IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 3, MARCH 1995

335

Recursive Erosion, Dilation,
Opening, and Closing Transtorms

Su Chen and Robert M. Haralick, Fellow, [EEE

Abstract—In this paper, a new group of recursive morpho-
logical transforms on the discrete space Z° are discussed. The
set of transforms include the recursive erosion transform (RET),
the recursive dilation transform (RDT), the recursive opening
transform (ROT), and the recursive closing transform (RCT).
The transforms are able to compute in constant time per pixel
erosions, dilations, openings, and closings with all sized structur-
ing elements simultaneously. They offer a solution to some vision
tasks that need to perform a morphological operation but where
the size of the structuring element has to be determined after a
morphological examination of the content of the image.

The computational complexities of the transforms show that
the recursive erosion and dilation transform can be done in
N + 2 operations per pixel, where N is the number of pixels in
the base structuring element. The recursive opening and closing
transform can be done in 14N operations per pixel based on our
experimental results.

I. INTRODUCTION

HE theory of mathematical morphology has been devel-

oped over the years by many researchers [6] [7]. The
most common operations of mathematical morphology are the
erosions, dilations, openings, and closings. The morphological
operations are related to the Minkowski addition and subtrac-
tion of subsets in Euclidean space, using translations, unions,
and intersections.

The morphological methods have excelled in image analysis
techniques because of its sound mathematical basis and non-
linear nature. There are areas where morphological methods
have been successfully applied, including image enhancement,
segmentation, shape analysis, texture analysis, etc.

Successful application of mathematical morphology often
critically depends on the choice of the size and shape of the
structuring elements. Therefore, more advanced morphological
algorithms are able to adaptively determine the shape and size
of the structuring elements after first examining the contents of
the input image. Generally, this process will involve a search
that may be computationally expensive. However, in some
vision tasks, we do have some prior knowledge on the shape
of the structuring elements, and only the size of the structuring
elements needs to be adaptively determined.

The general formulation of this type of problems can be
as follows: Suppose K is any shaped structuring element
containing the origin, i.e., O € K. We are interested in
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performing the morphological operations with respect to the
following set of structuring elements:

{0} ifn=20
(GnK)=(K@&Ka ---0K ifn=123,....

By introducing a new set of recursive morphological trans-
forms, namely, the recursive erosion transform (RET), the
recursive dilation transform (RDT), the recursive opening
transform (ROT), and the recursive closing transform (RCT),
we are able to provide an elegant solution to the above
problem. The transforms offers a novel paradigm for the
computation of morphological operations on binary images.

In the next section, we will first review the definitions,
the notations, and some of the well-known properties of the
basic morphological operations. Then, we will give some
insight on the recursive operators. In Section III, we will
discuss the erosion transform (ET) and its relationship to the
binary morphological erosions. An efficient two-pass recursive
algorithm to compute the ET is described. In Section IV, we
will define the dilation transform (DT) and show how the
binary dilations with any sized structuring element can be
computed via an efficient two-pass recursive DT algorithm.
In Section V, the opening transform (OT) is discussed, and
a two-pass recursive OT algorithm is developed. The ROT
can be used to compute binary openings with arbitrary-sized
structuring elements. In Section VI, we will introduce the
closing transform (CT) and show how the binary closings with
any sized structuring element can be computed via an efficient
two-pass recursive CT algorithm. Finally, in Section VII, we
will give some experimental results.

II. DEFINITIONS AND NOTATIONS

In this section, we will first review the binary morphological
operations on discrete space Z2. Then, a short introduction to
the recursive operators is provided.

A. Review of Mathematical Morphology

Mathematical morphology is a general method for image
processing based on set theory [6] [7]. Images are considered
as sets of points on which set operations can be performed,
such as the translation, union, and intersection. Let A, B,C, K
denote sets in Z2 and O be the origin of Z2.

Definition 1. The translation of A by z € Z? is denoted
by A. and is defined as A, = {a + 2z | a € A}.

Definition 2: The reflection of a set K is denoted by K and
is defined as K = {~z | z € K}.
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Definition 3: The erosion of A by a structuring element K
is denoted by A © K and is defined as A0 K = {z € Z* |
z+be Aforeveryb € K}

Geometrically, the erosion operation can be interpreted as
translating set A by all points in the set K and then taking the
intersection, i.e., A K =nN{As | b € K}.

Definition 4: The dilation of A by a structuring element K
is denoted by A @ K and is defined by A® K = {c € Z* |
c=a+bforsomea € Aand b € K}.

Geometrically, the dilation operation can be viewed as the
union of all translates of set A by points in the set K, 1.e,
A® K = U{4, | b € K}. Thus, dilation operations are
commutative and associative: A@ B=B & A, A® (B &
C)=(A®B)aC.

Dilation is a dual operation of erosion. Their duality relation
can be expressed as A@® B = (A°© K)¢, where A° denotes
the set-theoretic complement of A.

Definition 5: The opening of a set A by a structuring
element K is denoted by A o K and is defined as Ao K =
(Ao K)® K.

Geometrically, the opening can be characterized as the union
of all translations of the structuring element K that fit inside
the set A, ie, Ao K = U{K, | K: C At € Z%}.

Definition 6: The closing of a set A by a structuring el-
ement K is denoted by A e K and is defined as A e K =
(Ad K)o K.

Geometrically, the closing includes any points satisfying the
condition that anytime the point can be covered by some trans-
lation of K, the intersection between the translated K and Ais
not empty, i.e., Ao K = {z |z € K, for some ¢ implies KN
A # ¢).

