TR-560 August 1977
MCS-76-23763

REDUCTION OPERATIONS FOR
CONSTRAINT SATISFACTION

Robert M. Haralick#®
Larry S. Davis
Azriel Rosenfeld
David L. Milgram
Computer Science Center
University of Maryland
College Park, MD 20742

ABSTRACT

The problem of labelling a set of units in such a way
as to satisfy an order-N compatibility relation is discussed
and shown to be NP-complete. Some general procedures for
reducing the size of the compatibility relation are defined,
properties of these procedures are derived, and their in-
corporation into a backtracking process is discussed. Their
computational cost and storage requirements are also con-

sidered.

The support of the National Science Foundation under Grant
MCS-76-23763 is gratefully acknowledged, as is the help of
Mrs. Shelly Rowe in preparing this paper.

*Permanent address: University of Kansas, Lawrence, KS 66045

0. Intreduction

The problem of classifying or lakeling a set of objeéts'in
such a way that given constraints are satisfied arises in a variety
of applications. The constraints can be expressed in the form of
relations that specify allowable (or "consistent"} cbmbinations of
(object, label) pairs. Finding consistent labelings is an Hp-
complete problem; it can be done using a straightforward backtrack-
ing approach, but this is computationally expensive.

This paper formulates the problem of finding consisteﬁt
labelings as defined by an ordefuN relation on the (object, iabél}
pairs, and defines some generai procedures for reducing the size
of this relation. Some properties of these procedures are derived,

and their incorporation into a backtracking process is discussed.

1. The Labeling Problem

Consider a finite set U of units, and another finite get I,
of labels. A labeling of U is a mapping from U into L. We determine

a set of allowable labelings by specifying an order-N compatibility

relation R € (UXL)N. Specifically, let (ulr---ruK) be a E~tuple
of elements of U, and let (El,.,,,EK) be the corresponding labels

in L; then we say that this labeling of Ujseeer is consistent

K
if, for every N-tuple Us reeesUy of theseu's, the 2N-tuple

is in R. If U = {u ;U.}, then a consistent labeling of

I A 1

.(ul,...,uM) is called a globally consistent labeling (GCL} of U.

The constrained labeling problem is, given U, L,‘and R, to find

the (possibly empty) set of GCL's.

Figure 1 gives a simple example of the labeling problem. The
unit set U = {1,2,3,4}, the label set L = {a,b,c},and the compati-
bility relation is of order 2. A Compatibility relation of brder
2 can be represented as a graph. Figure 1 shows such a graph
along with a table thch defines R. Figure 2 displays the graph
of Figure 1 so that it is easier to discover the two globally con-
sistent labelings of {1,2,3,4}: (a,c,c,b) and (b,a,b,c). Note
that they correspond to the cliques of size 4.

A careful examination of Figure 1 or 2 indicates that no
labeling of unit 1 constrains any labeling of unit 2. Since the

links which constrain the possible labels of unit 1 and 2 are

4

R

la| la, 2a, 2b, 2c, 3c, 4b
1| 1b, 2a, 2b, 2¢, 3b, 4€
lc| le, 2a, 2b, 2c, 3c

2a| la, 1b, 1lc, 2a, 3a, 3b,
2bl| la, 1lb, lc, 2b, 3a, 4c
2c| 1la, 1b, 1lec, 2c, 3c, 4a,
3a| 2a, 2b, 3a, 4a

3b| 1b, 2a, 3b; 4c

3¢| la, le, 2c¢, 3¢, 4b

4a| 2c, 3a, 4a

4b| la, 2¢, 3c, 4b

4c| 1lb, 2a, 2b, 3p, 4c

4c

4b

Figure 1. The graph and
table representation of
the second order com-
patibility relation

"R « (f1,2,3,4}x{a,b,c})

2

W W

Ib 2a

Y

3

Figure 2. Reorganization of the graph of Figure 1 which
shows clearly the two globally consistent
labelings of {1,2,3,4}. They correspond to .
the two cliques of size 4 in the graph. They
are (a,c,c,b) and (b,a,b,c) for units
(1:i2s3:4)s

superfluous we simplify the graph by drawing only those links
which constrain the labelings of their respective units. Figure
3 shows this alternative representation of the compatibility con-
straint of Figure 1. Thus, if a link is not drawn betweén two
units, then all possible.iabelings of one unit are compatible
with all possible labelings of the second unit. Conversely, if =
link is drawn between units i and j, then the pair of compatible
labels for units i and j corresponds to the relation Pij where

Pij = {(zl,gz)eLxLl(i,zl,j,zz) £ R}

A variety of‘techniques can be used to solve the 1abeliﬁg
problem. Among these are methods involving backtracking, as
well as the brute force technique of generate and test. 1In
the next few paragraphs we give a brief description of the back-
trackiné approach and illustrate how it can be used to solve.the
iabeling problem for Figure 1.

