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The problem of computer vision is to give a computer a representation of a picture of a scene and have it figure
out what objects are in the scene and in what spatial relationships. This involves low-level vision (image
processing), midlevel vision (feature extraction and measurement), and high-level vision (interpretation).
One important part of high-level vision is relational matching, the process of matching two relational
descriptions of objects, often for the purpose of object identification. In this paper, we describe several kinds
of relational matching, give sequential algorithms for solving relational matching problems, and briefly
discuss parallel algorithm possibilities.

1. Introduction

Computer vision is a multidisciplinary research area
populated by engineers, computer scientists, math-
ematicians, psychologists, physicists, and others. The
general problem of computer vision is to give a com-
puter a representation of a picture of a scene and have
it figure out what objects are in the scene and in what
spatial relationships they lie. For humans this is a
trivial problem; small children can do it. For comput-
ers, the problem is far from solved.

The representation of a picture of a scene given as
data to a computer is called an image. An image
consists of one or more matrices of numbers. Each
matrix is called a band, and each number is associated
with one pixel (picture element). A gray tone image
consists of one band in which each pixel value repre-
sents the gray tone intensity of a portion of the picture.
A color image consists of three bands for red, green,
and blue intensity information. Gray tone and color
images often come from TV cameras. Other impor-
tant classes of image include radar images, FLIR im-
ages, and range images.

Traditionally, computer vision can be partitioned
into three levels: low-level vision; midlevel vision; and
high-level vision. A low-level vision process will input
one or more images, perform some image processing
operation, and output one or more images. The most
common kind of operator in low-level vision is called a
neighborhood operator. Such an operator examines
the values of small neighborhood of pixels around a
given pixel and produces a resultant value that is a
function of all the pixel values in the neighborhood.
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The resultant value becomes the new value of the given
pixel in an output image. For example, the simplest
edge operators are neighborhood operators whose final
result is a binary image which has a value of 1 at each
pixel where the edge operator thinks an edge is present
in the original image and value 0 elsewhere. Another
low-level operator is one that segments an image into
regions of interest. Such a process could use the bina-
ry edge image produced by an edge operator as addi-
tional input. The output of a segmentation operator is
a symbolic image, in which each pixel of a region con-
tains the unique numeric label of that region.

A midlevel vision process will input one or more
images, perform some analysis, and output data struc-
tures that describe the properties of, or relationships
between, features extracted from the images. Midle-
vel processes may in addition produce more output
images and may input data structures from other mid-
level processes. Given an original image and an edge
image obtained from applying a low-level edge opera-
tor, one useful midlevel process might attempt to link
the edge pixels into features called arcs. On the image,
each arc is a connected chain of pixels. The data
structure produced is called an arc property list. It is a
table accessible by arc number and containing the
values of the properties of each arc. Typical arc prop-
erties include coordinates of the head and tail, direc-
tion of the best linear fit, length, and average contrast
across the arc. A second data structure produced con-
tains the chain encodings of the arcs.

Given an original image and a symbolic image ob-
tained from applying a segmentation operator, anoth-
er midlevel process determines a set of properties of
each region. It produces a data structure called a
region property list which is a table accessible by re-
gion number and containing the values of the proper-
ties of each region. Typical region properties include
mean, maximum, and minimum gray tones, gray tone
variance, coordinates of the centroid, elongation, cir-
cularity, and moments. Here a second data structure
could contain the chain encodings of the boundaries of
the regions.
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A third midlevel operator inputs an image and the
symbolic image representing its segmentation and pro-
duces a data structure called a region adjacency graph.
This structure is accessible by region label and con-
tains for each region a list of all adjacent region labels.
It is useful in further analysis or for producing coarser
and coarser segmentations. Other structures pro-
duced by midlevel operators contain relationships
among arcs and relationships between arcs and re-
gions.