Similar to the dilation operation, closing is a dual operation
of opening. Their duality relation can be expressed as AeB =
(Ac o K)°.

Definition 7: The n-fold dilation of a set K is denoted by
(®,K) and is defined as

{0} ifn=20
(GBnK):{K&BK@---@KJ ifn=1,2,3,....

—
n

(@, K) is extensive under increasing n when K contains
the origin. Consequently, we define n as the scale factor of
the structuring element (&,K) and K as its base.

B. Review of Recursive Operators

The recursive operator is a operator whose output depends
not only on the input pixels that lie within the domain of its
kernel but also on one or more previously computed output
values.

Associated with a particular recursive operator will be a
particular scan order of input pixels. This scan order govemns
the order in which the operation is to be applied. A scanning
function can be used to uniquely specify such a scan order.

Definition 8: The scanning function S is defined as a one-
to-one onto mapping from a finite set I = {(z1,22) € 72
0 <z <my,0 < zo < mp} to the set {1,2,... ymyma}. If
peI,qgeland S(p) < S(q), then the output value at p is
computed before the output value at g.
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Definition 9: The reverse scanning function S ~! of a scan-
ning function S is defined as a one-to-one onto mapping from
a finite set I C Z2 to the set {1,2,...,mymz} such that
57Yp) = mamz + 1 — S(p).

Definition 10: A sequentially computable recursive opera-
tor is a recursive operator with respect to a scanning function
S in the finite set I C Z2 such that whenever an output value
at p € I is computed, it only depends on input pixel values
and those output pixel values at g € I satisfying S(g) < S(p).

Definition 11: The decomposition of a kernel K containing
the origin by a scanning function S is defined as the two
subsets K7 and K? of K, where

K=KfuKtuo
Kf={ge K |S(g+p) <S(p), forallpelC 2%}

Kb ={ge K| S(g+p)> 5@, forallpe I C Z%}.

Furthermore, we define K7 as the forward subkernel of K
because K defines the domain of those points in K on which
the current output are depending in the scanning S. In the same
way, we define K b as the backward subkernel of K because
K defines the domain of those points in K on which the
current output are relying in the scanning S5~°.

III. RECURSIVE EROSION TRANSFORM

We begin with the discussion of our first recursive mor-
phological transform—the recursive erosion transform (RET).
The RET offers an efficient way to compute the erosions of a
binary image with an arbitrarily sized structuring element.

A. Definition

The erosion transform of a binary image is based on
the successive morphological erosions on the image. It is a
generalization of the distance transform commonly known in
the literature [1].

Given a binary image I, denote by A the set of all the
binary one pixels (which are also called the “feature pixels” or
“foreground pixels”). The erosion transform of A with respect
to a structuring element K produces a gray-scale image where
the gray level of each pixel z € A is the generalized distance
of z to the image background, i.e., the largest positive integer
n such that z € A © {®,—1K}. The generalized distance
at a pixel z indicates the maximum number of consecutive
erosions of A by K such that z is still contained in the eroded
image foreground.

Definition 12: The erosion transform of a set A C 72
with respect to a structuring element K C Z? is denoted by
ET[A, K] and is defined as

maxin|z € A1 K} ifzeA

where A o, K = A 8 (&.K).

From the above definition, one can easily see that the
support domain of ET[4, K] is A and that it has the following
thresholding property. Once the ET has been computed, it only
requires a simple thresholding to compute a binary erosion
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Fig. 1. Instance of the erosion transform: (a) 2-D biary image; (b) dia-

mond-shaped structuring element; (c) ET of the binary image; (d) threshold
ET image (n = 0); (e) thresholded ET image (n = 1); () thresholded ET
image (n = 2).

with any sized structuring element. The erosion transform and
its subsequent thresholding processes are illustrated in Fig. 1.

Proposition 1: Let n be a nonnegative integer. If A C 2>
is a set, K C Z? is a structuring element containing the origin
O € K, and B, = {x € A | ET[A,K](z) > n}, and then,
B, = A6 (&.K).

Fig. 1 illustrates an instance of the erosion transform.
The brute-force iterative algorithm for computing the erosion
transform is constructed by successively eroding the input
image, i.e.

A]_ :A
Ays =ha@Bia=19 0.

The erosion transform at z € A is computed as the
maximum 7 such that x € A,. Its worst-case computational
complexity is M N/2 operations/pixel for a N-point structur-
ing element and a M x M input image if we assume that M /2
erosions is required [3]. In the next section, we will describe an
efficient two-pass recursive erosion transform (RET) algorithm
that requires only a maximum of N + 2 operations/pixel.

B. Recursive Erosion Transform Algorithm

In their pioneering work [1], Rosenfeld and Pfaltz described
a two-pass recursive algorithm to compute the city-block
and chess-board distance transform of a binary image. The
algorithm is based on the following idea: Global distances in
the image can be calculated by propagating local distances,
i.e., distances between neighboring pixels. As a generaliza-
tion, Bertrand [2], [4] and Haralick [3] described a two-pass
recursive algorithm to compute what they call the generalized
distance transform. In the morphological terminology, the
generalized distance transform is nothing but the erosion trans-
form that we defined previously. The distance transform using
the four-neighborhood corresponds to an erosion transform
with a five-pixel cross structuring element, and the distance

transform using an eight-neighborhood corresponds to an
erosion transform with a 3 x 3 box structuring element.