Backtracking accomplishes a depth first search of a forest
of consistent labelings of the units. (See‘Figure 4.) In fhe
following discussion of the backtracking procedure, refer to
Figure 5. In its first step, label Ly for'unit 1 is instantiated
by the procedure. Since (1,a,1l,a) € R the choice gives a compati-
ble labeling of unit 1. In its next step,rlabel a for unit 2 is
instantiated. Since (2,a,2,a), (1,a,2,a) and (2,a,1,2) € R, the
labeling (a,a) for units (1,2) is consistent and the link from
1a to 2a in the tree is allowed to remain. In its third step,
label a for unit 3.is instantiated. But since (l,a,3;a) is not
in R, all paths in the tree including 3a and below can be omitted

from the search. Next label b for unit 3 is instantiated. But

-
[he}

v
nt:r‘miw"d

n v o

Ob‘w].n:d
)

0 o oW

13 T Pas Py Py

a a b a a,b a c a a

b b c a b C b c
= C c a,b C b

Figure 3.

An alternative representation of the compatibility
constraint of Figure 1. Links are drawn omnly be-

tween units whose labels can constrain one
another. The label (i,j) gives the name af

binary relation constraint Pij = {(21,£2} € LxL |
(i:'q’ll:]fg'z) e R}. '

‘T @anbTd JO S,7IDD @Yl IOF 99I3 yoiees 'y 2anbrd

D u.‘eee‘eao 9394999‘99‘9‘9999 D02
G @ (9 &

at e 9 o

: ‘5ano00 Aousjisysuoout buttedqer e yotuym 3v yzed e uo
Opou 3sITy 8yl moTeq savadde 4 nmﬂmGOﬂuOﬂwmnumoomaa.m ﬂ@@ﬂﬂw>m£op

POUTRIISUCD ST T 3TuUn uUaym T 2INPTI I07 sbuTToqul ju93lsTSUOD ATTeqoTh oy3
AGALULSIP 03 JI9PI0 UT payoaess agq o7 Sey § sanbrg yo 9913 QU3 UDTUM 03 3ue3xd ayg
i # o

'S @anbryg

eg

since (1,a,3,b) is not in R, all paths in the tree including 3b
and below can be omitted from the search. ILikewise for lahel c

of unit 3.

Now all labels fof unit 3 have been instantiated and all have
failed. Therefore, the backtracking returns to the most recently
visited unit that still has uninstantiated labels and instgntiates
the next possible label for it. Thus, label b fox unit 2 is

instantiated next. It is consistent. f"hen label a for unit

3 is instantiated. It is consistent. Then label a for umit 4 is
instantiated. It is not consistent since (1,a,4,a) is not in R.
Likewise labels b and ¢ for unit 4 are not consistent. So label

b for unit 3 is instantiatea. It is not consistent. Thén label ¢
for unit 3 is instantiated. It is also not consistent.

The failure of all labels of unit 3 causes the next label,
label c, of unit 2 to be instantiated. Labels a and b for unit 3
are not consistent. But label c for unit 3 is consistent; Then
label b for unit 4 is the only consistént label for it. At this
point the backtracking has determined that labeling (a,c,c,b) is
the only globally consiétent labeling of units (1,2,3,4) if unit
1 is constrained to have label a. For the remainder of the back-
tracking, labels b and c¢ for unit 1 are instantiated and the search
proceeds in a similar manner.

The efficiency of backtracking is due to the fact that as
soon as a label for a unit is found to be inconsistent, all

labelings below that one in the tree 4o not have to be searchned

since they too will be inconsistent. Howéver, backtracking
suffers from thrashing. Examining Figure 5 we see that label

b for unit 3 is instantiated three times and fails three times
simply for the reason that labeling (a,b) for units (1,2) is not
compatible. Mackworth [1] calls compatibility constraints which
allow this to happen "arc inconsistency constraints”.

Thrashing can be reduced by eliminating elements of the com-
patibility relation which are "false trails". These are elements
which do not contribute to any globally consistent labeling. The
winnowing out of elemenﬁs from R can be accomplished by iterative
procedures of various kinds as well as by some one-pass algorithms.

In this paper we shall derive general procedures which reduce R
while preserving all globally consistent labelings, thus reducing
the thrashing behavior of the backtracking procedure.

Unfortunately, we cannot expect these procedures to significantly
reduce the worst case computational cost of solving the labeling prob-
lem, because the labeling problem is NP-complete, as will be shown
immeaiately below. The most we can hope for is that such pro-
cedures will eliminate some of the more easily located "false

trails" in the original compatibility constraint R.

Theorem 1. The labeling problem is NP-complete.

