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Ridges and valleys on digital images are found by looking for zero crossings of the first
directional derivative taken in a direction which extremizes the second directional derivative.
Computation of the required directional derivative is accomplished by fitting a two-variable
cubic polynomial to each neighborhood of the image. Results are shown for a face image and
an airphoto scene. It indicates that the technique has a good ability to find ridges and valleys.

1. INTRODUCTION

Computer vision requires the development of an algorithm to explain (for any
digital image) the cause of the spatial distribution of its gray tones. The explanation
must be in terms of the shape and reflectance of the observed objects, the position of
the illumination source or sources and the viewing direction of the camera. For
elongated objects which have curved surfaces with a specular reflectance function,
the locus of points on their surfaces having surface normals pointing in the direction
of the camera generate pixels on a digital image which are ridges. Similarly, for
objects which have curved surfaces with some degree of Lambertian reflectance, the
locus of points on their surfaces having surface normals pointing in the direction of
a point light source generate pixels on a digital image which are also ridges. Linearly
narrow concavities on an object surface (such as cracks) are typically in shadow and
generate pixels on a digital image which are valleys. Line and curve finding play
universal roles in object analysis. Therefore, one important part of the computer
vision algorithm must be ridge and valley classification of pixels. This classification
task is addressed in this paper.

What is a ridge or valley in a digital image? The first intuitive notion is that a
digital ridge (valley) occurs when there is a simply connected sequence of pixels
having gray-tone intensity values which are significantly higher (lower) in the
sequence than those neighboring the sequence. Significantly higher or lower may
depend on the distribution of brightness values surrounding the sequence as well as
the length of the sequence.

The facet model (Haralick [1]) can be used to help accomplish ridge and valley
identification. The essence of the facet model is that any analysis made on the basis
of pixel values in some neighborhood has its final authoritative interpretation
relative to the underlying gray-tone intensity surface of which the neighborhood
pixel values are observed noisy samples.

To use the facet model we must first translate our notion of ridge and valley to the
continuous surface perspective. Here the concept of line translates in terms of
directional derivatives. If we picture ourselves walking, by the shortest distance,
across a ridge or valley what we would do is walk in the direction having greatest
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magnitude of second directional derivative. The ridge peak or the valley bottom

would occur when the first directional derivative has a zero crossing.

Thus to determine ridges and valleys we need to use the neighborhood of a pixel
to estimate a continuous surface whose direction derivatives we can com

analytically.

pute

To do this we use a functional form consisting of a cubic polynomial in

the two variables row and column. For greater numerical accuracy this can be
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expressed as a linear combination of the tensor products of discrete orthogonal
polynomials of up to degree three (Haralick [2]). These forms are often used in
statistical regression problems (Draper and Smith [4]). Figure 1 illustrates the masks
used to compute the coefficients of the polynomials in the natural basis set
A, r, e r?re, et r ri, rc?, ¢*) for the 5 X 5 neighborhood.

Section 2 discusses the concept of directional derivatives and derives an expression
for the direction which extremizes the second direction derivative. Section 3 dis-
cusses how the expressions derived in Section 2 can be applied to fitting the
coefficients of the facet model.

2. DIRECTIONAL DERIVATIVES
The first directional derivative of a function f in the direction a at row, column
position , ¢ is denoted by f;(r, ¢) and is defined by

£(rc) = f(r+dsma c+ddcosa) f(r, c) (1)

From this it follows that

fi(r, c)=g—{(r,c)sina +—g—£(r,c)cosa (2)

and

fr(r,c) = 2f(r ¢)sin’a + 28 f (r,c)sinacos a + 2f(r c)cos’a.  (3)

Rearranging the expression for f;’ we find that the second directional derivative
can be expressed as a linear combination of two terms, the first term being the
Laplacian of f and not depending on & and the second term depending on a:

L1 o *f 3 9’
fa=§(5,_£+acf)+ (acf 8r§)cosa+ar(§sma (4)

The direction a which extremizes f’ can be determined by differentiating f,” with
respect to a, setting the derivative to zero, and solving for a:

w2y oy &) o
da \gr2  9c2 drdc’

)sma + 2

Therefore,

sinfa = + (—23%/drdc)/D  and  cos’a = +

2 _¥f
2. @

where D = \/2( 3*f/ar ac)’ + ((8%f/ar?) — (82f/8c2))2. It is easy to see that
when the plus signs are taken,
P’y

da?