High-level vision processes input the data structures
produced by midlevel vision processes and output an
interpretation of the scene. High-level vision process-
es perform matching and reasoning tasks and coordi-
nate the use of low-level and midlevel processes. One
important task that high-level vision performs is to
identify objects in the scene from their projections on
the image and to interpret the meaning of the scene as
a whole. Although classification of many simple ob-
jects can be performed by statistical techniques, the
recognition of complex objects having parts in various
spatial relationships requires a different approach.
When the objective is not only to recognize an object
but also to measure some critical angles or distances on
the object, again statistical techniques are not suffi-
cient. When the scene is interpreted as a whole, the
analysis depends on the interpretations of the various
objects in the scene and on their spatial relationships.
In all these tasks, an approach called relational match-
ing is used to solve the problem.

In this paper, we define several kinds of relational
matching and give sequential algorithms for solving
relational matching problems. The relational match-
ing problem is a computationally difficult one that
clearly could benefit from a parallel approach. The
purpose of this paper is to state the problem and the
sequential procedures for its solution in the hope that
researchers in parallel optic computation may be able
to help discover a practical parallel algorithm.

11. Relational Descriptions and Mappings

How can a complex object or entity be described?
The object or entity has global properties such as area,
height, and width. It also has a set of parts or impor-
tant features. The parts each have properties of their
own, and there are spatial relationships that describe
their interconnections. To define the process of rela-
tional matching, we need a unified context in which to
express these properties and relationships. We call
this context a relational description. A relational de-
scription is a set of relations that together describe a
complex object or entity. The relation is the basic unit
of a relational description. Thus we will start with
relations.

A. Relations

Let OA be an object or entity and A be the set of its
parts or important features. An N-ary relation R over
A is a subset of the Cartesian product AN = A X ... X A
(Ntimes). For example, suppose that OA is a chair and
its part set A consists of four legs, a back, and a seat. A

R R h

: 1-.

3-c

5-ec
Fig. 1. Composition of binary relation R with mapping h.

list of the parts is a unary relation B1 5 A. A list of the
pairs of parts that connect together is a binary relation
B2 s A x A. Other binary relations of interest include
the list B3 S A x A of pairs of parallel parts and the list
B4 S A X A of pairs of perpendicular parts. The set of
triples of the form (P1,P2,P3) where partspi and p3 both
connect to part P2 is a fifth relation B5 S A X A X A.
The set DA = 1R1 ,R2,R3 ,R4,RSI forms a relational de-
scription of the chair. This relational description de-
scribes only spatial relationships. Before we add
properties to make the descriptions more robust, we
discuss a method for comparing these simple relations.

B. Relational Homomorphisms

Let A be the part set of object QA and B be the part
set of object OB. Let R s AN be an N-ary relation over
part set A. Let f :A -~B be a function that maps
elements of set A into set B. We define the composi-
tion R o fof Rwith fby

R f = {(b,. .bN) e Bj there exists

(al, . .aN) E R withf(ai) = b,,i 1,. .N)I.

Figure 1 illustrates the composition of a binary relation
with a mapping.

Let S s BN be a second N-ary relation. A relational
homomorphism from R to S is a mapping f: A -kB that
satisfies R O / s S. That is, when a relational homo-
morphism is applied to each component of an N-tuple
of R, the result is an N-tuple of S. Figure 2 illustrates
the concept of a relational homomorphism. 

A relational homomorphism maps the primitives of
A to a subset of the primitives of R having all the same
interrelationships that the original primitives of A
had. If A is a much smaller set than B, finding a one-
one relational homomorphism is equivalent to finding
a copy of a small object as part of a larger object.
Finding a chair in an office scene is an example of such
a task. If A and B are about the same size, finding a
relational homomorphism is equivalent to determin-
ing that the two objects are similar. A relational
monomorphism is a relational homomorphism that is
one-one. Such a function maps each primitive in A to
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Fig. 2. Relational homomorphism h from binary relation R to
binary relation S.

h: 1-a
2 -b
3- c
4- d

Ro h C S;his one-one
Fig. 3. Relational monomorphism h from binary relation R to

binary relation S. There is a copy of R in S.

a unique primitive in B. A monomorphism indicates a
stronger match than a homomorphism. Figure 3 illus-
trates a relational monomorphism.