Proof: First we show that the labeling problem is solvable in .
polynomial time by a non-deterministic Turing machine. This is
immediate sincé the Turing machine can non-deterministically
choose a labeling and then verify its global consistency by
checking that every N~tuple of units has labels that are allowed'
by the compatibility constraint. Since N, the factor size of the

relation R, is fixed, the number of N-tuples to be checked is

(ﬁ) < M" which is polynomial in M.

Now we show that some NP-complete problem would be
solved by éolving the labeling problem. The probiem to be comsi-
dered is the k-colorability problem,whose NP completeness is
proved in [2]. Briefly, a graph G is k—colorable if there .
exists an assignment of the integers 1,...,k to the vertices of
G such that no two adjacent ve;tices are assigned the same color.
Any colorability problem can be encoded as a labeling problem as
follows: Let G = (V,E) be the graph to be colored. A labeling
problem is defined by a unit set U, a label set L and am N-ary
constraint relation R € (UxL)N. Let U=V, L = {1,...,k} and

R ¢ (UxL)? be defined by:

. .2 o
B = {(gl,ﬂl,u2,22)“€A(UxL)](ul,uz).§E implies 2; # £,}.

Thus 1if czl,...,zm) is a GCL of U then every labeled pair

(ui,ﬁi,uj,ﬁj) is in R, i.e., if (ui,uj) € E then 21 # Ej, Thus

no two adjacent nodes in G are given the same color. //

2. Previous Work

Much of the fundamental mathematical analysis of coﬁstraint
satisfaction was given by Montanari f3]° Fe showed that the re-
duction of R to a smallest subrelation S having the same set of GCL's
as R was, in general, NP;complete. He therefore suggested that
approximations to S that can be computed in polynomial time should
be investigated. In particular, he introduced the notion of the

largest path-consistent subrelation (P) of a binary relatiom R as

follows:
Let R < (UxL)z, and let r = (ui,ii,uj,lj) € R. Let
p = (ui==u.l,u2,...,up,...,un =-uj) be any sequence of units

(i.e., a path). Then r is allowed by p 1if there are labels
(Ri = Rl,iz,,..,ln = Rj) such that (uk’zk'uk+i‘£k+l) €R farl =k <n.
We say r is legal if it is allowed by all paths containing‘ui and ujr

and finally that R is path consistent if every ¥ € R is lesal.

If we fix n then we can let Pn denote the largest path-
consistent subrelation of R for paths of length n. Montanari
showed that P = Pn' for all n,n' = 3. The proof involves a straight-
- forward induction on n. Thus, we will simply refer to P as the
path-consistent subrelation of R. Section 3 contains generalizatjons
of the notion of path consistency.

It is obvious that S £ P, but the containment is ordinarily
proper. A special case of path consistency called arc consistency
is defined by considering only r's of the form (ui,ﬁi,ui,ﬂi} and
restricting n = 3. We will let B denote the largest arc consis-
tent subrelation of a relation R. Intuitively, this corresponds
to checking all unit-label assignments to ensure that for every

other unit, a compatible label exists at that unit. Waltz's [4]

programs, which apply constraints to line drgwings of blocks-
world scenes with shadows, compute the arc consistent subrelation
of the original binary relation defined over the vertices of a
blocks-world scene.

Mackworth [1] presented efficient iterative algorithms to
compute P and P_. Section 4 describes generalizations to n-ary
relations of Mackworth's algorithm. Rosenfeld [5] and Rosenfeld
et al. [6] showed that P_ can be computed by a parallel, iterative
procedure ("discreterelaxation") and introduced both fuzzy and
probabilistic generalizations ("probabilistic relaxation#) of the
constraint analysis problem.

An important application of the procedures to compute P and P,
is their incorporation into search procedures to compute the set
of GCL's of a relation R. Mackworth [11], Gaschnig [71, and
Haralick [81 discuss this for discrete constraints, while Barrow
and Teneﬁbaum [9 1 and Davis [10] treat fuzzy constraints. Sec—
tion 4 contains a discussion of search in the case of discrete
‘n—-ary relations.

Many of the results presented in this éaper are elucidations
and generalizations of work described by Maékworth [1] and
Haralick [8], among others. The generalization from binary to
n-ary constraints is straightforward, but it does provide‘a unified
notation in which a variety of constraint satisfaction problems

can be formulated.

34 Reduction of the Compatibility Relation

In this section we investigate an approach to solving the
labeling problem based on reducing the size of the compatibility
relation R, which in turn reduces the computational cost of pro-
cedures such as backtracking. We first show that there is a
smallest order-N relation SR & (UxL)N that defines the same set of
GCL's that R does, and we then desciibe some methods'of eliminat-
ing 2N-tuples from R that are not in Sz- Let us denote by L(R)
the set of GCL's defined by R.

