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ABSTRACT

The problem of labeling a set of units in such a way as to satisfy an order-¥ compatibility
relation is discussed and shown to be NP-complete. Some general procedures for reducing the
size of the compatibility relation are defined, properties of these procedures are derived, and
their incorporation into a backtracking process is discussed. Their computational cost and
storage requirements are also considered.

0. INTRODUCTION

The problem of classifying or labeling a set of objects in such a way that
given constraints are satisfied arises in a variety of applications. The con-
straints can be expressed in the form of relations that specify allowable (or
“consistent”) combinations of (object, label) pairs. Finding consistent labelings
is an NP-complete problem; it can be done using a straightforward backtrack-
ing approach, but this is computationally expensive. '

This paper formulates the problem of finding consistent labelings as defined
by an order-N relation on the (object, label) pairs, and defines some general
procedures for reducing the size of this relation. Some properties of these
procedures are derived, and their incorporation into a backtracking process is
discussed.
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l. THE LABELING PROBLEM

Consider a finite set U of units, and another finite set L of labels. A labeling
of U is a mapping from U into L. We determine a set of allowable labelings by
specifying an order-N compatibility relation R C(U X L), Specifically, let
(uy,...,ux) be a K-tuple of elements of U, and let (1;;-...4x) be the correspond-
ing labels in L; then we say that this labeling of uy,...,uy is consistent if, for
every N-tuple u,,...,u; of these «’s, the 2N-tuple

ST A U
isin R. If U={u,...,u,,)}, then a consistent labeling of (uy,...,u,,) is called a
globally consistent labeling (GCL) of U. The constrained labeling problem is,
given U, L, and R, to find the (possibly empty) set of GCLs.

Figure 1 gives a simple example of the labeling problem. The unit set
U={1,2,3,4}, the label set L={a,b,c}, and the compatibility relation is of
order 2. A compatibility relation of order 2 can be represented as a graph.
Figure 1 shows such a graph along with a table which defines R. Figure 2
displays the graph of Figure 1 so that it is easier to discover the two globally
consistent labelings of {1,2,3,4}: (a,c,c,b) and (6,a,b,c). Note that they
correspond to the cliques of size 4.

A careful examination of Fig. 1 or 2 indicates that no labeling of unit 1
constrains any labeling of unit 2. Since the links which constrain the possible
labels of unit 1 and 2 are superfluous, we simplify the graph by drawing only
those links which constrain the labelings of their respective units, Figure 3
shows this alternative representation of the compatibility constraint of Figure
1. Thus, if a link is not drawn between two units, then all possible labelings of
one unit are compatible with all possible labelings of the second unit. Con-
versely, if a link is drawn between units i and J» then the pair of compatible
labels for units i and corresponds to the relation Py where Py={(I,))ELx
Ll /) ER).

A variety of techniques can be used to solve the labeling problem. Among
these are methods involving backtracking, as well as the brute-force technique
of “generate and test”. In the next few paragraphs we give a brief description
of the backtracking approach and illustrate how it can be used to solve the
labeling problem for Fig. 1. .

Backtracking accompoishes a depth-first search of a forest of consistent
labelings of the units. (See Fig. 4.) In the following discussion of the backtrack-
ing procedure, refer to Fig. 5. In its first step, label @ for unit | is instantiated
by the procedure. Since (1, a, l,a)€ R, the choice gives a compatible labeling of
unit I. In its next step, label @ for unit 2 is instantiated. Since (2,a,2,a),
(1,a,2,a), and (2,a,1,a) &R, the labeling (a,4) for units (1,2) is consistent and
the link from 1a to 2a in the tree is allowed to remain. In its third step, label «
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Fig. 1. The graph and table representation of the second-order compatibility relation

RC{{1,2,3,4}x{a,b,c}’
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Fig 2. Reorganization of the graph of Fig. 1 which shows clearly the two globally consistent
labelings of {1,2,3,4}. They correspond to the two cliques of size 4 in the graph. They are
(a,c,¢,b) and (b,a, b,c) for units (1,2,3,4), .

for unit 3 is instantiated. But since (1,a,3, @) is not in R, all paths in the tree
including 34 and below can be omitted from the search. Next label b for unit 3
is instantiated. But since (1,a,3,b) is not in R, all paths in the tree including 35
and below can be omitted from the search. Likewise for label ¢ of unit 3.