The recursive ET algorithm computes the erosion transform
in only two passes over the image; the first pass goes from
pixel to pixel in a top-to-bottom and left-to-right sequence
(forward pass), and the second pass goes in the reverse
direction (backward pass). In each pass, a subset of the local
neighborhood of each pixel is examined, and a recursive
operator is applied. The derivations of the neighborhood
recursive operators are provided in [2] and [3]. As a quick
reference, we list below the two propositions from [2] and [3]
that immediately lead to the two-pass RET algorithm.

Proposition 2 establishes the local recursive property of
the ET. It indicates that the ET at any pixel is one plus the
mimimum of its neighborhood ET values.

Proposition 2: If A C Z% is a set, K C Z? is a structuring
element containing the origin O € K and K = {z € K |
z # O}, then

ET[4, K](z)
_ [min{ET[A,K)(z+b) |beK}+1 ifz€ A
~ o if z ¢ A

Generally, the above form of recursive operator is not se-
quentially computable. However, by observing that the recur-
sive operator consists of a minimization operator and has the
properties that it is monotonically decreasing, commutative,
and associative, we can decompose the whole minimization
process into two subprocesses, where each of them is se-
quentially computable. This is the essence of the following
Proposition 3, which shows that the ET can be computed in
a two-pass recursive algorithm.

Proposition 3: If A C Z? is a set, and K¥, K® are a
decomposition of the structuring element K C Z? by a scan-
ning function S, then ET[4, K|(z) = min{ET[4, K’|(z),
min{ET[A4, K](z + b) | b € K°} + 1}.

C. Algorithm Description

Let A C Z? be a set, and let K C Z2 be a structuring
element containing the origin. Let the scanning function §
be chosen as the order of top-to-bottom and left-to-right.
Accordingly, let the reverse scanning function S~! be the
order of bottom-to-top and right-to-left. The RET algorithm
can be summarized as follows:

Algorithm Recursive Erosion Transform—2D Case

1) Decompose the K with respect to the scanning function
S: The forward structuring element will be K/, and the
backward structuring element will be K°.

2) In the first pass of RET (forward scanning function .5),
perform the following filtering on each pixel z in the
input image (Proposition 2): :

« Ifz ¢ A, then ET[A, Kf](z) = 0.
« If z € A, then ET[A4, K/|(z) = min{ET[4, K]
(z+ 0| feK/}+1.

3) In the second pass of RET (backward scanning function
5~1), perform the following filtering on each pixel = on
the output of the first pass (Proposition 3):

« If ET[A,Kf](z) = 0, then ET[4, K|(z) = 0.
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« Else ET[A K]|(z) =min{ET[4, K7](z), min
(ET[A,K)(z +b)| b e K} + 1}

4) End.

D. Computational Complexity

Suppose there are N/ points in K f and N® points in K°.
For a N-point structuring element (N = N f 4+ N°+ 1),
the number of operations per pixel in the forward scanning
is N7 + 1 for the binary one pixel (N7 comparisons and 1
addition) and 1 for a binary zero pixel (one comparison). The
number of operations per pixel in the backward scanning is
N°® + 2 for the binary one pixel (N b 4+ 1 comparisons and one
addition) and 1 for a binary zero pixel (one comparison). As
a result, the recursive ET algorithm requires N+ 2 operations
per binary one pixel and two operations per binary zero pixel.
The experimental results on the timing performance of RET
will be presented in Section VIL

IV. RECURSIVE DILATION TRANSFORM

In this section, we discuss the dual transform of the
RET—the recursive dilation transform (RDT). It provides
an efficient way to compute the dilations of a binary image
with any sized structuring clement.

A. Definition

The dilation transform of a binary image is based on the
successive morphological dilations of the image. The dilation
transform of a set A with respect to a structuring element
K generates a gray-scale image where the gray level of each
pixel = € 72 is the generalized distance of x to set A, ie,
the smallest positive integer n so that z € A (@1 K). If
no such n exists, where © & A® (@®n-1 K) for all n, then the
dilation transform at T € Z? is designated as zero.

Definition 13: The dilation transform of a set AC 2% by
a structuring element K € Z* is denoted by DT[4, K] and
is defined as

DT[A, K](x)
min{n |z € A®(@p-1K)} ifIn,z€A® (Bn-1K)

0 if¥,z ¢ A (Dr-1K).

The above definition indicates that the support domain of
DT[A, K] is Z* because dilation is extensive. The following
Proposition 4 shows how to apply the dilation transform to
compute the binary dilation with an arbitrary sized structuring
element. The dilation transform and its subsequent threshold-
ing processes are illustrated in Fig. 2.

Proposition 4: Let n be a positive integer. If A C Z*
is a set, K € Z? is a structuring element containing the
origin and B, = {z € 2?0 < DT[4, K](z) < n}, then
By = A® (®n_1K)- -

The dilation transform can be computed in two ways. One is
the brute-force iterative algorithm, and the other is a recursive
algorithm based on the duality relation between the DT and the
ET. The brute-force algorithm requires successively dilating
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Fig. 2. Instance of the dilation transform. The dotted boundary indicates that

the domain of the image extends to infinity. DT in a window is shown: (a) 2-D
binary image; (b) diamond-shaped structuring element; (c) DT of the binary
image; (d) thresholded ET image (n = 1); (&) thresholded DT image (n =
2); (f) thresholded DT image (n = 3).

the input image

Al = A
An+1 = An@K;HZI,Z,.,..