Proposition 1l: Let R' € R & (UXL)N; then L(R') € L(R). //

Proposition 2: Let Rl’Rz (= (UxL)N be such that L(Rl) = L(Rz);'

then L(RlﬂRz) = L(Rl). //

Since U and L are finite, it follows from Proposition 2 by induc-
tion that if we take the intersection of all relations

Ri L (UxL)N that have a given GCL set L(R), then this inter-
section also has the same GCL set. Clearly this inter-

section is the smallest relation that has GCL set L(R); we denote

it by S and call it the reduced relation corresponding to R.

Rf

In summary, we have

Corollary 3. Let SR = N R.; then L(SR) = L(R). //

Evidently Sy < R, since R is one of the Ri‘s. As an immediate

consequence of Proposition 1 and Corollary 3 we have

N : .
Corollary 4. Let R' & (UxL) satisfy Sgp & R' < R; then L(R') = L(R). //

Let (2 RM) be a GCL of U = {ul,...,uM};lthen Eor

lp—-.,

every N-tuple U, reeesly of the u's, the 2N-tuple
i N

(0., 8. Geeeilh, ke
1 o

must be in any R'.E (fJxL)N that has the given set of GCL's, and in
particular, every such 2N-tuple must be in SR’ Conversely, the

set of all such 2N-tuples, for all GCL's of U, constitutes a re-
lation‘s (UxL}N. Clearly this relation has the given set af GCL's,
and is the smallest relation having this set of GCL's; hence this

-relation must be SR' We have thus proved

Proposition 5: Sg= {(u, ,%., ,..-,u; ,2, Y] (B secaih,} i85 & GCL. of
. :Ll 11 lN lN 1 M
and (ll""’iN) is an N-tuple of elements of {1,...,M}}. //

Corollary 6. S;# # iff. there exists a GCL of U. //

Corollary 7. Szis symmetric; in other words, if jl""’jN is any

permutation of il""'iN' and {ui ,£i peeeas; oL

3L
resesus R). //

) is in ; then
1 1 N N -SR
W 50l :

31" 73, in" In

so is (

Corollary 6 implies that the problem of reducing R to SR is

itself NP-complete. 1Indeed, to determine if a graph G is k-colorable,
we could create the associated relation R and then reduce R to

S where Sy is nonempty iff. G is k-colorable; thus the reduction

Rr
of R to SR must be an NP-complete problem. However, simple al-
gorithms do exist for eliminating some parts of R that are not in

S as we shall next see.

R’ ;
Figure 6 shows the SR that corresponds to the R of Figure 1.
The (trivial) search tree for the GCL constrained to contain the

interpretation l-a is shown in Figure 7.

3c 4b

la 2c
l %fxi [2a
3b 4c

Figure 6. The reduced relation of Figure 2.

' 2c
: 3e
S

Figure 7. The search required to find all globally con-
sistent labelings of Figure 6 with unit 1 constraimed to
be label a.

The following corollary to Proposition 5 provides a criterion

for identifying 2N-tuples in R that do‘not‘belong to SR:

Corollary 8. For all (ui,ii,a..,uﬁ,lﬁ)_é SR, and all

uﬁ+l""'u§ € U, there exist labels 2h+l""’£; such that {i',,,,,gp
is a consistent labeling of (ui,...,ub).
This corollary suggests one way of defining a process for
"reducing" R -- namely, we can keep only those 2N*tdple5 that are
"extendible" to consistent labelings of P-tuples for some P> N.

Specifically, for any P > N, let us define

—] 1 1] t 1] .
@P(R) {(ul,ﬁl,...,uN,RN) € R| For all ug.r---,sYp kT,

. 1 1] 1
there exist RN+1""'2P,€ L, such that (2 ,...,iP)

is a consistent labeling of (ui,,..,ué)}

Proposition 9: R' £ R implies @P(R') = @P(R). df

Proposition 10: @P(SR) = Sp-
Proof: This is clear, since the 2N-tuples in SR are all defined

by GCL's of U. //

By the same argument we have

Proposition 11l: SR.Q @P(R) = R. //

Induction on Proposition 11 gives us

Corollaxy 12. SR < @?(R) for all K. /F

Note that since R is finite, the seqguence R 2 @P(R) o Qg{ﬁk D e
. : : K+1 '
must terminate, i.e., for some K we must have @gtR) = @P (R = == .

Thus repeated application of @P eventually gives rise to & reduced

relation @?(R) that is stable under @P and that contains %F

If B 2> N, it is difficult to determine which 2N-tuples are
in @P(R), since many possible (P-N)-tuples LNFl,a,.,ué must be con-
sidered; hence the @P process for reducingRis easiest to apply for
P close to N. Of course, the process is also less stringent for

small P, since evidently P = Q imples @P(R) =2 @Q(R).

Define mR, the projection of R, as the set of (u,?)EUxL that

are pairs of terms in 2N-tuples belonging to R.