Now all labels for unit 3 have been instantiated and all have failed.
Therefore, the backtracking returns to the most recently visited unit that still
has uninstantiated labels and instantiates the next possible lable for it. Thus,
label b for unit 2 is instantiated next. It is consistent. Then label a for unit 3 is
instantiated. It is consistent. Then label a for unit 4 is instantiated. Tt is not
consistent, since (1,4,4,a) is not in R. Likewise labels 5 and ¢ for unit 4 are not
consistent. 8o label b for unit 3 is instantiated. It is not consistent, Then label ¢
for unit 3 is instantiated. It is also not consistent.
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Fig. 3. An alternative representation of the compatibility constraint of Fig. 1. Links are
drawn only between units whose labels can constrain one another. The label {i,/) gives the
name of binary relation constraint P;={(/;,})€ L X L[(i,],/,[))ER]}.

The failure of all labels of unit 3 causes the next label, label ¢, of unit 2 to
be instantiated. Labels a and & for unit 3 are not consistent. But label ¢ for
unit 3 is consistent. Then label b for unit 4 is the only consistent label for it. At
this point the backtracking has determined that the labeling (a,c¢,c,b) is the
only globally consistent labeling of units (1,2,3,4) if unit 1 is constrained to
have label a. For the remainder of the backtracking, labels & and ¢ for unit 1
are instantiated and the search proceeds in a similar manner.

The efficiency of backtracking is due to the fact that as soon as a label for a
unit is found to be inconsistent, all labelings below that one in the tree do not
have to be searched, since they too will be inconsistent. However, backtracking
suffers from thrashing. Examing Figure 5, we see that label » for unit 3 is
instantiated three times and fails three times simply for the reason that labeling
(a,b) for umits (1,2) is not compatible. Mackworth [1] calls compatibitity
constraints which allow this to happen “arc inconsistency constraints”.
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Thrashing can be reduced by eliminating elements of the compatibility
relation which are “false trails”. These are elements which do not contribute to
any globally consistent labeling. The winnowing out of elements from R can
be accomplished by iterative procedures of various kinds as well as by some
one-pass algorithms. In this paper we shall derive general procedures which
reduce R while preserving all globally consistent labelings, thus reducing the
thrashing behavior of the backtracking procedure.

Unfortunately, we cannot expect these procedures to significantly reduce
the worst-case computational cost of solving the labeling problem, because the
labeling problem is NP-complete, as will be shown immediately below. The
most we can hope for is that such procedures will eliminate some of the more
easily located “false trails” in the original compatibility constraint R.

THEOREM 1. The labeling problem is NP-complete.

Proof. First we show that the labeling problem is solvable in polynomial
time by a non-deterministic Turing machine. This is immediate, since the
Turing machine can non-deterministically choose a labeling and then verify its
global consistency by checking that every N-tuple of units has labels that are
allowed by the compatibility constraint. Since N, the factor size of the relation

R, is fixed, the number of N-tuples to be checked is (i{) < MY, which is
polynomial in M.

Now we show that some NP-complete problem would be solved by solving
the labeling problem. The problem to be considered is the k-colorability
problem, whose NP completeness is proved in [2]. Briefly, a graph G is
k-colorable if there exists an assignment of the integers 1,...,k to the vertices
of G such that no two adjacent vertices are assigned the same integer. Any
colorability problem can be encoded s a labeling problem as follows: Let
G=(V,£) be the graph to be colored. A labeling problem is defined by a unit
set U, a label set L, and an N-ary constraint relation R C(U/ X LY. Let U=V,
L={1,....,k}, and R C(U X L) be defined by

R={(u,li,uz, ) E(U X LY'|(1,4) E E immplies ;1 }.