>0
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indicating that the extremum is a relative minimum, and when the minus signs are
taken,

21
__8 Ja <0
da?

indicating that the extremum is a relative maximum. Also, the direction @ which
makes f,” a maximum differs from the « which makes £’ a minimum by # /2 radians.

3. RIDGE-VALLEY IDENTIFICATION

To identify a pixel as a ridge or valley, we set up a coordinate system whose origin
runs through the center of the pixel. We select a neighborhood size to estimate the
fitting coefficients of the polynomials. Using the fitted polynomials, we can compute
all second partial derivatives at the origin, from which the two directions of the

extremizing « can be computed by Eq. (6).

Having a direction @ we next need to see if by traveling along a line passing
through the origin in the direction a, the first directional derivative has a zero
crossing sufficiently near the center of the pixel. If so, we declare the pixel to be a
ridge or valley. Of course, if in one direction we find a ridge and in the other we find

a valley then the pixel is a saddle point.
To express this procedure precisely and without reference to a particular basis set
of polynomials tied to a neighborhood size we will rewrite the fitted bicubic surface

in the canonical form
f(roc) =k + kyr + ks + kyr? + kgre
+hkgc? + kor® + ker’c

+kgrc? + k4. (7)

Then, a = + 3tan™ 'ks/(ks — k,).
To walk in the direction &, we constrain r and ¢ by

r=psina and c=pcosa.
Therefore, in the direction «, we have
fu(p) = 490’ + Bp® + Cp + R, (8)
where
A = (kysin’a + kgsinacos a + kocos’asina + kocos’ @),

B = (k,sin’a + kssinacos a + kqcos’a),

C = k,sina + kj;cos a.
The first directional derivative in direction a is given by

fa(p) =34p* + 2Bp + C 9)
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and the second directional derivative in the direction « at p away from the center of
the pixel is given by

f(p) =24p + B. (10)

At those positions for p which make f/(p) = 0, the value of f;'(p) is proportional to
the curvature of the surface. If B2 — 44C > 0, the largest magnitude root p, of Eq.
(8) can be found by

— B — sign(B)VB? — 44C
L= 24 . (1 1)
The smallest-magnitude root p, can be found by
ps = C/Apy. (12)

If the smallest-magnitude root of (8) is sufficiently close to zero, the center point
of the pixel, we declare the pixel as a ridge or valley depending on the sign of the
second directional derivative. Pixels which are both ridges and valleys can be
declared as saddles.

4. PROBLEMS

There are two problems which arise in the application of the concepts in Sections
2 and 3. One arises out of the definitions for ridge and valley. The other arises from
the fitting. First we discuss the problems in definition, then the problem of the
fitting.

Although it might seem sufficient to define a ridge or valley to occur on any
surface point which has a zero-crossing of the first directional derivative taken in the
direction extremizing the second directional derivative, there are nonpathological
simple surfaces for which every point satisfies the definition. One class of such
surfaces has the radially symmetric form f(r? + ¢*). At each point (r,c) the
orthogonal directions extremizing the second directional derivative either point
radially towards the origin or point tangentially to the radial direction. The tangen-
tial direction has of necessity a zero-crossing of the first directional derivative since
the gradient vector points radially.

We have found two criteria to partially help solve this problem. The first criterion
requires that a ridge or valley have a sufficiently small gradient-to-curvature ratio,
typically smaller than four. The second criterion requires that the angle the gradient

00001 00010 00100
0O 0 0 1 0 0O 0 1 0 O 0O 1 0 0 O
0O 0 1 0 O o1 0 0 0 1 O O O O
01000 10000 ©00O0O0 O
1 0 0 0 O 0O 0 0 0 O 0O 0 0 0 O
(a) (b) (©)

F1G. 2. Three 5 X 5 neighborhoods of ideal lines which are just translates of one another.
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F1G. 3(a). The interpolated bicubic surface fit for the image of Fig. 2(b).

NN\L]

WJ

F16. 3(b). The interpolated bicubic surface fit for the image of Fig. 2(c).



ROBERT M. HARALICK

34

g

P

F1G. 4. The computed ridges and valleys for the girl image; (a) original girl image, (b) ridge and valley

overlay of the girl image, and (c) ridges and valleys alone of the girl image.



