero. When there are no such three points within them, the
motion cannot be uniquely determined. To explain this, we need to modify the
instantaneous motion equation a little bit. Let us first point out that the matrix S is
skew-symmetric: ST = —§. In fact,

S+ 8T=R(:)R™(z) + R(t)R™(1)

= E[R(I)RT(t)] =] =0.

Second, for any skew-symmetric matrix

0 —w Wy
S = Wy 0 —W;
) w; 0

letting & = [wy, w,, w3]T we could directly verify
SP=8QXxP.
Thus, the instantaneous motion equation could be rewritten as
w=0QxXP+K.
Now suppose we are given the true instantaneous motion {2, K. Pick any plane
which passes through the origin and any three nonzero vectors Q,, @,, Q5 lying on

the plane. For any nonzero vector N which lies on the plane and uncolinear with
any of the Q,’s there are three nonzero parameters A, A,, A; such that there holds

N X (AIQI) =N X (AzQz) =NX ()\;QB) # 0.

Let P,=X,Q, and w;, = £ X P, + K. Then, it is clear that the following equalities
hold too:

w,=(Q+N)XP,+(K-NXP)

which indicates the motion cannot be uniquely determined by these three points
P,, P,, P, and their velocities w;, w,, w;.

For recovering the evolution of motion with 7, we need to solve R(z) and T(¢)
from S(z) and K(¢). As such, we obtain the following differential equation for R(¢)
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and T(¢):

R(R™(¢) = 8(¢) (61)
(1) — S(¢)T(t) = K(¢) (62)

where S(z) and K(¢) are considered known.

It is worth pointing out that for different times, P,, P,, P;, P, do not necessarily
represent the same set of object points. If they do, then det([P, — P, P, — P}, P, —
P,]) is unchanged when the time evolves and the motion can be solved in a

straightforward way.
Recalling RT(¢)R(¢) = I, we could transform (61) into

R(1) = S(1)R(1) = 0. (63)

It is classical in theory of differential equations that the differential equation (63)
with the initial value R(0) = I has the general solution

R(t) = exp(fO’S(T)dT) (64)

and the differential equation (62) with the initial value T(0) = O has the general
solution

Otexp(f:S(& )K(fr) dr
f’exp(fS(f)ds—fs(s)ds) (v) dr
exp ['5(6) ag)exp( - [S(¢) dt | K(7) ar

=R(z)fD’R-1

;)fO'RT(T)K(f) dr (65)

where the integral of a matrix’s function M(¢) = [M,,(¢)] is defined by
f[M('r) dr = I:fIMU(T) d'r] (66)
0 0

and the exponential of a matrix M is defined by

exp(M) = E M" (67)
k=0 K
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We can directly verify the correctness of formula (64) and (65) as follows:

R(0) = CXP( }=1,

R(1) = (fS )d»r)exp(fs( dT)

= S(t)R(1),
7(0) = 0,

T(t) = R(;)[D’RT(T)K(T) dr + R(1)RT(1)K(1)

= S(t)R(t)_gRT('r)K(-r) dr + K(1)
= S()T(¢) + K(1).

As a result, four optical flow points and the corresponding depths which come
from four uncoplanar object points can uniquely determine the rigid body motion.
An iterative scheme to compute R, = R(z,) and T, = T(z,) could be directly
obtained from (63) and (62) with the initial values R(0) =/ and T(0) = 0 as
follows:

R,=1,

T,=0,

Ry=Ry 1+ 8 1R, 4,
={I+ 8,8 }R,y,

T~ T F 48T + &y | By
= {1+ 828, }T s + K14,

Ak=l‘,{—lk_1, tk—1<tk’k21’ (68)
or equivalently,
k
]—[ I+5,_,A],
. ‘ ;
T, = Y (1‘[[1 + 5,4, ])Kj_zaj_l + K, 4A,, k=1 (69)
j=2\i=j ;

Since R(1)R™(r) + R(t)R™(r) = 0, S(z) should be skew-symmetric: S7(1) = —5(1).
Thus,

RkR{= ﬂ [I + 8,4, + Si-£1Ar + S:‘—IS[-EI(A!)Z]
i=1

=ﬁ[f S2,(8,)]

o' i Z 1(A ) (70)

=TI (1f all A,’s are small enough!)
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Therefore, when all A,’s are small enough, not only R, and T, approximate R(¢,)
and T(t,) very well, but also R, keeps the orthogonality very well.