Thus if (4,...,1,) is a GCL of U, then every labeled pair (u, Lw,l)isin R, ie.,
if (4,u) € E, then /7 1. Thus no two adjacent nodes in G are given the same
color. B

2. PREVIOUS WORK

Much of the fundamental mathematical analysis of constraint satisfaction
was given by Montanari [3]. He showed that the reduction of R to a smallest
subrelation § having the same set of GCLs as R was, in general, NP-complete.
He therefore suggested that approximations to § that can be computed in
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polynomial time should be investigated. In particular, he introduced the notion
of the largest path-consistent subrelation (P} of a binary relation R as follows:

Let RC(UXLY, and let r=(u,f,4,l)ER. Let p=(u; =y, g, ..., ..., U,
=u;) by any sequence of units {(i.e., a path). Then r is allowed by p if there are
labels (), =1,,b,...,4, =L} such that (s, 4, ., by JERfor 1 <k<n. Wesayr
is legal if it is allowed by all paths containing % and , and finally that R is
path-consisteni if every r& T is legal.

If we fix n, then we can let P, denote the largest path-consistent subrelation
of R for paths of length n. Montanari showed that P,= P, for all n,n’ > 3. The
proof involves a straightforward induction on n. Thus, we will simply refer to
P as the path-consistent subrelation of R. Section 3 contains generalizations of
the notion of path consistency.

It is obvious that 5 C P, but the containment is ordinarily proper. A special
case of path consistency called arc consistency is defined by considering only
r’s of the form (u;, [, 4, 1) and restricting n=3. We will let P, denote the largest
arc-consistent subrelation of a relation R. Intuitively, this corresponds to
checking all unit-label assignments to ensure that for every other unit, a
compatible label exists at that unit. Waltz’s [4] programs, which apply con-
straints to line drawings of blocks-world scenes with shadows, compute the
arc-consistent subrelation of the original binary relation defined over the
vertices of a blocks-world scene.

Mackworth [1] presented efficient iterative algorithms to compute P and P,.
Section 4 describes generalizations to n-ary relations of Mackworth’s algo-
rithm. Rosenfeld et al. [5, 6] showed that P, can be computed by a parallel,
iterative procedure (“discrete relaxation”) and introduced both fuzzy and
probabilistic generalizations (“probabilistic relaxation™) of the constraint anal-
ysis problem.

An important application of the procedures to compute P and P, is their
incorporation into search procedures to compute the set of GCLs of a relation
R. Mackworth |1}, Gaschnig [7], and Haralick [8] discuss this for discrete
constraints, while Barrow and Tenenbaum [9] and Davis [10] treat fuzzy
constraints. Section 4 contains a discussion of search in the case of discrete
n-ary relations.

Many of the results presented in this paper are elucidations and generaliza-
tions of work described by Mackworth [1] and Haralick [8], among others. The
generalization from binary to n-ary constraints is straightforward, but it does
provide a unified notation in which a variety of constraint-satisfaction prob-
lems can be formulated.

3. REDUCTION OF THE COMPATIBILITY RELATION

In this section we investigate an approach to solving the labeling problem
based on reducing the size of the compatibility relation R, which in turn
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reduces the computational cost of procedures such as backtracking. We first
show that there is a smallest order- ¥ relation S, C(U X LY that defines the
same set of GCL’s that R does, and we then describe some methods of
eliminating 2V -tuples form R that are not in S. Let us denote by E{R) the
set of GCL’s defined by R.

PrOPOSITION 1. Let R'C R C(U X L)Y; then E(RYCL(R).

ProposiTion 2. Ler Ry, R, C{UX LY be such that £(R)=L(R,); then
B(R] n R2)= B(Rl).

Since U and L are finite, it foltows from Proposition 2 by induction that if
we take the intersection of all relations R; C(L/ x L)Y that have a given GCL
set £(R), then this intersection also has the same GCL set. Clearly this
intersection is the smallest relation that has GCL set £(R); we denote it by S,
and call it the reduced relation corresponding to R. In summmary, we have

COROLLARY 3. ’ LeI SR= nﬂ(ﬁ‘,)=g(R)R,'; then B(SR)= E(.R).

Evidently Sz C R, since R is one of the R’s. As an immediate consequence
of Proposition 1 and Corollary 3 we have

COROLLARY 4. Let R'C(U X LY satisfy Sg CR'CR; then L(R")=L(R).