The dilation transform at & € Z? is computed as the min-
imum n such that z € A,. Suppose the DT image with
a maximum value of p -+ 1 is to be produced for an input
M x M binary image and N-point structuring element, the
computational complexity for the brute-force algorithm would
be pN operations/pixel. When p is large, there is a lot of
computation involved.

On the other hand, the algorithm based on the duality
relation requires first taking the complement of the input image
and then computing the RET on the complemented image with
the reflected structuring element. There are difficulties in actual
implementation of the algorithm because the complementation
of a finite set is an infinite set, and we cannot consider the
computation of RET on an infinite set. Furthermore, there are
cases when the RET on the complemented image may generate
infinite values in our finite domain of interest. Fig. 3 shows
one example. When the origin of the structuring element is
at the top-most left point of the structuring element, the RET
will have infinite values near the upper-left corner of the input
image.

The traditional wisdom to get around the above difficulties is
to allow the complemented image to be expanded sufficiently
large to guarantee some adhoc algorithms to work. Given an
input M x M binary image and that a DT image with a
maximum value of p + 1 is to be computed, then output DT
image will be of size [M +p(Sy — 1)] % [M +p(S.—1)], where
S, and S, are the row and column sizes of the structuring
element, respectively. To guarantee the correct output DT
image, a row expansion of 2p(S, — 1) and a column expansion
of 2p(S. — 1) on the complemented image are required. This
will result in an increase in the time and space complexity
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Fig. 3. Example where the RET on the complemented image generates
infinite values in a finite domain of interest. The dotted boundary indicates
that the domain of the image extends to infinity: (a) 2-D binary image; (b)
diamond shaped structuring element, its origin being at the top-most left point;
(c) the complemented binary image; (d) ET on the complemented image.

and is not trivial. In the next section, a simple two-pass
recursive dilation algorithm that takes a maximum of N+ 2
operations/pixel i described. The algorithm does not require
input image expansion.

B. Recursive Dilation Transform Algorithm

We have summarized the local recursive property of ET in
Proposition 2. Since the dilation transform may be considered
to be the dual transform of erosion transform, we can easily
show that the dilation transform shares the similar property as
that of ET.

Proposition 5 establishes the local recursive nature of the
DT. It shows that the DT at any pixel can be computed as one
plus the minimum of all its nonzero neighborhood DT values.

Proposition 5: Let A C Z2beaset,andlet K C Z2bea
structuring element containing the origin O € K. Denote K
as the reflection of K and K = (k€ K |k# O} Ifz € Z*
and C = {(z + k) | DT[A, K|(z + k) > 0,k € K} is the set
of nonzero neighborhood pixels of z, then

DT[A4, K](z)
1 ifzeA

= { min{DT[A,K|(y) |y € C}+1 ifz¢ AandC#¢

0 otherwise.

The above proposition will lead us to a recursive algorithm
for computing the dilation transform. The algorithm calculates
the DT at a pixel as one plus the minimum of all its nonzero
neighborhood DT values. To avoid the direct computation of
the set of nonzero neighborhood values at each pixel, we
can initially reset all binary zero pixels in the input image
to have an infinite value. By doing this, the minimization
operator in Proposition 5 reduces to the same form as that
is in Proposition 2. Consequently, we can compute the DT via
a similar two-pass recursive algorithm employed in the RET.

C. Algorithm Description

Let A C Z2 be a set, and let K C Z2 be a structuring
element containing the origin. Let the scanning function S
be chosen as the order of left-to-right and top-to-bottom.
Accordingly, let the reverse scanning function S~! be the
order of right-to-left and bottom-to-top.

As indicated previously, the support domain of DT[A, K] is
Z?. Due to practical storage limitations, we constrain the DT
output to have a maximum value of p + 1. Consequently, we
define DT? = {DT[4, K)(z) < p+ 1 | z € Z*}, where p is
any chosen nonnegative integer. The following RDT algorithm
computes DT? for any given p. If the input is a M x M binary
image, the output DT? is a [M + p(S, — 1)] x [M + p(S. - 1)]
image.

Algorithm Recursive Dilation Transform—2D Case

1) Reflect the K around its origin. Let the reflected struc-
turing element be .

2) Decompose the K with respect to the scanning function
S: The forward structuring element will be Kf; the
backward structuring element will be K°.

3) Initialization: Reset all binary zero pixels to have a very
large value MAX_VALUE > p + L.

4) In the first pass of RDT (forward scanning function 5),
perform the following filtering on each pixel in the
input image (Proposition 5):

. If x € A, then DT[4, Kf](z) = 1.
. Ifz ¢ A, then DT[4, KF)(z) = min{DT[A, K]
(z+ f)If € K} + 1.

5) In the second pass of RDT (backward scanning function
51y, perform the following filtering on each pixel z in
the output image of the first pass (Proposition 3):

«  If DT[A, Kf)(z) = 1, then DT[4, K)(z) = 1
. Else DT[A, K|(z) =min{DT[4, K{](x), min{DT
(A, K](z + b)|beK*} + 1}.

6) Reset all values in DT[A, K| that are greater than p + 1
to 0.
7) End.

