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Recursive Binary Dilation and Erosion Using Digital
Line Structuring Elements in Arbitrary Orientations

Desikachari Nadadur and Robert M. Harali€lellow, IEEE

Abstract—Performing morphological operations such as
dilation and erosion of binary images, using very long line
structuring elements is computationally expensive when per-
formed brute-force following definitions. In this paper, we present
two-pass algorithms that run at constant time for obtaining binary
dilations and erosions with all possible length line structuring
elements, simultaneously. The algorithms run at constant time
for any orientation of the line structuring element. Another
contribution of this paper is the use of the concept of orientation
error between a continuous line and its discrete counterpart. The
orientation error is used in determining the minimum length of
the basic digital line structuring element used in obtaining what
we call dilation and erosion transforms. The transforms are then
thresholded by the length of the desired structuring element to
obtain the dilation and erosion results. The algorithms require
only one maximum operation for erosion transform and only one
minimum operation for dilation transform, and one thresholding
step and one translation step per result pixel. We tested the
algorithms on Sun Sparc Station 10, on a set &40 x 250 salt and
pepper noise images with probability of a pixel being a 1-pixel set
to 0.25, for orientations of the normals of the structuring elements
in the range [w/2,37/2] and lengths, in pixels, in the range

[5,145]. We achieved a speed up of about 50 (and for special

orientations 8 € {(=/2),(37/4),w, (57w/4),(37w/2)} a speed

phology represent shapes that appear in binary or static gray
scale images. Sets in Euclidean 2-space represent foreground
regions in binary images. Sets in Euclidean 3-space may rep-
resent time-varying images, static gray scale images or binary
solids. Moreover, sets in higher dimensional spaces may include
additional information such as color or multiple perspective im-
agery. The two operations, dilation and erosion, are closely re-
lated to the Minkowski addition and subtraction respectively in
Euclidean space using translation, unions and intersections. A
combination of these two basic operations of mathematical mor-
phology gives rise to two additional operationsopieningand
closing Morphological algorithms can be developed that incor-
porate various compositions of dilations and erosions in order to
extract shapes from the imagery. Due to its sound mathematical
basis and nonlinear nature mathematical morphology has ex-
celled in the field of image analysis. The paper focusses on de-
signing morphological algorithms that execute faster and those
which are suitable for real-time or near real-time applications.
Several specialized image processing architectures have been
developed and built [15]-[18] that implement local, eg)x

up of about 100) when the structuring elements had lengths of 3 neighborhood morphological operations directly. Since the
145 pixels, over the brute-force methods in these experiments. general morphological operations are not restricted to 3

We compared the results of our dilation algorithm with those of
the algorithm discussed by Soilleet al. in [1] and showed that
for binary dilation (and erosion since it is just the dilation of the
background with the reflected structuring element) our algorithm
performed better and achieved a speed up of about four when
dilation or erosion transform alone is obtained.

Index Terms—Binary morphology, digital lines, dilation, ero-
sion, line structuring elements, recursivity.

|. INTRODUCTION
ATHEMATICAL morphology is based orSettheory.

structuring elements, researchers and practitioners have tried to
achieve the speeding up of the morphological operations using
arbitrary sized structuring elements through their decomposi-
tion into primitive structuring elements [19]-[25]. Recently, re-
searchers [1], [26]-[40] have designed recursive algorithms, for
binary as well as grayscale morphology, that executed faster
than the brute-force morphological algorithms based on unions
and intersections of the images and the structuring elements.
The work discussed in this paper focuses on the development
of recursive algorithms for binary dilation and erosion using dig-
ital line structuring elements that run at constant time irrespec-

It is an algebraic system that provides two basic opive of the lengths and orientations of the line structuring ele-