Let (/,....,54) be a GCL of U={u,,...,uy}; then for every N-tuple
;... 4, of the «’s, the 2 N-tuple

(uii’ 11'1’ seea s 4}5/ )

must be in any R"C(U X L)" that has the given set of GCLs, and in particular,
every such 2N-tuple must be in Sg. Conversely, the set of all such 2N-tuples,
for all GCLs of U, constitutes a relation C(U % LY. Clearly this relation has
the given set of GCLs, and is the smallest relation having this set of GClLs;
hence this relation must be Sz. We have thus proved

PROPOSITION 5. Sp={(u, 0, . ..u, L)1)} is @ GCL of U, and
(1;---.in) is an N-tuple of elements of {1,...,M}}.

COROLLARY 6. S 5= @5 iff there exists a GCL of U.
COROLLARY 7. Sy is symmetric; in other words, if j,,....jx is any permutation
of {1,....ixy, and (t4;,,1; 5. Wb ) is Sy, then so is (.4, et b ).

Corollary 6 implies that the problem of reducing R to Sy is itself NP-com-
plete. Indeed, to determine if a graph G is k-colorable, we could create the
associated relation R and then reduce R to S, where Sy is nonempty iff G is
k-colorable; thus the reduction of R to S, must be an NP-complete problem.
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However, simple algorithms do exist for eliminating some parts of R that are
not in 8, as we shall next see.

Figure 6 shows the Sy that corresponds to the R of Fig. 1. The (trivial)
search tree for the GCL constrained to contain the interpretation 1-—a is
shown in Fig. 7.

The following corollary to Proposition 5 provides a criterion for identifying
2N-tuples in R that do not belong to Sg:

COROLLARY 8. For all (u3,hi,...,u,IN)E S, and all ujy.\,...,u, E U, there
exist labels Iy, \,... . L such that (1},....[) is a consistent labeling of (u),...,u).

a a ~ )
Cor—=) G

& Q
O OO C

Fig. 6. The reduced relation of Fig. 2.

4b

Fig. 7. The search required to find all giobally consistent labelings of Fig. & with unit 1
constrained to be label a.
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This corollary suggests one way of defining a process for “reducing”
R—namely, we can keep only those 2N-tuples that are “extendible” to
consistent labelings of P-tuples for some P > N. Specifically, for any P > N,
let us define

for all w4 ,...,15p € U, there exist
(DP(R)={(u;,zf,___:u;w%)ER|1,{,+,,...,I,LEL such that (/},...,%5)
is a consistent labeling of (},...,u)}.

PROPOSITION 9. R’C R implies ®,(R)CH-(R).
ProrosiTion 10, OL(Sz)=5,.

Proof. This is clear, since the 2 N-tuples in Sy are all defined by GCL’s of
U n

By the same argument we have
ProposiTiON 11. S, CP-(R)C R.
Induction on Proposition 11 gives us
COROLLARY 12. Sy CO®X(R) for all K.

Note that since R is finite, the sequence R 2 ®(R)2®3(R)2 -+ must
terminate, ie., for some K we must have ®5(R)=®£*!(R)=---. Thus
repeated application of ©p eventually gives rise to a reduced relation ®%(R)
that is stable under ®, and that contains Sg.

If P>»N, it is difficult to determine which 2N-tuples are in ®,(R), since
many possible {P— N)-tuples uy, ,...,up must be considered; hence the &,
process for reducing R is easiest to apply for P close to N. Of course, the
process is also less stringent for small P, since evidently P< Q@ implies
®5(R)ILo(R).

Define 7R, the projection of R, as the set of (u,/)E U x L that are pairs of
terms in 2N-tuples belonging to R,

ProrosiTioN 13.  Let R=®,(R)#, and let (u,[{)EnR. Then for all
My ..My in U, there exist B,..., I} in L such that (u},1y,... w1 ER.

Proof. Since (u;,/[)EwR, there exists a 2N-tuple (u7,!{,...,u%,1{)ER such
that, for some n, we have (u},7{)=(u;,1"). Without loss of generality, we may
assume that (u), /)= (u{,{}"). Thus (u},1, 45,1, ..., uj,i%) E R=Dp(R). By def-
inition of ®,(R), there exists an /; such that (/{,/3,47,...,1%) is a consistent
labeling of (u),u5,45,...,uy); hence (u), 1,15, 15, u5,15,. .., uy 15 E R, Repeat-
ing the same argument, we can show successively that there exist /3,...,J; such
that (ui./y,...,u5, [ )ER. A
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Another approach to “reducing” R is to identify (unit, label) pairs that are
extendable to consistent labelings, and eliminate all 2N-tuples that do not
consist of such pairs. Specifically, for any TCUX L, and any P> N, let us
define

for all uy,...,up_ € U, there exist
<. dp_ELsuch that (u,,[)ET, I <n< P—1,and

11,
Yo(T)={(wDET| (4, -...dp— 1,1} is a consistent

labeling of (u,...,1p_y,4) }.