D. Computational Complexity

Suppose there are IV / points in Kf and N points in K®.
For a N-point structuring element (N = N F 4+ NP +1), the
forward scanning requires N f 41 operations on a binary zero
pixel (N/ comparisons and one addition) and one operation on
a binary one pixel (one comparison); the backward scanning
requires N® + 2 operations on a binary zero pixel (N® +1
comparisons and and addition) and one operation on a binary
one pixel (one comparison). As a result, the recursive RDT
algorithm requires N+ 2 operations per binary zero pixel and
two operations per binary one pixel. Since the RDT algorithm
does not require input image expansion, it is space efficient.
The experimental results on the timing performance of RDT
will be presented in Section VIL
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Fig. 4. Instance of the opening transform: (a) 2-D binary image; (b) diamond
shaped structuring element; (¢) OT of the binary image; (d) thresholded OT
image (n = 0); (e) thresholded OT image (n = 1); (f) thresholded OT image
(it = 20

V. RECURSIVE OPENING TRANSFORM

The recursive opening transform efficiently computes the
binary opening with any sized structuring element. It also
provides a quick way to calculate the pattern spectrum [8]
of an image. The pattern spectrum is nothing more than a
histogram of the opening transform.

A. Definition

The opening transform of an image A with respect to a
structuring element K puts in each binary one pixel z € A
the largest positive integer n such that z € Ao (Br-1K),
which means that for some translation t, (@n_1K) can be
translated by ¢ to cover z yet remain in A.

Definition 14: The opening transform of a set A C Z? by
a structuring element K C Z? is denoted by OT[A, K] and
is defined as

OT[4, Kl(z) = {gﬂax{n |2 €40 (@aK)} if2 . 4

From the above definition, one can easily see that the
support domain of OT[A, K] is A and that the opening
transform has the following properties. The first proposition
shows how we can use the opening transform to compute the
binary opening with an arbitrary: sized structuring element.
The next proposition indicates that the opening transform does
not depend on the origin of K. Without loss of generality,
we will always assume that the origin is contained in the
structuring element. The opening transform and its subsequent
thresholding processes are illustrated in Fig. 4.

Proposition 6: Let n be a nonnegative integer. If A C Z°
is a set, K C Z2 is a structuring element, and B, = {z € A |
OT[A, K](z) > n}: then, B, = Ao (®nK).

Proposition 7: If A C Z% isaset, K C Z? is a structuring
element, and K’ = (K): is a translation of K by ¢ € arh,
then OT[A, K'|(z) = OT[A, K](z), for all x € A.
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The OT of an image can be computed via the following
brute-force algorithm: 4,41 = Ao (®,K), n = 0,1,2,....
The opening transform at = € A is computed as the maximum
n such that = € A,. Suppose the input image size is
M x M and that K is a N-point structuring element. The
above brute-force algorithm requires M(MN + 6N 4+ 8)/8
operations/pixel [5]. In comparison, the following two-pass
recursive opening transform algorithm takes about 14N oper-
ations per pixel on the basis of our experimental results.

B. Recursive Opening Transform Algorithm

The ET at a given image pixel is defined as the general-
ized distance of the pixel to the image background, i.c., the
maximum number of consecutive erosions of the image that
the image pixel is still contained in the image foreground.
Therefore, it also indicates how far one can dilate the given
image pixel so that the dilated pattern is still contained in the
image. As an example, suppose ET[A, K](z) = n. From the
definition of the ET, it is true that z € A& (@n-1K), where n
is defined to be as maximal as possible. Since the structuring
element contains the origin O € K, the extensive property of
dilation will guarantee that (©,-1K): C Ao (®,1K) C 4,
where n is also the maximum.

The above observations suggest a procedure to compute the
OT. In the first part of the procedure, the ET of the image
is calculated. The efficient recursive ET algorithm described
in Section III can be utilized to accomplish this task. In the
second part of the procedure, each pixel in the ET image is
maximally dilated based on its ET value. In the meantime,
the ET value will be propagated along the way with the
dilation process. The process can be described as a label
propagation process. The OT at each image pixel is defined as
the maximum of all labels that can be propagated to that pixel.
Later in the section, we will explicitly state the relationship
of the OT with the ET and the label propagation process
(Proposition 8), and we will also demonstrate that the label
propagation process can be recursively computed (Proposition
10). However, before going any further, we need first to
introduce some additional terminology.

In order to describe a propagation process, we need to define
a propagating entity. A propagating entity will indicate a label
to be propagated and its corresponding propagating distance
and center. For the recursive OT, the propagating center could
be any pixel on the image; the ET value at that pixel is the
label to be propagated, and the propagating distance is the ET
value at that pixel minus one. We will adopt the following
notion of propagator to delineate the propagating entity of the
recursive OT. ’

A propagator has a pixel location, a label to be propagated,
and a nonnegative integer (the propagating factor), indicating
how many times the propagating label can yet be propagated.

Definition 15: A propagator on 72 is defined as a triple
and is denoted by ¢ = (I, f, ), where

[ propagating label that ¢ propagates

f propagating factor with f— 1 specifying the number of
times that ¢ can yet propagate

z propagating center indicating the location of ¢.
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Fig. 5. Instance of the propagation process. r is (2, 2) in this case. The

propagation P[y, K] generates a set of nondummy propagators in the domain
of (Fj_1H)z.

The label function £{w) = 1 returns the propagating label
of the propagator. The factor function F(y) = f returns the
propagating factor of the propagator.

A propagator can be acted upon by a propagation process
P with a structuring element K. The propagation process
Py, K| computes the set of pixels that lie within an (f — 1)
generalized distance of z and propagates the propagating label
[ to those pixels.