Proposition 13: Let R = @ (R) # @, and let (ui,ﬂi) € TR.. Then

for all ué,...,uﬁ in U, there exist Ré,...,ﬂ' in L such that

(uir lr---luNrb) E R.

Proof: Since (u’,ﬁi) € TR, there exists a 2N-tuple (u Ei,...,u§,£§) £ R

such that, for some n, we have (ui,li) = (u 2"}- Without loss of
generality, we may assume that (ui,ii) = (ui,ii). Thus (u l 2,15,
...,u Q") € R = @ (R). By definition of @P(R), there exists an Eé

such that (%!, 2,25,...,

hence (ui,%i é,ﬁé,ug,lg,..,,uﬁ) € R. Repeating the same argument,

we can show successively that there exist R',...,l& such that

237) is a consistent 1abellng of (ui’UZ'uz""fuN);

(uifii,---,uN,RN) € R. //

Another approach to "reducing” R is to identify (unit, label)
pairs that are extendible to consistent labelings, and eliminate all

2N-tuples that do not consist of such pairs. Specifically, for any

T ¢ UxL, and any P > N, let us define

e) = {(u,l)leIﬂ]For all ul,...,uP_l_E U, there exist

gl""’RP—l,e L such that

(21,...,29_1,2) is a consistent labeling of

(u ’-"’uPulru) an'd (un”q"n) € Tl) = 11‘--,})—1}.

Proposition 14: T' = T impliesVYP(T’) c ?P(T)n /7

Proposition 15: TP(FSR) = TSp- //

Proposition 16: For all T < UxL we have ?P(T) S TR.

Proof: Any {u,&) € WP(T) is part of a consistent labeling; any
N-tuple of pairs in a consistent labeling is in R; hence each of

the pairs is in 7R. Vo

Corollary 17. For all T satisfying S, € T & UxL we have 7S, € ¥, (T) s 7R

Proof: Propositions 14, 15, and 16. //

Corollary 18. For all such T and all k we have ﬂSR < ngT) S wR. //

' Note that since T is finite, the sequence T 2 ?P{T) 2 WE(T) =g

= yktl
= ¥

Thus repeated application of ?P to any T =2 7Sy eventually yields a

must terminate, i.e., for some k we must have W?(T} (T) = «-- .

set of pairs W?(T) that is stable under WP and that still contains
ﬂSR.
By Propositions 14 and 16 we also have

Corollary 19. ¥i(m) & ¥l (rR) for all k. //

Corollary 20. If ¥,(T) =T, then T < Y%(R) for all k. //

The operations ?P and @P are related by

Proposition 21: TIf R = o, (R) # @, then ¥,(mR) = mR # g.

Proof. ‘Let (u,%) € wR. By Proposition 13, (u,%) can be'extended
to a 2N-tuple in R = ®,(R). By definition of %ps this 2N~tuple
can be extended to a consistent labeling of some P~tuple, whose

pairs are thus all in TR; hence (u,%) € ?P(wR), Lf

Figure 8 helps to illuétrate the comparative power of ?P and
¢, in reducing R towards the minimal constraint. Consider the
appliéation of W3 and ¢3 to the network of binary constraints
shown i; Figure 8. We will first focus attention on node-label
pair (1,a) to determine if (lL,a) € ¥3(ﬂR). From the definition of
TB, for every pair of units {u2,u3), we must find a pairs of
labels (22,23) such that (1,a), (u2,22), (u3,£3) form a.triangle
in Figure 8. The table in Figure 8 lists the {22,23) for each
pair of uniﬁs (uz,u3) (ignoring the trivial pairs that include
u,=1l) . Since every pair (u2,u3) has a label pair (2,:%,) that,
along with (1,a); form a triangle in Figure 8, we have
(l,a)-é Y4 {%R) .

Now consider the application of @3 to R. Let us specifically
ask if ((1,a), (4,b)) € ¢3R. From the definition of 63,>for
every unit u; we must find an £3 such that (1,a), (4,b), (u3,23)
form a triangle in R. Notice that for u3x2, we can find mo such

)
(u) (2212’3
u2, 5
(a,a)
(2’3; (a,a),(a,b)
(3’23 (a,a)
(2,
Figure 8
a)
b)

Figure 9

23- Therefore ((1,a), (4,b))_€ ¢3R. Similarly, we can see that .
((2,b), (3,a))_£ ®3R since there is no suitable %, for u, =1,

Thus, although 7R is a fixed point of ¥3 (since every (u,%) is
a part of a GCL), it is not a fixed point of @s {since R # %{and
this can be detected by @3)" Figure 9a shows ®3QR) and Figure
9b shows @g(R).

We can relate the notions of path consisteﬁcy and arc consis-

tency to fixed points of $3 and ¥,, respectively.