Finally, a relational isomorphism f from an N-ary
relation R to an N-ary relation S is a one-one, onto
relational homomorphism from R to S, and f is a
relational homomorphism from S to R. In this case, A
and B have the same number of elements, each primi-
tive in A maps to a unique primitive in B, and every
primitive in A is mapped to by some primitive of B.
Also, every tuple in R has a corresponding tuple in S
and vice versa. An isomorphism is the strongest kind
of match: a symmetric match. Figure 4 illustrates a
relational isomorphism, and Fig. 5 shows the differ-
ence between a relational isomorphism and a relational
monomorphism.

C. Relational Descriptions and Relational Distance
A relational description D is a sequence of relations

D = R,. . .,RI} where for each i = 1,. . ,I, there exists
a positive integer ni with Ri Xni for some set X. X is
a set of the parts of the entity being described, and the
relations Ri indicate various relationships among the
parts. A relational description may be used to de-
scribe an object model, a group of regions on an image,
a 2-D shape, a Chinese character, or anything else
having structure to it. In the spirit of the relational
homomorphism defined in the previous section, we
wish to define a distance measure for pairs of relational
descriptions.

Let DA = R,. . .,RI} be a relational description with
part set A. Let DB = {S1, ..,SI} be a second relational
description with part set B. We assume that IAI = IBI;
if this is not the case, we add enough dummy parts to
the smaller set to make it the case.

Let f be any one-one onto mapping from A to B.
The structural error of f for the ith pair of correspond-
ing relations (R and Si) in DA and DB is given by

R S

h: 1-s
2-_b
3-c
4-d
5-c

R h = Sandhis1-1

or equivalently,

R o h S, S o h- C R, nd h i -I

Fig. 4. Relational isomorphism h from binary relation R to binary
relation S.

R S

h: 1-se
2-b
3-c
4-d
5-c

R o h S,h i 1-1, and h is onto

Fig. 5. Relational monomorphism from binary relation R onto
binary relation S. This mapping h is not a relational isomorphism

since h-1 is not a relational monomorphism from S to R.
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1 R 1 S 

R2 R2 f S 2

Fig. 6. Relations R1,R1 o fS1,R2R2 0 f, and S2. The notation
indicates a hyperarc representing a triple.

E,(f =Ri Of - SiI +jsi of -Ril

The structural error indicates how many tuples in Ri
are not mapped by f to tuples in Si and how many
tuples in Si are not mapped by f-1 to tuples in Ri.

The total error of f with respect to DA and DB is the
sum of the structural errors for each pair of corre-
sponding relations. That is,

l

E(f) =E(ft
i=1

The total error gives a quantitative idea of the differ-
ence between the two relational descriptions DA and
DB with respect to the mapping f.

The relational distance between DA and DB is then
given by

GD(DA,DB) = minE(f).

f:A 3 -B.
onto

This is, the relational distance is the minimal total
error obtained for any one-one onto mapping f from A
to B. In Ref. 1 we proved that the relational distance is
a metric over the space of relational descriptions. We
call a mapping f that minimizes total error a best
mapping from DA to DB. If there is more than one best
mapping, we arbitrarily select one as the designated
best mapping. More than one best mapping occurs
when the relational descriptions involve certain kinds
of symmetry.