Definition 16: The propagation P of a propagator @ =
(1, f, ) with a structuring element K is denoted by P[p, K]; it
produces a propagator at each z € Z2. Let Py, K|(z) denote
the created propagator at z € Z2, and it is defined as

Plp, K](z) =

{(l, ET[(®f-1K)e, K](2), 2)
(0,0,2) :

where the operator (®s—1K), means translating (@1 K)
by the element z.

As shown in Fig. 5, the propagation P[yp, K] generates a
set of nondummy propagators in the domain of (@7_1K);.
The propagating label ! of ¢ is propagated all the way to the
extent of (@s_1K),, whereas the propagating factor at z is
ET[(®7-1K)z, K](z). Proposition 8 relates the OT to the ET
and the propagation process.

Proposition 8: Let AC Z? be aset,let O € K C Z?bea
structuring element containing the origin, and let the ET of the
set A with respect to K be denoted by ET[4, K. If we define

— {(ET[A, K](2),ET[A, K]|(2),z) ifz€ A

ifze (EBf_1K)m
otherwise,

> =

(0,0,2) ifzg A,
and
max{L{Plp., K|(z)forall z € A} ifzec A
B(z) =
0 ifzgA,

then B(z) = OT[A, K|(z) for all x € A.
An interpretation of Proposition 8 is that given the ET of a
set A with respect to a structuring element K, we first create a

propagator . at each point z € A. Then, we propagate each
p, in the domain of A and stack these propagations on top
of each other according to their own origin z. If we define
B(z) to be the maximum propagating label among all the
propagators at z, then B(z) = OT[4, K|(z) for all z € A.

The following Proposition 9 shows the relationship between
the propagations of two or more propagators located at the
same pixel.

Proposition 9: 1f ¢1 = (l1, f1,z) and @y = (la, fo,x) are
two propagators at pixel z, I} > Iz, and f; > fa,, then for
all z € A,

L{Plp2, K)(2)} < L{Ple1, K])(2)}.

The proposition shows that when there are multiple prop-
agators at the same pixel, the propagations of some of them
may not have an impact on the final result of the OT. Thus,
those propagators can be pruned off. It is, therefore, useful to
introduce the following concept of the propagator list.

Definition 17: The propagator list {®(z) = {(lo, fo,z),
(I1, f1,2)s .- -+ (Im, fm, )} at a propagating pixel « is defined
as an ordered list of propagators that satisfy the following
constraints:

e ;> 1;,if i < j, where 4,5 = 0,1,...,m;.

- fi< fj,if i< j whered,j =0,1,...,m.

The propagators in ®(z) are propagatable, and the sequence
of the propagators in ®(z) indicates the propagation sequence
of the propagators. The foremost propagator propagates first.

C. Recursive Propagation Algorithm

In this section, we shall show that the propagation operation
Ple, K] can be computed recursively. We shall consider one
special case where the origin O of the structuring element
K C Z? is the top-most left point in the domain of K. In the
2-D case, the top-most left point of K can be defined in the
following way: O = (rg,cp), where ro = min{r | (r,c)eK}
is the minimum row coordinate of all the pixels in K, and
cg = min{e | (rg,c)€K} is the minimum column coordinate
of the pixels in K that have the minimum row coordinate ro.

Under this assumption, the next proposition establishes that
the propagation of a propagator can be done through a one-pass
recursive algorithm.

Proposition 10: Let ¢ = (I, f,x) be a propagator on 22,
K be a structuring element with its origin O at the top-most
left point of K, and K = {~z | z € Kand x # O} be a
reflection of K. If R[yp, K| is defined as

_ (l,ff,Z) lfz S (@f‘-lK)
Ro kIO ={{50,2) 1+ g (ara)
where f' = max{f - §(z,2), max{F{R[p, K](z + b)},b €
Kb} — 1}, and 6(z,z) is a §-function in Z2, i.e.
1 ifz==z
6(z,z) =
0 ifz#w=,
then for all z € Z2, Plp, K](z) = Rlp, K](2).

The proposition states that the propagation P[p, K] can be
computed by scanning a propagator array that at first contains
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Fig. 6. Instance of the recursive propagation process. x is (0, 2) in this case.
¢ is used to identify those pixels that have not been scanned.

only one propagator . At each pixel other than the z on
the scanning path, we assign the propagating factor to be the
max{0, f" — 1}, where the f” is the maximum propagating
factor at those points covered by the K (the origin of the
K?b is centered on the point). If the resulting propagating
factor is nonzero, we assign the propagating label to be 1
otherwise, assign the propagating label to be zero. Fig. 6 shows
an example of the recursive propagation process.

D. Algorithm Description

Let A C Z2 be a set, and let K C Z? be a structuring
element containing the origin. Let the scanning function S
be chosen as the order of left-to-right and top-to-bottom.
Accordingly, let the reverse scanning function S5~1 be the
order of right-to-left and bottom-to-top. The ROT algorithm
can be summarized as follows:
Algorithm Recursive Opening Transform—2D Case
1) Set the origin O of K to be the top-most left point in K.
2) The first pass of ROT (scanning function 5 —1): Execute
the RET algorithm described in Section III to compute
ET[A, K](z). Only the backward pass of RET is needed.

3) Decompose the K with respect to the scanning function
S. Let Kf, K® be the corresponding forward and
backward structuring element. In this particular case,
K7 is an empty set ¢.

4) Flip the backward filtering structuring element K®, and

let it be K°.