ProposimioN 14. T'C T implies ¥p(THYC¥(T).
ProposiTion 15, W, (wSg)=aSs.
ProrosiTion 16, For all TC U X L we have Y,(T)CnwR.

Proof. Any (u,/)E¥,(T} is part of a consistent labeling; any N-tuple of
pairs in a consistent labeling is in R; hence each of the pairs isin 7R. W

COROLLARY 17.  For all T satisfying nSg CT C U X L we have wSp C¥(T)
CwR,

Proof. Propositions 14, 15, and 16. B
COROLLARY 18.  For all such T and all k we have nSz CV¥L(T)C wR.

Note that since T is finite, the sequence T2 ¥(T)2¥4(T)2 - - must
terminate, ie., for some k& we must have ¥ (T)=¥5*(T)="-- . Thus re-
peated application of ¥, to an T2 w8y eventually yields a set of pairs ¥4(T)
that is stable under ¥, and that still contains #55x.

By Propositions 14 and 16 we also have

CoroLLarY 19. VA (TYC¥:~Y(wR) for all k.

COROLLARY 20, If ¥o(T)=T, then T CV5(R) for all k.
The operations ¥, and P, are related by

ProposiTION 21, If R=$p(R)= G, then ¥o(wR)=7R# Q.

Proof. Let (u,/yenR. By Proposition 13, (u,/) can be extended to a
2N-tuple in R=®,(R). By definition of @, this 2N-tuple can be extended to
a consistent labeling of some P-tuple, whose pairs are thus all in #R; hence
w,NEY(7R). R

Figure 8 helps to illustrate the comparative power of ¥, and &, in reducing
R towards the minimal constraint. Consider the application of ¥; and ®; to
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(aprud | (2y085)
(2,3) (a,a)
(3,4) |(a,a),(a,b)
(2,4} (a,a)

Fig. 8.

the network of binary constraints shown in Fig. 8. We will first focus attention
on the node-label pair (1, 4) to determine if (1,a) € ¥4(=R). From the definition
of ¥;, for every pair of units (1, 1;), we must find a pair of labels (1,13} such
that (1,a), (243, 4), (u3,45) form a triangle in Figure 8. The table in Fig. 8 lists the
(/2,13 for each pair of units (u,u;) (ignoring the trivial pairs that include
u;=1). Since every pair (u,,4;) has a label pair (5,/;) that, along with (1,a),
forms a triangle in Fig. 8, we have (1,a) E¥y(mR).

Now consider the application of ®, to R. Let us specifically ask if
((1,4), (4,6)) E®,R. From the definition of &, for every unit u; we must find
an /, such that (1,a), (4,5),(us,/5) form a triangle in R. Notice that for u;=2, we
can find no such /. Therefore ((1,a),(4,5)) €D;R. Similarly, we can see that
((2.6),(3,2)) @9, R, since there is no suitable £ for u;= 1.
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Thus, although #R is a fixed point of ¥; [since every (u,) is a part of a
GCL], it is not a fixed point of @, (since R Sy and this can be detected by
®,). Figure 9(a) shows ®,(R), and Fig. 9(b) shows ®}(R).

We can relate the notions of path consistency and arc consistency to fixed
points of @, and ¥,, respectively.

PROPOSITION 22.  If R C(U X LY and ®,(R)= R, then R is path-consistent.

Proof. Suppose ®3(R)=R. Let r=(u,/,u,}}ER. Then for all w, there is
an /, such that (£,7,/) is a consistent labeling of (u;, u, u,). But then (1,4, u,,1,)
and (u,, Ik,uj, [Yarein R. W

Note that path consistency is not enough to ensure that R=®(R), since
(4,4, 1) and (wy, [, u;, 1) in R do not imply that (u,, 7, 1) or (w4, u,8) is in
R. The first condition can be guaranteed by introducing the notion of node
consistency (after Mackworth [1]), and the second by demanding that & be
symmetric.