In summary, given the optical flow information { p{(¢),[u( p{(¢), 1), v( pi(t), 1)];
i=1,2,3,4} and the depth information {z(p/(¢),); i =1,2,3,4} such that the
corresponding object points { P( p/(t), t); i = 1,2,3,4} are not coplanar, the mo-
tion parameters are uniquely determined. If the optical flow { p/(1),
[u( p'(1), 1), v(pit), 1)]; i =1,2,3,4} traces the motion of the same object point
set, then we only need to assume the initial four object points { P;(0); i = 1,2, 3,4}
being uncoplanar.

ExampLE. Given the optical flow

sin? — cost sin t —cos?
Iz 2 2 2 sint — cost
“| —sinz —cost |’| —cost || —sint |'| —sint — cost
2 2 2
sint + cost cos ¢ sin ¢
U 2 2 2 cost + sin ¢
v lsint—cost | |sint | | —cost | |sint— cost
2 2 2

and the depth information
z1 =1y =1; =10,

as well as the focal length f = 1, the corresponding object points and velocities are
obtained by using (42) and (43):

sin f — cos ¢ sin ¢ —Ccost sint — cost
P:|—sint —cost|,|—cost|,| —sint|, | —sini — cost
-1 -1 -1 0
sint + cost| |cost sin ¢ sint + cost
w: |sinf — cost|, |sint|,| —cost|,|sint — cost|.
0 0 0 0

Thus

S(’) = [WZ_wl’w3_w13w4_wl][PZ_PlsP?;_Pl’Pdt_Pl]_l
-1

—sint —cost Of|cost —sint 0
=| cost —sin¢ Of|sint cost 0
0 0 0(|] O 0 1
—sint —cost O0]| cost sint 0
=| cost —sint 0f||—sint cost O
0 0 0 0 0 1
0 -1 0
=1 0 0},
0 0 0
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i 0 —-r 0
fS('r) dr={¢t 0 0
0 0 0 0
y 2k " t* 0 0
S(r)dr] =(-1) % g, (k>1),
A 0 ¢ 0
0 0 0
; 2h+1 ) 0 — 2+l
([s@rar) " =(=0fan o ol kzo0),
0 0 0
R(t)=e (jfs()d) 1([’8()d)k
= €X T T| = P T T
P 0 k=0 k!'\Jo
(_l)k IZk O 0 (71).‘( 0 _t2k+1 0
=T B I % ok Looo—swlagbit g g
1 ]
k=1 (2k)‘ 0 0 0 kEG (2k+ 1) 0 0 0
cost —sint 0
=|sin ¢ cost 0Of,
0 0 1

k(t) =w, — 8(r)P,

sin ¢ + cos ¢ 0 =1 0| sint— cost
=|sint—cost|—|1 0 O||—sint— cost
0 0 0 0 -1
sin ¢t + cos ¢ sin ¢ + cos ¢
=|sint—cost|—|sin? — cost
0 0
=0,
() =1,
Therefore, the required motion is
cost —sint 0
R(t) =[sint cost 0O,
0 0 1
T(t) = 0.

It could be directly verified that this motion actually produces the given optical
flow and depth information. Interestingly enough, using the discrete iterative
scheme (68), the same results come out:

cost, —sint, 0
R, =R(1,) =|sint, cost, 0
0 0 1

T,=T(z,) =0.
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No discrete errors at all! The reason is simple: S(z) is a constant matrix and hence

(1) = ['5(r) dr = T 5(1,-)8, = 5,

=]

R(1;) = R;,T(1,) = T,.

IV. CONCLUSIONS

It is confirmed that given depth and optic flow of four uncoplanar object points,
the rigid body motion can be completely determined. Given only optic flow
information without knowing depths, how to obtain the instantaneous rigid body
motion is a more difficult and meaningful problem. We already proved: When
K # 0, 8 appropriate points can uniquely determine the instantaneous rotation (or
the same, ), the instantaneous translational orientation K/||K||, and the relative
depth z/||K||. When K =0, 6 appropriate points can uniquely’ determine the
instantaneous rotation (or the same, §). See Zhuang and Haralick.
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