1. Examples

Let A = {1,2,3,4} and B = Ja,b,c,dl. Let DA = JR
A2, R2 c A31, and DB = IS1 C B2,S2 5 B3

). Let R1 =

{(1,2)(2,3)(3,4)(4,2)} and S, = (a,b)(b,c)(d,b)1. Let R2

= 1(1,2,3)} and S2 = {(a,b,c)}. Letfbe defined byf(1) =
a,f(2) = bf(3) = cf(4) = d. These relations are illus-
trated in Fig. 6. Then we have

JR, 0f - S11 =I 1(a,b),(b,c),(c,d),(d,b)

-1(a,b),(b,c),(d,b)1 = 1,

IS1 of' - R1 = 1(1,2),(2,3),(4,2)1

-1(1,2),(2,3),(3,4),(4,2)1 0,

El(f) =1 + 0 = 1,

IR2 0 f - S21 = 1(a,b,c) - 1(a,b,c)1J = 0,

IS2 a f' - R21 = 11(1,2,3) - 1(1,2,3)11 = 0,

E2(f) = 0 + 0 = 0,

E(f) = E(f) +E2( = 1.

We note that f is the best mapping and, therefore,
GD(DA,DB) = 1.

For a simple but practical example consider a set of
object models constructed from simple parts with two
binary relations: the connection relation and parallel
relation. Figure 7 illustrates a model (Ml) and two
other models (M2 and M3) that are each a relational
distance of 1 from the first model. The model M4
shown in Fig. 8 is a variation of M3, but its relational
distance from M3 is 6 due to several missing relation-
ships induced by the additional two parts.

D. Attributed Relational Descriptions and Relational
Distance

The relational descriptions defined in the previous
section describe relationships among parts but not
properties of parts, properties of the whole, or proper-
ties of these relationships. However, it is easy to ex-
tend both the concept of relational description and the
definition of relational distance to include them. In-
tuitively, an m-tuple of attributes added to an n-tuple
of parts produces an n + m-tuple that specifies a
relationship plus the properties of that relationship.
If n = 1 and m > 0, each tuple lists a part and its
properties. If n = 0, m > 0, and the relation has only
one tuple, this is a property vector describing the glob-
al properties of the object. Formally the definitions
change to the following.

Let X be a set of parts of object Ox and P be a set of
property values. Generally, we can assume P is the set
of real numbers. An attributed relation over part set
X with property value set P is a subset of Xn X Pm for
some non-negative integers n and m. An attributed
relational description DX is a sequence of attributed
relations DX = R,. ..,RI}, where for each i = 1,. . .
there exists a non-negative integer ni, a non-negative
integer mi (where ni + mi > 0), and a property value set
Pi with Ri 5 Xn X Pm'. For example, a binary parts
connection relation R X2 can be extended to an
attributed relation R' 5 X2 X ]?; R is the set of real
numbers, and an attributed pair (x1,x2,a) specifies that
part xl connects to part x2 at angle a.

Consider an attributed relation R 5 An X Pm over
some part set A and property value set P. Let r e R be
an n + m-tuple having n parts followed by m property
values. Let S 5 Bn X Pm be a second attributed
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CONNECTION

(4-. 5)
(4-. 6-)
(1. 5.)
(1-. 6-)
(1-. 2-)
(1. 3.)

6"
PARALLEL

(2. 3¶)

(5., 6-)

M4
Fig. 8. Model M4 that differs from M3 by a relational distance of 6.

PARALLEL

a

Es(f) = sh e(r 0 fSi) + A, e(s 0 fr ,R).
reRi seSi

L~l'4I'm,:4L Ilulm. 1 /PARALLEL

(1P 2") , (2", 3')
(W. 3) 2' 3
(1i, 4")

M3

Fig.7. Object model Mi and two other models,M2 and M3, that are
each a relational distance of 1 from Ml.

relation over part set B and property value set P. Let
f: A - B be a one-one onto mapping from A to B. We
define the composition r 0 f of attributed tuple r withf
by

r f = (bl . .bnpl,. . . m)B X Pm

there exists (a,,. .,an,p,,. * .,Pm)
R withf(ai) = b,i = 1,. . .,n).