- DEFINITION. R C(U X L)* is node-consistent iff (1,/)E#R implies (u, L u,l)
ER.

We can now state

ProposITION 23, If R C(U X LY is symmetric and node-consistent, then R
is path consistent iff R=®,(R),

Symmetry is not necessary to relate arc consistency to ¥,

PROPOSITION 24. Let R C(U X LY be node-consistent. Then R is arc-con-
sistent iff wR =¥, (7R}

Proof. Suppose R is arc-consistent. Let (#,/) € wR. Then for every ' there is
an /” such that (w,/,4',/'YE R. Thus /,/’ is a consistent labeling of («,u’) and
(«,I')E7R. By definition of ¥, we have (w,/)E¥,(7R). Therefore 7R C
¥(mR), and since ¥,(mR)C 7R, this proves that #R = ¥,(zR).

Conversely, suppose 7R =¥,(wR). Then (u,/) EmR implies that for every u’
there is an /" such that («',{') € 7R and (u,,’,!") E R. But since R is node-con-
sistent, we have (u,/,u,/)E R. Hence R is arc-consistent. [

In the next section we will see how @ and ¥ can be incorporated into search
procedures that compute the GCLs of the relation R.

4. THE USE OF REDUCTION OPERATORS IN SEARCH

Both ¥ and @ can be directly incorporated into a backtracking procedure
which searches the GCLs of a relation R. Each step in the backtracking
process places a node in a search tree corresponding to the instantiation of a
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particular set of units as a specific set of labels. These instantiations must be
checked for consistency with the other instantiations on the path from the root
leading to that new node. If the instantiations are consistent with the previous
assignments, then either ¥ or ® can be applied at that node in the search tree.
This should reduce the number of labels that an uninstantiated variable may
assume, contingent on the variable assignments made along the path.

Suppose that a son, N,, is added to node N, in the search tree by
instantiating the variables u,...,u, to the labels ly....§, respectively. Tradi-
tional backtracking algorithms would check for the consistency of this in-
stantiation with the other instantiations along the path from the root to N, If
Units uy, 4y, ..., 4, were instantiated to labels /,,...,7, on the path from the root
to Ny, then the backtracking procedure would check that (ol sty LYER
for all % ,.. ¥, i {uy,...,u,}. However, the backtracking does not allow the
instantiations of these units to constrain the future instantiation of other units
further down in the search tree. Incorporating @ or ¥ into the search
procedure provides such a facility. We will first describe how ¥ can be
included in the backtracking procedure and then consider ®. The description
willl include an example of the search process.

Every node N; in the search tree can be represented as an ordered pair
(£ &), where I, is the set of instantiations made along the path to N, and E; is
the set of possible extensions to 7,. At the root, e.g., ;=@ and E; = wR. Adding
a son N; to N, involves choosing a (u,/)EE,, and setting a temporary
F=Lu{(u)}) and E/=E—{(1,I)|I'€L}. So far, this is equivalent to the
standard backtracking algorithm. However, we will apply ¥ to IUE;, and
finally set ;=1 n¥*(I'u E/) and E,nW*(I; U E), where k is large enough so
that ¥ reaches its fixed point. Then, if 1=, the search can be discontinued
below N,.

As an example of how the process works consider Fig. 10 and the relation R
displayed in Fig. 2. Figure 10 shows the partial development of the search tree.
At N, unit 1 has been assigned label a, which yields I={(l,a)} and E{=7R~
{(L,a),(1,b),(1,¢)}. Applying ¥, to I{U E] greatly reduces the size of E,
relative to E{. This means that, potentially, the depth of the search below N,
will be much less than it would have been if ¥, had not been applied.
Extending N, to N, by instantiating unit 2 to label @, and then applying ¥,,
causes ;= E,=g, so that search may be discontinued below N, (compare
Figure 4). Notice that there is an increase in storage complexity associated
with including ¥ into the backtracking—namely, the addition of E, at each
node in the search tree.