RIDGES AND VALLEYS ON IMAGES 35

F1G. 4.— Continued.

vectors make with each other on each side of the ridge or valley be sufficiently large.
We take “on each side of the ridge” to mean 1.5 pixels away and a sufficiently large
angle to be 30 degrees.

The problem due to fitting can be understood by examining what the fit does to a
simple one-pixel wide white line on a uniformly dark background. Suppose the
pixels on the line have a value of zero. Figure 2a shows a 5 X 5 window of such a
line at a 45° orientation. Computing the coefficients of the fit by taking the sums of
products of the 5 X 5 window with each of the masks in Fig. 1 yields the cubic fit
0.2 + 0.17¢c where r,c = —2,—1,0,1,2. It is clear that the actual line has no
character of a saddle surface but that the fit is indeed a saddle surface.

This pathologic behavior is characteristic of what happens in a cubic fit whenever
the fit is to data which is comparatively simple and piecewise constant. Figures 2b
and ¢ show the images of two translations of the line in Fig. 2a. Figures 3a and b
show surface plots for the respective fits. Notice that for the case of Fig. 3a the fit is
reasonable while for Fig. 3b it is not.

It is clear that more work needs to be done regarding the obtaining of fits which
retain the essential character of the discretized data. Questions needing answers
include: What are the most appropriate basic functions? What are the most
appropriate inner products with respect to which the fit is taken?

We have not found a solution to the fitting problem. The best we have been able
to do is to try to disregard some of the pixels classified as ridges or valleys due to
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FiG. 5. The computed ridges and valleys for the airphoto scene; (a) original airphoto scene image, (b)
ridge and valley overlay of the airphoto scene, and (c) ridges and valleys alone of the airphoto scene.
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F1G. 5.— Continued.

artifacts of the fit by using a criterion of depth of valley or height of ridge. If the
depth is too small, then the classification of the pixel is disregarded. Depth D is
easily defined for the one-dimensional cubic polynomial of Eq. (8) as the difference
in the value of its stationary points D = | folor) = fu(py))

5. RESULTS

To illustrate the power of the ridge-valley classification scheme, we show results
on two images of entirely different character. Figure 4a shows the image of a girl
which has been used in experiments by other researchers. Figure 4b shows the ridges
and valleys overlayed. Ridges appear as black and valleys appear as white. F igure 4¢
shows the ridges and valleys by themselves, the ridges being brighter and the valleys
being darker. Notice how the highlights are ridges and the shadow lines are valleys.
To obtain these results a 5 X 5 neighborhood was used for fitting, and the depth
threshold was set to one. The interval in which a zero-crossing has to occur is
(—0.85, +0.85). The gradient magnitude-to-curvature ratio had to be less than four,
and the angle between the gradient vectors at a distance of 1.5 pixels on each side of
the ridge or valley had to be greater than 30°.

The second image of a road scene is shown in Fig. 5a. Figure 5b shows the ridges
and valleys overlayed and Fig. 5¢ shows the ridges and valleys alone. Notice the
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relative connectedness of the ridges and valleys and how they seem to alternate. It is
clear examining the overlay that ridges and valleys are placed where they should be
and that in some sense the placement of the ridges and valleys determines the
essential character of the image. The results of Fig. 5 were obtained by using a 9 X 9
neighborhood for fitting. The depth threshold was set to ten, and the interval in
which the zero-crossing had to occur was (—1., +1.). The gradient magnitude-to-
curvature ratio had to be less than four and the angle between the gradient vectors at
a distance of 1.5 pixels on each side of the ridge or valley had to be greater than 30°.

6. RELATED LITERATURE

The closest approach to the classification scheme discussed here is the one
presented by Paton [3] and Hsu et al. [5]. Paton uses a quadratic surface fit and
defines a ridge or valley to exist at any pixel whose surface fit has a significant
quadratic component most of whose energy is directed in one direction. Paton uses
the continuous least squares fit formulation in setting up the surface fit equations.
We use the discrete least squares fit formulation. Because Paton’s surface is only
quadratic, the ridge—valley definitions can only apply to the center point of a pixel.
Because our surface fit is cubic, we are able to classify a pixel as a ridge or valley if
there is a ridge or valley anywhere in the area of the pixel.

Hsu et al. [5] also use a quadratic approximation, but (as we do) use a discrete
least squares formulation. Their paper also does more than labeling. They link ridges
and valleys together in a web network and use this representation to approximate
the image.
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