Assume that if (bl... ,bn)p . . ,pm) e S and
(bl ... ,bnql, . . ,q.) S, then P = q, . . Pm = qm.
That is, each n-tuple of parts has only one m-tuple of
properties. The error of a tuple t =
(bl,. . .,bnply... ,Pm) with respect to a relation S Bn
X pm is given by

Total error and relational distance are defined as in
Sec. II.C.

Ill. Algorithms for Relational Matching

In Sec. II we explored several ways of defining rela-
tional matching. One can demand that two relational
descriptions be isomorphic in order to say they match
or one can be more lenient and say there must be a
relational homomorphism from the first to the second.
Furthermore, it may be desirable to find the best
match between an unknown relational description and
a set of stored relational models. In this case, the
stored model that has the least relational distance to
the unknown description is the best match. Whether
the object is to detect relational isomorphisms, mono-
morphisms, or homomorphisms or to compute rela-
tional distance, the only known algorithms that can
solve arbitrary matching problems employ a tree
search. In this section we describe the standard back-
tracking tree search and one of its variants, and we
make some comments on parallel algorithms. For
more details and other variants, see Refs. 2-7. To
simplify the discussion, the algorithms presented will
be to determine all relational homomorphisms from a
relation R to a relation S. The algorithms for mono-
morphisms, isomorphisms, and relational distance are
straightforward variations of the homomorphism algo-
rithms.

A. Backtracking Tree Search

Let R be an N-ary relation over part set A and S be
an N-ary relation over part set B. We will refer to the
elements of set A as the units and the elements of set B

e(tS) = norm-dis((p,. ... ,p),(q, .. .m)) if(3(ql, ..,qm) E Pm ,s.t.(b1, . ,b,,q1,* ,qm) E S
11 otherwise,

where norm-dis returns the Euclidean distance (or any
other desired distance) between two vectors, normal-
ized by dividing by some maximum possible distance.
Thus e(t,s) is a quantity between 0 and 1. Now we can
extend the definition of the structural error of f for the
ith pair of corresponding relations (Ri and S) to

as the labels. We wish to find the set of all mappings
f: A - B that satisfy R o f c S. Of course, the set may
be empty, in which case the algorithm should fail. The
backtracking tree search begins with the first unit of A.
This unit can potentially match each label in set B.
Each of these potential assignments is a node at level 1
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of the tree. The algorithm selects one of these nodes,
makes the assignment, selects the second unit of A, and
begins to construct the children of the first node, which
are nodes that map the second unit of A to each possi-
ble label of B. At this level, some of the nodes may be
ruled out because they violate the constraint R f c S.
The process continues to level AI of the tree. The
paths from the root node to any successful nodes at
level I Al are the relational homomorphisms. Figure 9
illustrates a portion of the backtracking tree search for
a simple digraph matching problem. The algorithm
for a backtracking tree search is as follows:

procedure tree search(A,Bf,R,S)
a := first(A);
for each b E B

I
f':= f U (a,b));
OK:= true;
for each N-tuple r in R containing component a

and whose other components are all in domain(f)
if r 0 f'is not in S
then {OK:= false; break) endif;

A' = remainder(A);
if isempty(A')
then output(f')
else tree search(A',Bf',R,S);
}

end tree search;

B. Backtracking with Forward Checking

The backtracking tree search has exponential time
complexity. Although there are no known polynomial
algorithms in the general case, there are a number of
discrete relaxation algorithms that can cut down
search time by reducing the size of the tree that is
searched. Forward checking is one such method. It is
based on the idea that once a unit-label pair (a,b) is
instantiated at a node in the tree, the constraints im-
posed by the relations cause instantiation of some
future unit-label pairs (a',b') to become impossible.
Suppose that (a,b) is instantiated high in the tree and
that the subtree beneath that node contains nodes
with first components al,a 2, .. .,an,a'. Although (a',b')
is impossible for any instantiations of (al,a2,. .. ,an,), it
will be tried in every path that reaches its level in the
tree. The principle of forward checking is to rule out
(a',b') at the time that (a,b) is instantiated and keep a
record of that information.