erations—dilation and erosion Combinations of these opera-ments. Here, we discuss two-pass algorithms that we have de-
tions enable the underlying shapes to be identified and opieloped. In most of the applications the exact orientation of the
mally reconstructed from their noisy distorted forms. The theogtructuring element may not be very rigid. However, the speed
of mathematical morphology has been developed by many tf-execution of the algorithm may be of importance. The main
searchers [2]-[14] over the years. Sets in mathematical mdifference between our approach and the work previously [1]
done on this problem is the use of the concepbéntation
error between the continuous line structuring element and its
Manuscript received January 24, 1997; revised September 1, 1999. Thediscrete counterpart. This user specifiable orientation error is
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sult pixel for erosion/dilation respectively, whereas Soille's atame size. Let the length of the line structuring elemerit. e
gorithm takes four min/max operations per result pixel for erahgital line of lengthmax(#rows, #cols) is generated from one
sion/dilation, respectively. of the corners of the image depending on the specified orienta-
1) Motivation: Performing morphological operations suchion as depicted in Fig. 1 which is reproduced here for the sake
as binary dilations and erosions with long digital line structuringf clarity. The digital line is stored in an 1-D arrayindexed
elements using brute-force methods of taking unions and intes rows or columns depending on the orientation. The image is
sections is time consuming since for a domain gize k£ of scanned by the digital line in the direction shown in Fig. 1 de-
the structuring elements tak&$ unions/intersections for eachpending on the orientation. As the image is being scanned, at
1-pixel in the image. Wu has designed a morphological algfirst the line that falls inside the image plane increases, then re-
rithm [41] for extracting the epicardial boundary of the left venmains constant and finally decreases. During the scan dilation is
tricle of the heart from the ultrasound images. One third of ttebtained by recursively taking the maximums in kg (filling
morphological operations are performed using long digital lineuffer 2) andright (filling buffer ¢) directions. Then, finally the
structuring elements on the binary images obtained after prepresult is obtained usinfy andg buffers. The algorithm is repro-
cessing the gray scale images. Speeding up of the morphologahated as follows.
processing of the binary images drastically improves the execuor any positionz along the line, perform the operations in
tion time of the overall algorithm. This motivated us to desigthe equations shown at the bottom of the page, where
recursive morphological algorithms for binary dilation and ero- .
sion discussed in the paper [33], [34]. However, after the pub- 9o +k/2), fz=0,...,n—k/2-1
lication of that paper, we realized that further optimization for gh{z) = 9(n—1),  fo=n—Fk/2....k/2
speed could be achieved by designing two pass algorithms for Mz —-k/2), Fe=k/2+1,...,n-1
binary dilation and erosion instead of the one pass algorithms h2(z) = {f(P(x)% ife=n-1
discussed in that paper. | max[h2(z +1), f(p(x))], otherwise.
We compare our results with those of the conventional |, e following section, we discuss the definitions and nota-
methpds of taking umons/mter;ecuons and with t.hose of the s that will be used in the rest of the paper.
algorithms developed [1] by Soillet al. In the following sec-
tion, we briefly discuss Soille's algorithm for dilation. Then, we
discuss our recursive procedures for binary dilation and erosion
following a tutorial approach and avoid very formal treatment ThiS section provides some background in Mathemat-
of the subject. Section |1l states general definitions and notatit§®l Morphology using set theoretic notation [2], [4]. Let
that will be used in discussing our recursive morphologicél = {#|0 < z < oo} be the set of integers. Let, B, C, and
algorithm. Section IV discusses the type of digital lines thdt be sets inz? and let theO be the origin ofz?, i.e.,O € Z>.
we use and how to generate them. Sections V and VI disc
our binary recursive dilation and erosion transforms and t
recursive dilation and erosion algorithms. Section VIl discussesDefinition [ll.1: The Translationof the setA to the point
the experimental protocol for comparing our results with€ Z? is defined asd; = {z|z = a+t,a € A}. i
brute-force as well as Soille's recursive dilation algorithms, andDefinition [11.2: TheReflectiorof the seti is denoted byx’

the complexity and timing results of the algorithms. and is defined byK = {—z |z € K}.
Definition I11.3: Binary Dilation of a setA by a structuring

elementk is denoted byd ¢ K and is defined ast & K =
{x € Z?|xz = a+b, forsomea € Aandb € K}.

Soille [1] uses two intermediate buffegsand’ of the same  Geometrically, the dilation can be interpreted as the transla-
size as the input imagen (= #rows x #£cols) where # is a tion of A by all the points inK and then taking the union, i.e.,
number of operator. The output or result imagis also of the A& K = |J{A4,|b € K}.

I1l. DEFINITIONS AND NOTATION

és Review of Mathematical Morphology

Il. SOILLE'S ALGORITHM FOR DILATION

f(p(x)), if 2 =0k,....(m— 1)k,

glz) = mk, and z<n-—1
max[g(x — 1), f(p(x))], otherwise
fp(z)), ife=n—1mk-—1,

hMzx) = m—Dk—-1,...,k—1
max[h(z + 1), f(p(x))], otherwise
g(n —1), if n <k/2
gh(x), if k/2<n<k

r(p(z)) =< gz + k/2), ifz=0,...,k/2—-1

h2(x — k/2), fe=n—-1,...,n—k/2

max[g(x + k/2), h(z — k/2)], otherwise
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Fig. 1. Digital lines. The arrow indicates the direction of translation of the line
over the image.