To incorporate @ into the search, we associate a subrelation R, of R at each
node. R; is the set of constraints (i.e., 2N-tuples) from R that are compatible
with the instantiation of units along the path to ¥, Nodes are now ordered
pairs (1, R;), with E, implicitly defined by 7, and R—i.e., E=aR—{(w,D|uis
instantiated in 7;}.
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N
I0=,G
EO = 7R
{(1,a)}

¥

TR - {(1,a),(1,b) (1,0)}

Il = {(l;a]}
E; = {(2,a),(2,c),(2,b),(3,c),(4,b)}

\NZ I’ = {(1,a),(2,a}}
i
;’( Eé = {(arC)r(‘!‘lb]}
I, = ]
B, = #

Fig. 10.

The search proceeds as follows: a unit-label pair (u,/) is chosen from E,
and I/ =L, {(u,1)}. Next, R/ =R, — {(,.]1,..,thy, [y)|ti; = w and }; 5= for some
i}—i.e., all 2N-tuples in R; that contain unit # but do not assign label / to it are
removed from R; to form R;. Then R;=®*(R/) is chosen, where k is large
enough so that the fixed point of ® is attained. Again the search can be
discontinued below N if L=g.

Figure 11 shows the result of including @, in the search for the GCLs of
Fig. 2. N, is obtained by assigning label a to unit I, and this results in the R]
shown in Fig. 11 [erase nodes (1,5} and (1,¢) from Fig. 2 and delete all arcs
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I, = {(L,a)}

R, =

Fig. 11.
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that impinged on them]. Applying ®; (one iteration) to R{ yields R,. Note that
we would have achieved much the same results by applying ¥, to #R{, but that
in general this will not be the case (see again Fig, 8). Incorporating @ into the
search requires that we store R; at each node ¥, in the search tree; this is, of
course, a greater storage requirement than that demanded by ¥.

5. COMPUTATIONAL COSTS AND STORAGE REQUIREMENTS

The choice of whether to use ® or ¥ in the search for GCLs will be dictated
by both their storage and computational requirements. We will examine the
computational requirements by analyzing algorithms that compute ¥ and ®. It
should be pointed out in advance that since we cannot establish the optimality
of these algorithms, any conclusions drawn on the basis of their analysis
would, of course, be invalidated by the exhibition of more efficient algorithms.

We first consider the following algorithm for computing ®(R):

ALGORITHM CR

For each (u,0},....0n,IN)ER
For each up 1., up €U

If there exists a consistent labeling (I{,....055) of (u,...,up) with If=1',
i=1,...,N, then mark (u,f,,...,uy,ly) as an element of ®pR.

If # R=r, then the cost of Algorithm CR is rM* C, where C is the cost of
an optimal procedure for deciding if there exists a consistent labeling (7f,...,4z)
of (uy,...,up) with ' =/, I=1,...,N.

When iterating Algorithm CR, further efficiency can be achieved by notic-
ing that to compute ®5(R) it is only necessary to search for consistent
labelings of those P-tuples (u,,...,u;) such that some relation involving one of
the u; in (x,,...,up) was deleted by the application of ®, to %™ 'R. This is
captured by the following proposition (and is the generalization of the queuing
of nodes described by Mackworth [1]):

PROPOSITION 25.  Let (1), 01, tn. i) EPLW(R). Let 1y y,... 4p be such
that for all i, (u,-,l)Ew(@’;‘z(R)—%"(R)), i=N+1,...,P. Then there is a
consistent labeling (1},...,15) of (u,...,up) with [!'=1, i=1,...,N.

Proof. Since (uy,1,,...,uy, Iy EPE'(R), for the uy,y,...,up of the hypothe-
sis, there exist ly.,......f such that (/,...,lp) is a consistent labeling of
(iy,...,up) in @5 2(R). This means that (u,,/,...,t,L)EPFA(R), ;€
{1,...,P}. But since (up,f),...,uy,Ily)EPHR), and every 2N-tuple in
®%~2(R) containing a component (u,), i=N+1,..., P, is in @}(R), it must
be that (. F,,...,u;,,, YEPS™(R)—ie., (/,....0p) is a consistent labeling of
(uy,...,up) in ¥ Y(R). W
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Next, consider the following algorithm to compute ¥ (7R}
ALGORITHM NR

For each (u,})E=R DO
OK=1
For each (u,,...,uy) DO
Let £ ={(12,“-=IN)| (ufl’lf'l"“’u'}."&w )ER’

(f1,+--, i) a permutation of (1,. N}

If E=g, then OK=0 else
If for all wuy,\,...,up there exist Ivets--oslp Such
that (Wb ly by, 0p) with (bl EER is a consistent
labeling of (uy,...,up)
Then OK=1 FI
Fl
OK=0K = |
If (OK .EQ. 0) EXIT FOR OD
(. 1) E¥p(nR) if and only if OK=1.