Proposition 22: If R & (UXL)2 and ¢5;{R) = R then R is path consistent,

Proof. Suppose @3(R) = R. Let r = (ui,ﬁi,uj,ﬂj} € R. Then for
all Uy, there is an ik such that (Ri,ﬁj,ﬁk} is a consistent
labeling of (ui,uj,uk}, But then (ui,ﬁi,uk,ﬂk) and (uk,ﬁk,uj,gj)

are in R. //

Note that path consistency is not enough.to ensure that R = o R),

3
since (ui,Ri,uk,Rk) and (uk,Rk,uj,Ej) in R do not imply that
(ui,ﬁi,ui,ﬁi) or (uk,lk,ui,zi) are in R. The first condition can
be guaranteed by introducing the notion of node consistency

(after Mackworth [1°]), and the second by demanding that R be

symmetric.

2 . - ~ . .
Definition: R € (UXL)"™ is node consistent iff. (u,%) € TR implies

(u,2,u,2) € R. We can now state

Proposition 23: If R < (UXL)2 is symmetric and node consistent, then R is

path consistent iff.R = @3(R]. //

Symmetry is not necessary to relate arc consistency to ?2:

Proposition 24: Let R (UxL)z be node consistent. Then R is arc

consistent iff. TR = Wz(ﬂR).

Proof. Suppose R 1s arc consistent. Let (ugi)_é TR. - Then for
every u' there is an %' such that (u,R,u‘,ﬁ*)‘E E. ZThas §.1°' 4=
a consistent labeling of (u,u') and (u',%') € 7"R. By definition of

¥2 we have (u,2) € ?2(WR). Therefore TR < WZ(WR), and since Wz(ﬂR) S TR,
this proves that 7R = ?2(HR).

Conversely, suppose TR = ¥, (7R). Then (u,2) € 7R implies
that for every u' there is an %' such that (u',%2') € 7R and
(u,2,u',2') € R. But since R is node consistent, we‘have
(u,2,u,2) € R. Hence R‘is arc consistent. £ F

In the next section we will see how ¢ and ¥ can be incorporated

into search procedures that compute the GCL's of relation R

4. The Use of Reduction Operators in Search

Both ¥ and ¢ can be directly incorporated into a backtracking
procedure which searches the GCL's of a relation R. Each step in
the backtracking processlplaces a node in a search tree correspond-
ing to the instantiation of a particular set of uhits as a
specific set of labels. These instantiations must be checked for

]
consistency with the other instantiations on the path from the
root leading to that new node. If the instantiations are consis-
tent with the previous assignments, then either ¥ or & can be
applied at that node in the search tree. This should reduce the
number of labels that an uninstantiated variable may assume, con-
tingent on the variable assignments made along the path.

Suppose that a son, N is added to node Ni in the search

kl’
tree by instantiating the wvariables ui,.-.,uk to the labels
L.,.+.,% respectively. Traditional backtracking algorithms would

i k

check for the consistency of this instantiation with the other
instantiations along the path from the root to Ni.' If units
UqsUgye..,u, were instantiated to labels £1re+.,% on the path
from the root to Nk’ then the backtracking procedure would check
that_(uil,zil,...,uiN,EiN)_E R for all uil,...,uiN in {u1’°‘°'un}‘
However, the backtracking does not allow the instantiations of
these units to constrain the future instantiation of other units
further down in the search tree. Incorporating ¢ or Y into the
search procedure provides such a facility. We will first describe
how ¥ can be included in the backtracking procedure and then con-

sider ®. The description will include an example of the search

process.

Every node Ni in the sea&ch tree can be representedrés an
ordered pair (Ii,Ei), where Ii is the set of instantiatioas made.
along the path to Ni and Ei is the set of possible extensions
to I,. At the root, e.én, Ii = g and E, = mR. Adding a son

Nj to N, involves choosing a (u,g) € Ei, and setting a temporary
Iﬁ = Ii U {(a,2)} and E% = Ei —'{(u,z')IQ{EL}. So far, this is

equivalent to the standard backtracking algorithm. However, we

will apply Y to Ig u Ei, and finally set Ij = Iﬁ fl¥k(3€ ilE;) and

Ej n ?k(Ié U Eé), where k is large enough so that ¥ reaches its
fixed point. Then, if Ij = @, the search can be discontinued be-

low N..
J

As an example of how the process works consider Figure 10 and
the relation R displayed in Figure 2. Figure 10 shows the partial
development of the search tree. At Ny unit 1 has been assigned

label a, which yields Ii = {(1,a)} and E{ =TR -{(1,a), (1,b), (1,c)}.

Applying Tz to I; U Ei greatly reduces the size of E, relative to

Ei. This means that, potentially, the depth of the search below

N. will be much less than it would have been if ?2 had not been

1
applied. Extending N, to N, by instantiating unit 2 to label a,
and then applying Tz, causes 12 = E2 = @, so that search may be
discontinued below N, (compare Figure 4) . ©Notice that there is
an increase in storage complexity associated with including ¥
into the backtracking -- namely, the addition of El at each node
in the search tree.