The data structure used to store the information is
called a future error table (FTAB). There is one fu-
ture error table for each level of recursion in the tree
search. Each table is a matrix having one row for each
element of A and one column for each element of B.
For any uninstantiated or future unit a' e A and po-
tential label b' e B, FTAB(a',b') = 1 if it is still possible
to instantiate (a',b') given the history of instantiations
already made. FTAB(a',b') = 0 if (a',b') has already
been ruled out due to some previous assignment.
When a pair (a,b) is instantiated by the backtracking
tree search, an updating procedure is called to examine
all pairs (a',b') of future units and their possible labels.
For each pair (a',b') that is incompatible with the

R

(1 l) (i,b) (1

(2.a) (2b) 2X ) (2.d) (2.e

(3.a) (3.b) (3.c) (3.d) (3,e) (3,a) (3.b) (3,c) (3d) (3,e)

X XXX X X X X X

(4.a) (4.b) (4.c) (4.d) (4.e)

X Y X X

Fig. 9. Backtracking tree search to find a homomorphism fromR =
(1,2),(2,3),(3,4),(4,2)} to S = (a,c),(c,b),(b,d),(d,c),(a,e)}. X under a

node indicates failure. The only homomorphism found is with f =

{(l,a),(2,c),(3,b),(4,d)}.

assignment of (a,b) and the previous instantiations,
FTAB(a',b') has become 0. If for any future unit
a',FTAB(a',b') becomes 0 for all labels b' e B, instanti-
ation of (a,b) fails immediately. The backtracking
tree search with forward checking is as follows:

procedure forward-checking-tree search (a,b,f,FTAB,R,S)
a := first (A);
for each b e B
if (FTAB(a,b) == 1)
then
I
f':= f U {(a,b)};
A' = remainder (A);
if isempty (A')
then output (f)
else

I
NEWFTAB:= copy(FTAB);
OK:= update(NEWFTAB, a,b,A',B,R,S,f');
if (OK) forward-checking-tree search
(A',B,f',NEWFTAB,R,S);

I
endif

endif
procedure update(FTAB,a,b,future-units,B,R,S,f')
update:= false;
for each a' a future-units
for each b' E B with FTAB(a',b') == 1
if compatible (a,b,a',b',R,S,f')
then update:= true
else FTAB(a',b'):= 0
endif;

end update.
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For binary relations R and S, the utility function
compatible, which determines whether an instantia-
tion of (a',b') is possible given instantiation (a,b), is
very simple. Units a and a' only constrain one another
when either (a,a') or (a',a) is in R. Thus the algorithm
for function compatible for binary relations R and S is
as follows:

procedure b-compatible(a,b,a',b',RSf')
if ((a,a') E R and not ((bb') E S)) or

((a',a) E R and not ((bb) E S))
then b-compatible := false
else b-compatible := true endif;

end b-compatible;

Note that for binary functions, the last argument f'
to function b-compatible is not used but is included
here for consistency.

For N-ary relations R and S,N > 2, those N-tuples of
R where a and a' are among the components and all
other components are already instantiated must be
examined. The code for N-ary relations R and S is as
follows:

procedure compatible(a,b,a',b',R,Sf')
:= f' U R(a',b')J;

compatible:= true;
for each r R containing a and a' whose other components
are in domain(f)
if r 0 f" is not in S
then {compatible := false; break) endif;

end compatible;

The binary procedure is very fast, since its time
complexity is constant. The general procedure, if im-
plemented as stated here, would have to examine each
N-tuple of R. For a software implementation, it would
be desirable to design the data structures for R, S, andf
so that only the appropriate N-tuples of R are tested.
A hardware implementation could offer even more
flexibility.