If 5 is the average size of an £-set, then the cost of Algorithm NR (ignoring
the cost of computing £) is (#aR)(M ¥~ Y s M~V }C. Now, it is reasonable
lo assume that s-M"~'ar/#xR, since R is symmetric and the average
number of elements of R for fixed (a1, {11y, ..., uy) was taken to be s, Thus
ra(#aRY MY~ ")s), and with this assumption the computational cost of
Algorithm NR =~rM*~¥C, which is the same as the cost of Algorithm CR.
Furthermore, we did not take into account the cost of computing the set £ in
Algorithm NR; this would entail some examination of R. If R were stored in a
multidimensional binary forest induced by the lexicographic ordering of U and
L (Bentley [11]), then we could assume that the cost of computing £ is
proportional to Nlogr. Thus on the basis of computational cost, there seems to
be no reason for choosing operation ¥, over operator ®,.

The operator ¥, requires the storage of E; at each node N, of the search
tree. Each such E; can be represented by dM bits of storage, one for each
unit-label pair.

Operator @, requires that R, be maintained at each node N, Since R, =®LR
C(#®5R)Y¥ N R, one might think it would be effective to store only (v®,R)
at each node in the search and restore an “expanded” version of ®:R when
search returns to a node by computing the previous intersection, Note that &,
may be more powerful than ¥,, since we know that for k large enough,
TOE(RYC V5 (R).

It is important to note, however, that the cost of computing R; does not
balance the cost of computing the £-sets required by Algorithm CR. R/ can be
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computed by a procedure that requires (#«R;) (Nlogr) operations; for each
element (x,/) of 7R; we must thread through the multidimensional binary tree
of elements of R whose first unit-label pair is (u,/) and find all those
constraints composed only of elements from #R;. This cost adds to the cost of
applying Algorithm CR to R/. However, the cost of computing an £-set was
shown in Sec. 4 to multiply the cost of Algorithm NR.

6. CONCLUDING REMARKS

Some general methods of reducing the size of an order-N compatibility
relation have been defined, and properties of these procedures have been
derived. These polynomial-time methods can be incorporated into a backtrack-
ing procedure in order to reduce the expected (although not necessarily the
worst-case) computational cost of searching for compatible labelings. Thus
these methods should be useful in helping to solve the constrained labeling
problem in many practical situations.

REFERENCES

1. A. Mackworth, Consistency in networks of relations, Artificial Intelligence 8, 99118
(1977).

2. A. V. Aho, I. E. Hoperoft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

3. U. Montanari, Networks of constraints: fundamental properties and applications to
picture processing, fnformation Sci. 7, 95-132 (1974).

4. W. L. Waltz, Understanding line drawings of scenes with shadows, in The Psychology of
Computer Vision (P. H. Winston, Ed.), McGraw-Hill, New York, 1975,

5. A. Rosenfeld, Networks of automata: some applications, JEEE Trans. on Systems, Man
and Cybernetics, 5, 380--383, 1975.

6. A. Rosenfeld, R. Humime! and §. Zucker, Scene labeling by relaxation operations, JEEE
Trans. Systems, Man and Cybernet. 6, 420—-433 (1976).

7. J. Gaschnig, A constant satisfaction method for inference making, 12th Annual Allerton
Conf. on Circuit and System Theory, Univ. of Illinois, 1974.

8. R. M. Haralick and J. Kartus, Theory of arrangements, Univ. of Kansas Center for
Research, Lawrence, KS, 1976.

9. H. Barrow and J. M, Tenenbaum, MsYs: A system for reasoning about scenes, Stanford
Research Institute Al Center Tech. Note 121, 1976.

10. L. Davis, Shape matching using relaxation techniques, Univ. of Maryland Computer
Science Center Tech. Report 480, College Park, MD, 1976,

11. 1. L. Bentley, Multidimensional binary search trees used for associative searching, Comm.
ACM 18, 509-516 (1975).

Received December 1977