Definition 111.4: Binary Erosionof a setA by a structuring
elementk is denoted byd & K and is defined ast & K =
{x € Z?|x +b e Aforeveryb € K}.

Geometrically, the erosion can be interpreted as the transla-
tion of A by all the points ik’ and then taking the intersection,
e, Ao K ={4,|be€ K}.

Fig. 4. A continuous line.

B. Review of Recursive Operators

Recursiv rations 1291 on binary im ; moli hdi ital lines. These digital lines are only approximations to the
ecursive operations [29] o ary images are accomplished .- o . [42], [43].

using a particular scan or_der of pix_els in th? image. This SC@Npefinition IV.1: A line in the continuous domain, whose

or(jDe;f;;]i?obne |T|p§-c'f;'\edsg:nnn%nsce}ﬂ?]g?ogCitslogz'ﬁne d as a normal is oriented at angkemeasured counter-clockwise from

one-1o-one ma. .in from afir?ite skt {( Ve 22]0 < the row axis orr-axis in the row-column orr-c coordinate
pping *1,%2 = system and passing through the origire R2 is denoted by_,

1 < n1,0 € zp < na} to the set{1,2,....nna}. If ; ) 2 .
’ A . and is defined agy = {(x,y) € R*|xcosh + ysinbd = 0}.
p € I,q € TandS(g) < S(p), then the output value atis Fig. 4 illustrates a continuous line.

computed before the output value jatFig. 2 illustrates few From now, any reference to “line oriented at an@laefers

scanning functions. to a “line whose normal is oriented at angfe The following

Definition 111.6: A recursive operatoon a binary IMage IS yofines a digital line closest to the continuous line oriented at
an operator whose output depends not only on the input pix Eglee

I(;]ugll)(/a ggrr:slljrt]e?jf gis;(Ie(lesmv(\a/Iilchblrjé:rl)zc():totr:) tgegi\\l/il:ljes?:;)r:r:rifgpff:g Definition IV.2: A digital line closest to the continuous line
. ) . . . . ri j C z2? i i
tion S. If X € Z2 is the input binary image antf is the oriented at some angteis denoted byDy C 7+, and is defined

. ) asDy = {(r,c) € Z*| for somed, |z cos +ysin | < (1/2)}.
output of the recursive operator, then outptP) at the pixel . . ’ L ' = 4
. . . . Fig. 5 illustrates a digital line closest to the given continuous
P with respect to the given scanning functiénhis Y (P) = '9- > 1 grtat i g inuou

. > . / line.
iﬂfj‘zt(r;)t’e‘;‘;22&'[1}’5‘;\‘/5;)’;:&3;“2)’""Y(P - 1)). Fig. 3 The above definition can be implemented using the dis-
Inthe next section W:discués the concept of digital lines Oﬁretization operataD as in the following definition.
) , Ofl= i . _ 2 ; 92
entation error between a continuous line and its digital count Definition IV.3: LetA = {(z,y) € J') be a given setifi”.

. X . he discretization operat@® : R? — Z? is defined adD(A) =
part, and motivate the need for the concept of orientation err?r(.T ¢) € 72| (z,y) € A,r = round(z) ande = round(y)}

whereround( ) is the operation of rounding off to the nearest
integer.

This section discusses definitions and propositions related tdf we replaceA C ®? in the above definition by the line
the continuous lines and their discrete counterparts what we dajl € %2, the discretization operat@ can be used to obtain

IV. DIGITAL LINES
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Fig. 8. Angular orientation of the digital lin®,, ¢.