5) The second pass of ROT (scanning function S): For each

pixel z on the scanning path, do the following: Let &(z)
be the propagator list at pixel z if the following hold:

. IfET[4,K](z) = 0, set ®(z) = {(0,0,2)}.
« If ET[A, K|(z) # 0, perform the following steps:
Let Sy, S, be propagator sets.
(a) SU = {(lO:fﬂrm) I lD = E’T[AiK]("r)’fO -
ET[A, K](z)}.
® Sp={f-12)|(&fiz+0b)e ez +
b),b € Kb and f > 1}.
(c) ®(z) = MakePropagator List(So U Sr); The
MakePropagatorList is a procedure used to
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make a propagator list out of a given prop-
agator set. The procedure can be efficiently
implemented by using a hashed list.

. OT[A,K](z) = L{TopPropagator[®(z)]}: The
L is the label function, and the TopPropagator
is a function to get the first propagator in the
propagator list.

6) End.

E. Computational Complexity

Suppose K is a N-point structuring element, and the first
pass of the ROT requires /N operations per binary one pixel
and one operation per binary zero pixel. In the second pass
of the ROT, the MakePropagatorList(S) function could be
implemented in O(~) operations if the size of propagator set
S is ~. In the worst-case scenario, v = IV 2, ie., each of its
N neighbors propagates N different labels to . Under this
condition, the ROT algorithm requires N + O(N?) operations
per binary one pixel and two operations per binary zero
pixel. The operations involved are simple integer additions
or comparisons. Our experimental results in Section VII show
that the ROT takes on average 14N operations per binary one
pixel.

VI. RECURSIVE CLOSING TRANSFORM

In this section, we discuss the dual transform of the
ROT—the recursive closing transform (RCT). It provides
an efficient way to compute the closings of a binary image
with any sized structuring element.

A. Definition

Similar to the DT, which is a dual transform of the ET, the
CT is a dual transform of the OT. The closing transform of
a set A with respect to a structuring element K produces a
gray-scale image where the output at each pixel z € Z% is
the smallest positive integer n so that z € A e (©,_1K). If
no such n exists, where z & A o (®, 1K) for all n, then the
closing transform at = € Z? is designated as zero.

Definition 18: The closing transform of a set A C Z? by
a structuring element K C Z? is denoted by CT[4, K| and
is defined as

CT[A, K](z)
_ {min{n |2€ Ao (@naK)} fInzeAe(@uiK)
— 10 ifVn,z & Ae (Bp_1K).

The above definition indicates that the support domain of
CT[A, K] is Z? because closing is extensive. Proposition 11
shows that once the CT has been calculated, it only requires a
simple thresholding to compute a binary closing with any sized
structuring element. Proposition 12 illustrates that the closing
transform, like the OT, does not depend on the origin of
the K. The closing transform and its subsequent thresholding
processes are illustrated in Fig. 7.

Proposition 11: Let n be a positive integer. If A C Z? is
a set, K C Z2 is a structuring element, and B, = {z € Z* |
0 < CT[4, K](z) < n}, then B, = A e (®n-1K).
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form algorithm.

Proposition 12: 1f A C Z%isaset, K C Z* is a structuring
element, and K’ = (K); is a translation of K by t € gh,
then CT[A, K'](z) = CT[4, K](z), for all x€ A.

One way of computing the CT of an image is by the
following brute-force algorithm: An41 = A o (@nK),n =
0,1,2,.... The closing transform at z € Z* is computed as
the minimum n such that z € A,. If the input image size is

M x M and K is a N-point structuring element, the brute-force
algorithm requires M (MN + 6N + 8)/8 operations/pixel in
the worst-case scenario. :

Another way of calculating the CT is by a recursive algo-
rithm based on the duality relation between the CT and the OT.
The algorithm first takes the complement of the input image
and then computes the ROT on the complemented image with
the reflected structuring element. This kind of approach shares
the same problems that we have encountered in Section IV.
Therefore, a two-pass recursive closing transform algorithm is
developed, and it takes about 14N operations per pixel on the
basis of our experimental results.

B. Recursive Closing Transform Algorithm

The closing transform of a set A with respect to a structuring
element K puts in each pixel z € Z? the smallest positive
integer n so that ¢ € A e (®,-1K) It is known that
the closing operation A e (®,—1K) can be accomplished
by the opening operation on the complement set of 4, ie.,
Ae (@ 1K) = [A° 0 (@n_1K)|¢. Based on this duality
relation and thresholding property of the closing transform
(Proposition 11), we can easily prove Proposition 13, which
reveals the relationship between the closing transform and the
opening transform.

Proposition 13: Let n > 1. If C, = {z | CT[A, K](z) =
n} and O, = {z | OT[A¢,K](z) > n}, then C, =
On—l - On-

The above relation suggests a procedure to compute the
closing transform. Suppose we want to compute CT” =
{CT[A,K](z) < p + 1 | z € Z}, where p is any chosen
nonnegative integer. We denote such closing transform as CcT?
since we constrain the CT output to be less than or equal to
p + 1. The computation of CT is quite straightforward if we
know how to calculate OT[A®, K]. Based on Proposition 13,
the two have the following relationship: Assume r € A°

OT[A%, K] +1 if OT[A% K] <p
0

CT?[A, K|(z) = { otherwise.

In Section V, we already knew that OT[AS, K] can be
calculated by an efficient two-pass ROT algorithm. Therefore,
we could compute the CT?[A, K] via a similar two-pass
recursive algorithm. In the first pass, DT[A, K] is calculated
by the recursive DT algorithm described in Section IV. In
the second pass, OT[A¢, K] is computed by employing the
same recursive label propagation process used in the ROT.
Since (DT[4, K](z) — 1) is the number of times one can
consecutively dilate z with K and the dilated pattern is still
contained in the A, a given pixel z will initially have a
propagator [DT[4, K](z),DT[A, K|(z) — 1,x]. The detailed
description of the RCT is given in the next section.