To incorporate ¢ into the search, we associate a subrelation
Ri of R at each ngde. Ri is the set qf constraints (i.e., 2N~ |

tuples) from R that are compatible with the instantiation of units

0
IO = g
E, = TR
{(1,2)}

! Ej = 7R - {(1,2),(1,b),(1,0)}
1, = {(1,a)}
El'= {(2,8.),(2;0),(2,13),(3,0),{_4:,13)} ..

{(1,a),(2,2)}

2

5 = {(3,0),(4,p)}
I, = Ji]

E, = §

Figure 10

. along the path to Nj. Nodes are now ordered pairs (Ii,Rijz with
.Ei implicitly defined by I and Ri -- i.e., E; = ®R, - fa, %) u
is instantiated in Ii}'

The search proceeds as follows: a unit~label pair (u,%) is

K 1] — . ¥ = -
Chgsen from Ei’ and Ij = Ii U {(u,)1}. Negt, Rj R. {{ulpg

i l,---,

uN,QN)]ui = u and &; # % for some i} -- i.e., all 2N-tuples in
Ri that contain upit u but do not assign labél % to it are re-
moved.from Ri to form Ré. Then Rj = @k(Ré) is chosen, where k is
large enough so that the fixed point‘of ¢ is.attained. Again the
search can be discontinued below Nj if Ij = g.

Figure 11 shows the result of including @3 in the search for
the GCL's of Figure 2. Nl is obtained by assigning label a to
unit i and this results in the Ri shown iﬁ Figure 11 (erase nodes
(1,b) and (1,c) from Figure 2 and delete all arcs that impinged
on them). Applying ®3 (one iteration) to Ri yields R;. DNote that
we would have achieved much the same resulﬁs_by applying ?3 to
ﬂRi, -

Figure 8). Incorporating ¢ into the search requires that we

put that in general this will not be the case (see again

store R; at each node Ni in the search tree; this is, of course,

a greater storage requirement than that demanded by Y.

Figure 11

54 Computational Costs and Storage Reguirements

The choice of whether to use ¢ or ¥ in the search for GCL's
will be dictated by both their storage and computational require-
ments. We will examine the computational requirements by
analyzing algorithms that compute ¥ and ¢. It should be pointed
out in advance that since we cannot establish the optimality of
these algorithms, any conclusions drawn on the basis of their
analysis would, of course, be invalidated by the exhibition of
more efficient algorithms.. |

We first consider the following algorithm for computing

‘QP(R):

Algorithm CR

For each {ul,Rl,...,ﬂN,RN)_E R

For each uN+l""’uP.e U

If there exists a consistent labeling (ﬁi,.u.,zé)
of (ul,..-,up) with Ri = g', i=1,;,...,N, then

mark (ul,zl,...,u ,2.) as an element of @PR.

NN

If #R = r, then the cost of algorithm CR is M C where C is the

cost of an optimal procedure for deciding if there exists a con-

'sistent labeling (Ri,...,lé) of (ul,...,up)'with Ri =%, % =1,...,N.

When iterating algorithm CR further efficiency can be

achieved by noticing that to compute Q%(Rk it is only necessary

to search for consistent labelings of those P-tuples (ul,,._,up)

such that some relation involving one of the uy in (ul,...,uP) was

k-1
p R.

the following proposition (and is the generalization of the queueing

deleted by the application of @P to ¢ This is captured by

of nodes described by Mackworth [11]):

_ ; k-1
Proposition 25: Let (ul,ﬁl,...,uN,EN)_é Ly (R). Let

k-2 k-1
Ug,q7---rUp be such that for all &, (ui;R)rﬁTﬂé_ (R}@ (R)),
i =0N+1l,...,P. Then there is a consistent labeling (zlr.n,,ﬁé)
of (ul,...,up) with 2! = Lir i=l,...,N.

ek
P

Y

Proof. Since {u 21,...,uN,2N) € 9 (R), for the u

ll’
the hypothesis, there exist &

N_l__lronw;uP Of
such that (Rl,.an;zp} 38
k-2

N+1’° P

a consistent labeling of (ul,..,,u) in o5 (R) . This means that

(ui ,Ri peee sy) € @ Gﬂ,l € {1,...,P}. But since
1 1 N N
2 u.,) € @k" (R), and every 2N-tuple in @k—z
lf ll‘"‘f NI N] P ' P
a component (ui,QL i=0™N+1l,...,P,is in @k 1(R), it must be that

k=l
P

(u (R} containing

(a., ,2%. ,...,u. ,2.) €9
Ly 2y o
tent labeling of {ul,...,uP) in

(R) —- i.e., (21,...,2P) is a consis-

k-1
oy "(R). //

Next, consider the following algorithm to compute T?{ﬁR):