Fig. 6. Anexample of the digital line generated by an algorithm of the type of

Bresenham algorithm, closest to the given continuous line. 20
= I I =€
the digital line Dy. However, the digital line thus created (see A
Fig. 5) gives rise to overlapping patterns when it is used to scan A T Dashed - Continuous Line
the image during dilation and erosion. Therefore, in our imple- Selid - Digital Line
mentation we avoid such patterns. This can be achieved by using :
algorithms such as Bresenham [42] which by their nature avoids 3
patterns such as shown in Fig. 5. An example of the types of v ( L
digital lines that are generated (similar to Bresenham) closest to f Do
the given continuous lines and the types that we use in our al-
gorithms is given in Fig. 6. Fig. 9. Orientation error between the continuous libg and its lengthw

From now, when we sagfigital line, we mean that it is of the discretizationD(n, ).
type of Bresenham line. The above definitions do not include

the length of the digital lines. The following defines a digital Definition I1V.6: The angular orientation of a digital line

line of particular length, say; pixels. Dy C Z7 is denoted byp(D,, 4) and is defined as
Definition IV.4: Let n be a positive integefn > 1). Then

a digital line D, C Z2 of lengthn pixels closest to the
given continuous lind.y, C R? oriented at an anglé, where
z2=1{0,1,...,n—1}x{0,1,...,n— 1} isgivenbyD,, o, =
{(r,e) € Z2|(r,c) € Dsg}. This is illustrated in Fig. 8.

The orientation or slope of the digital line is different from The following defines the orientation error between the con-
that of the corresponding continuous line. The following deftinuous lineL, C 2 oriented at an anglé and its lengths
nition states the concept of orientation error or the angular diiscretizationD,, s C Z? oriented at angl®(D,, 4) with the
tance between two orientations. aid of Definition IV.5.

Definition IV.5: Angular distance or angular separation be- Definition IV.7: The Orientation Error between the contin-
tween two orientation$,, 6, € [(w/2),(37/2)], denoted by uous lineLs C R? oriented at anglé and passing through the
dg(61,62), is defined agly(6;, 62) = min(|6; — 62|,|r + 61 — origin and its corresponding lengthdigital line D,, ¢ oriented
62]). This concept is illustrated in Fig. 7. at angle®©(D,, ¢) is denoted byA©(Lg,n) and is defined as

The following defines the angular orientation of the digitah©®(Lg,n) = ds(O(D,, ¢), 8). Fig. 9 illustrates this concept.
line D, s C Z2 that is closest to and obtained by the discretiza- As the lengthn of the digital line increases the number of
tion of the continuous lindes C R oriented at a counter-clock- possible directions in a square lattice increases. For armodd
wise angled from ther-axis and passing through the origin. there are a total of2n — 2) possible orientations. Therefore,

mMax ;. . c
(D e) = g + arctan{M} .

max(,,jc)eDme T
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E] Ol o] length+ discretization. Using this user specified information it
[ @ (o]®] (® ] is then possible to determine the valuenothat results in this
error. This will be the minimum length of the digital line struc-
() (b) (©) (@) turing element for the given orientation error. Thaggntation
error is a crucial concept in the design of the recursive dilation
M) O and erosion algorithms discussed in this paper. The following
@ ® O definition formalizes this concept.
@ o @ oo o0 Definition 1V.9: If A# is the user specified maximum limit
(tolerance) in the orientation error betwegn € R2 and its
(e) (f) (8) (h) Q) length+ discretizationD,, 4, then, the smallest that results in

Af is obtained ag\O(Lg,n) < AG.
In practice, we create a look-up table relatingo the max-

@ o] 0 ® @] . _ , , ,
8 [.15 LI * * imum (worst-case) orientation error between the continuous line
0 B0 ) 0 O nd the digital line of len in an off-line pr r in
s e . . . and the digital line of length, in an o e procedure using
k 1 m n
6 (k) Q) (m) (n) A®(nin=1,...,N)
( no _®_ i
oo maxz <o sx mlni:](fn’j ‘9 5 arctan(j)‘
o "fee] e i ‘9 T — arct (”)‘
0 ¢ [ eee ©eeee D B - K 2 T AR B
L in _ =z i
(o) ®) (@ ) MaX,<p< sz mmj:Z(Tf . -5+ arctan(j)‘
MaXsr cpcan MIN j—p [0 — 5 + arctan(,i)‘
Fig. 10. (a)—(r) Show the increase in the number of angular orientations of the \ o 1=0,....5 J

digital line with an increase in its length (or the size of its rectangular domain).
In constructing the above look-up table, whes: 0, we take
asn increases the orientation error between the digital line 6¥Cta_n("/‘7) = (W/z)-_ ) ) _
lengthn and the corresponding continuous libg decreases. 1 his look-up table is stored in a one-dimensional (1-D) array
A few examples of this concept are illustrated in the Fig. 167d€xed by the length, in pixels, of the digital line. The value
The following definition formally states the same concept. stored at each location in the array indexed by the length of the
Definition IV.8: The Orientation erronn©(Lg,n) between digital line is the worst-case orientation error for that length.

the continuous lind.s and its lengths discretizationD,, 4 de- N the following section, we describe the way of generating
creases aa increases, that i\O(Lg,n) > AO(Lg,n + 1) the pasm digital line struc.tunng_elemgnt used in obtaining the
wheren > 1. dilation transform of the given binary image.