C. Parallel Algorithms

To make the relational matching algorithm parallel,
one needs to be able to make the backtracking tree
search parallel. It is not difficult to understand how to
parallelize the tree search in a computational network
of parallel processors. 8 The whole tree is given to one
processor within the network, and this processor be-
gins to work on the tree search. All processors in the
network which are not working on the tree search and
are, therefore, idle interrupt in turn all processors to
which they can directly communicate. The interrupt
essentially is a message indicating idleness. Any pro-
cessor which is working and receives an idleness inter-
rupt takes the tree it is working on and splits the tree
into two subtrees. It keeps one subtree, and it gives
the other to the interrupting processor to work on.

As long as there is some communication path, how-
ever indirect, between every pair of processors in the
network, the above approach to parallelizing the tree
search guarantees that every processor gets some work
to do after it becomes idle. The communication over-
head of passing a subtree to another processor can be

minimal if the basic data for the entire problem are
broadcast to each of the processors before tree search
computation begins. Thus specifying a subtree con-
sists merely of specifying a simple list of all the instan-
tiations already made above the subtree. For exam-
ple, if the root of the subtree is at a level N from the
root node of the entire tree, a list of N ordered pairs of
the already instantiated units and their corresponding
labels specify the subtree.

In so far as parallelizing the forward checking proce-
dure, a parallel array processor SIMD implementation
can be readily formulated.9 The unit-label table can
be represented as a bit matrix with the labels indexing
the columns and the units indexing the rows. The
updating procedure essentially amounts to ORing over
each row and then ANDing those results. This kind of
updating must be done for each unit-label pair.

IV. Summary

We have introduced the concepts of relational de-
scriptions, relational homomorphisms and isomor-
phisms, and relational distance. We have generalized
these concepts to attributed relational descriptions
and attributed relational distance. We have given
procedures for finding relational homomorphisms that
operate on sequential computers and briefly discussed
parallel algorithms for multiprocessor systems. It is
our hope that this presentation encourages readers to
work on parallel solutions to the relational matching
problem using an optical approach.

References
1. L. G. Shapiro and R. M. Haralick, "A Metric for Comparing

Relational Descriptions," IEEE Trans. Pattern Anal. Machine
Intell. PAMI-7, 90 (1985).

2. R. M. Haralick and L. G. Shapiro, "The Consistent Labeling
Problem-Part I," IEEE Trans. Pattern Anal. Machine Intell.
PAMI-1, 173 (1979).

3. R. M. Haralick and L. G. Shapiro, "The Consistent Labeling
Problem-Part II," IEEE Trans. Pattern Anal. Machine Intell.
PAMI-2, 193 (1980).

4. A. Rosenfeld, R. A. Hummel, and S. W. Zucker, "Scene Labeling
by Relaxation Operations," IEEE Trans. Syst. Man Cybern.
SMC-00 420 (June 1976).

5. L. G. Shapiro and R. M. Haralick, "Structural Descriptions and
Inexact Matching," IEEE Trans. Pattern Anal. Machine Intell.
PAMI-3, 504 (1981).

6. L. G. Shapiro and R. M. Haralick, "Organization of Relational
Models for Scene Analysis," IEEE Trans. Pattern Anal. Machine
Intell. PAMI-4, 595 (1982).

7. L. G. Shapiro, "The Use of Numeric Relational Distance and
Symbolic Differences for Organizing Models and for Matching,"
in Techniques for 3D Machine Perception (North-Holland, Am-
sterdam, 1985).

8. J. T. McCall, J. Tront, F. Gray, R. M. Haralick, and W. M.
McCormick, "The Effects of Combinatorial Problem Parameters
on the Design of Multi Parallel Architecture," IEEE Trans. Com-
put. C-34, (1985).

9. J. R. Ullman, R. M. Haralick, and L. G. Shapiro, "Computer
Architectures for Solving Consistent Labeling Problems," The
Comput. J. 28, 105 (1985).

15 May 1987 / Vol. 26, No. 10 / APPLIED OPTICS 1851