Algorithm NR

For each (ul,Rl) € TR DO
OK =1
For each Upreeoes uN) DO

Let o= (L 2y] (e, s%: s...,u o8).6 R,

Fere oy
2 N 1,71, ig iy

(il,...,iN) a permutgtion OF £l ews N3l
If L = g, then OK = 0 else

.,u, there exist £ 2

If for all u p N+17 e Lp

N+l'..
SUCh that (21’22’-.-,R’N'QN"”'IE'.-,EP) Wifh
(22,...,2N) € L is a consistent labeling of

(ulr---rup)

Then Ok = 1 FI
FI
OK = 0K * 1
If (OK .EQ. 05 EXIT FOR OD
(uy,2q) € WP(ﬁR) if and only if OK = 1.

If s is the average size of an L set, then the cost of algorithm

NR (ignoring the cost of computing L) is (#WR)(MN_l)(S){MPwN)Cb

N-1

Now, it is reasonable to assume that s*M ~ < r/#7R since R is

symmetric and the average number of elements of R for fixed
=1,
)

(ul,il,uz,,..,uN) was taken to be s. Thus r = (#wR){MN (s),

and with this assumption the computational cost of algorithm

NE ~ & MP“NC, which is the same as the cost of algorithm CR.
Furthermore, we did not take into account the cost of computing

the set L in algorithm NR; this would entail some examination-of

R. If R were stored in a multidimensional binary forest induced

by the lexicographic ordering of U and L (Bentley [11]1), then we
could assume that the cost of computing L is proportional to N log r.
Thus on the basis of computational cost, there seems to be no
reason fof choosing operation ?% over operator @P.

Operator ?P requires the storage of Ei at each node Ni 0f the
searcﬁ tree. Each such E, can be represented by dM bits of stor-
age, one for each unit-label pair.

Operator @P requires that R; be maintained at each node N, .

. k P
= o
Since R. @PR = {ndy

Ri)N N R, one might think it would be effective
to store only (ﬂ@PR)N at each node in the search and restore an
"expanded" version of @ER when search returns to a node by comput-

ing the previous intersection. Note that &, may

be more powerful than ?P, since we. know that for k large enough,

ok (R) = ¥E(R).

It is important to note, however, that the cost of computing
R{ does not balancé the cost of computing ﬁhe.L—sets reguired by
algorithm CR. Ri can be computed by a procedure that reguires
(#WRi) (N log r) operations; for each element {u,%) of ﬁgiwe
must thread through the multidimensional binary tree of elements
of R whose first unit-label pair is (u,2) and f£ind all those
constraints composed only of elements from TR, - This cost adds
to the cost of applyiﬁg algorithm CR to R;. Howevex, the cost
of computing an L-set was shown in Section 4 to multiply the cost

of algorithm NR.

6. Concluding Remarks

Some general methods of reducing the size of an oxrder-N
cdmpatibility relation have been defined, and properties of these
procedures have been derived. These polynomial~time methods can
be incorporated into a backtracking procedure in order to reduce
the expected (although. not necessarily the worst—-case) computa-
tional cost of searching for compatible labelings. Thus these
methods should be useful in helping to solve the constrairned

labeling problem in many practical situations.

References

1.

10.

11.

Mackworth, A., Consistency in networks of relations, Artificial
Intelligence 8, 99-118, 1977.

Aho, A. V., Hopcroft, J. E., and J. D. Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading, MA,
1974.

Montanari, U., Networks of constraints: Fundamental properties -
and applications to picture proce551ng, Information Sciences 7,
95=132, 1974,

Waltz, W. L., Understanding line drawings of scenes with
shadows, in P. H. Winston, ed., The Psychology of Computer
Vision, McGraw-Hill, New York, 1975.

Rosenfeld, A., Networks of automata: Some épplications, IEEE
Trans. on Systems, Man and Cybernetics, 5, 380-383, 1975.

Rosenfeld, A., R. Hummel and S. Zucker, Scene labeling by re-
laxation operations, IEEE Trans. on Systems, Man and Cyber-
netics, 6, 420-433, 1976.

Gaschnig, J., A constant satisfaction method for inference
making, 1l2th Annual Allerton Conf. on Circuit and System Theory,
Univ. of Iilinois, 1974.

Haralick, R. M., and Kartus, J., Theory of arrangements, Univ.
of Kansas Center for Research, Lawrence, KS, 1976.

Barrow, H., and J. M. Tenenbaum, MSYS: A system for reasoning
about scenes, Stanford Research Institute AT Center Tech. Note
121, 1976.

pavis, L., Shape matching using relaxation techniques, Univ.
of Maryland Computer Science Center Tech. Report 480, College
Parik, MD, 1976. '

Bentley, J. L., Multidimensional binary search trees used for
associative searching, Comm. ACM 18, 1975, 509 516.