C. Algorithm Description

Let A C Z? be a set, and let K C Z? be a structuring
element containing the origin. Let the scanning function S
be chosen as the order of left-to-right and top-to-bottom.
Accordingly, let the reverse scanning function S~1 be the
order of right-to-left and bottom-to-top.
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Fig. 9. Normalized execution time of the two-pass recursive morphological transform algorithm: (a) Five-point cross structuring element; (b) nine-point

box structuring element.

This RCT algorithm computes CT? for any given p. Due to
the extensive property of CT[A, K], if the input is a M x M
binary image, the output CT” is a [M + p(S, — 1)] x [M +
p(S. = 1)] image.

Algorithm Recursive Closing Transform—2D Case

1) Set the origin O of K to be the bottom-most right point
in K.

2) The first pass of RCT (scanning function S~1): Execute
the RDT algorithm described in Section IV to com-
pute DT”*? using the structuring element K. Only the
backward pass of RDT is needed.

3) Decompose the K with respect to the scanning function
S: Let K, K® be the corresponding forward and
backward structuring element. In this particular case,
K® is an empty set ¢.

4) The second pass of RCT (scanning function S): For each
pixel x on the scanning path, do the following: Let ®(xz)
be the propagator list at pixel z if the following hold:

« IfDT[4,K](z) = 0, set ®(z) = {{0,0,z)}.
« If DT[A, K]|(z) # 0, perform the following steps:
Let Sp, S, be propagator sets.

@ So = {(lo,fo,%) | lo = DT[4,K](z), fo =

DT[4, K](x) — 1};

So={(l,f - 1,z) | (l, f,x + a) € B(z +

a),a € Kfand f > 1}

(c) ®(x) = MakePropagarorList(Sq U Sy,). The
MakePropagatorList is a procedure used to
make a propagator list out of a given prop-
agator set. The procedure can be efficiently
implemented by using a hashed list.

(b)

+  CT[A,K|(z) = L{TopPropagator[®(z)]}. The
L is the label function, and the TopPropagator
is a function to get the first propagator in the
propagator list.

+  If CT[4, K](z) > p+ 1, set CT[4, K](z) = 0.

5) End.

D. Computational Complexity

Suppose K is a N-point structuring element; the first pass
of the RCT requires N operations per binary zero pixel and
one operation per binary one pixel. The second pass of the
RCT, as analyzed in the ROT, requires O(/N?) operations per
binary zero pixel and one operation per binary one pixel. As a
summary, the RCT algorithm requires N + O(NN?) operations
per binary zero pixel and two operations per binary one
pixel. The operations involved are simple integer additions
or comparisons. Our experimental results in Section VII show
that the ROT takes on average 14N operations per binary
zero pixel.

VII. RESULTS AND DISCUSSIONS

The correctness of the above RET, RDT, ROT, and RCT
algorithms were also confirmed by the experimental results. To
do this, an experimental system was set up in such a way that
it will be able to generate random test images, run through the
recursive morphological transform algorithms, and compare
the results with those obtained by the brute-force algorithms.
Thousands of randomly generated test images have passed
through such verifications.

The timing performance of the set of recursive algorithms
were also measured on the Sun/Sparc Il workstation. The C
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programs were initially compiled with the optimization flag
on. In all the experiments, the ET, the DT?, the OT, and the
CT” of the input images were computed where p = 32. The
input image sizes were chosen to be 256 x 256.

Fig. 8 explains the algorithms’ execution time as a function
of the number of binary one pixels in the input image when
the four-point box structuring element is used (origin at the
upper-left corner). If we assume that 50% of the input image
is covered by the binary one pixels, the timing curve shows
that it takes approximately 70 ms to do any sized box erosions
and about 500 ms to perform any sized box opening. The curve
also indicates that it takes approximately 120 ms to compute
any box dilations of size up to p = 32 and about 500 ms to
calculate any box closings of size up to p = 32.

Fig. 9 summarizes the recursive algorithms’ execution time
normalized by the number of pixels in the structuring element.
Fig. 9(a) is obtained when the five-point cross structuring
element is used, and Fig. 9(b) is measured when the nine-point
box structuring element is applied. The two set of curves look
almost identical. This demonstrates that the execution time
of the recursive algorithms are proportional to the number of
points in the structuring element.

If we perform linear regressions to the timing curves in Fig.
9, the ratio of the slopes of the two fitted curves of the OT and
ET is approximately 14:1. It is known that the ET requires N+
2 operations per binary one pixel. Thus, the OT will require
on average 14N operations per binary one pixel. By the same
argument, the CT will require on average 14N operations per
binary zero pixel.

VIII. CONCLUSION

In this paper, we define the recursive morphologica] trans-
forms of a binary image, namely, the recursive erosion trans-
form (RET), the recursive dilation transform (RDT), the re-
cursive opening transform (ROT), and the recursive closing
transform (RCT). These transforms provide us a new efficient
way of computing the binary erosion, dilation, opening, and
closing with arbitrary sized structuring element. They have
both theoretical and practical significance to real-time vision
systems. The set of recursive morphological transforms also
offers a solution to some tasks that need to perform a morpho-
logical operation but where the size of the structuring element
has to be determined after a morphological examination of the
content of the image.
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