A. Motivation for the Use of Orientation Error B. Generation of Basic Digital Line Structuring Elements

If the normal to the continuous line is oriented at an angle, In this section, we discuss the way of generating the basic dig-
6 € {(n/2),(3n/4),n, (5% /4),(3x/2)}, the continuous line ital line structuring element of minimum length using the user
can be represented exactly in digital domain using only 2 pixelpecified allowable orientation error. This basic structuring el-
However, if the normal to the continuous line is oriented at sonegnent will be used in obtaining the dilation and erosion trans-
arbitrary counter-clockwise angle, say, 35.36om r-axis, it forms of the binary image. The transforms will be thresholded
will require more than 200 pixels to represent the line, very aby the actual length of the structuring element to obtain the de-
curately, in the digital domain. This by no means is an advasired dilation or erosion.
tage to us in obtaining the transforms, if the length of the de-When the user specifies worst-case orientation error that
sired structuring element is of length, say, 100. Also, the lengtie/she can tolerate, that value is compared to the values in
of the structuring element is bounded by the maximum dimethe look-up table. Then, the value from the look-up table
sion of the image. Therefore, for smaller sized images we megrresponding to the closest orientation error value is chosen to
not be able to accurately specify the structuring element. Thebe the length, in pixels, of the digital line structuring element to
fore, we require that therientation errorbetween the contin- be used as the basic structuring element for obtaining recursive
uous line and its discrete counterpart be a control parametedilation and erosion transforms. The user will also specify the
the design of the recursive dilation and erosion discussed in taisgular orientation of the continuous line structuring element
paper. As stated previously in Definition 1V.8, the length of thé.s. This orientatiorf and the length of the digital line struc-
digital line structuring element increases as the angular ertaring element from the look-up table are used in constructing
decreases. Also, in most of the applications the constraintstbe digital line structuring element.
the orientation of the digital line structuring elements may not The digital line structuring element is stored in a 1-D array
be rigid; the speed of execution of the algorithm may be crindexed by the rows or columns of its kernel dependingon
cial, instead. The user should be able to specify the maximurhe values stored in the array are the offsets of the pixels in the
limit on the error in the orientation of the continuous line and itdigital line with the starting pixel on the line as reference.



754 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 5, MAY 2000

The following proposes a way of determining the number af, then the dilation transform at € I is designated zero. The
rows and columns in the kernel of the basic digital line struéellowing definition states the above concept formally.
turing element. Definition V.1: Let I C ZZ be the binary image and C I
Proposition IV.1: If 4 is the angular orientation of the con-be the set of foreground or 1-pixels in Let D,, o, C Z? be
tinuous line structuring elemett,, » the length, in pixels, of the basic digital line structuring element containing the origin
the basic digital line structuring element (obtained using tlt¢ € D, ¢ at one end. The dilation transform of the skts
Definition IV.9) corresponding to the user specified orientatiothen denoted by
error tolerance\©, then the number of rows and columnsinthe (A, Dy o)(x)

. L . . ' d
kernel of the basic digital line structuring element are defined as } {min{n |2 € A® Duo}, fIn, z€A® D,

s = } F<O<IE 0, ifVn, 2 A®D,,
" ] x , if ¢ and 2
#cn, = round ((#r,,) tan(f — 3)) ESYPS - (2)
and A. Dilation Transform Algorithm
#c, =n ?jf <O<T . . . .
. it 4 and In this section we describe the two-pass algorithm for ob-
H#r, = round(%) ’ << im taining the recursive dilation transform of a binary image with
2 4

the basic digital line structuring element generated in Section
where# is a number of operator. IV-B.

Notice that in the above proposition, angles The recursive dilation transform algorithm comprises of two
(w/2),(3n/4), 7, (5n /4) and(3x /2) are not included. This is passes. In the first pass,two pointtransform is obtained by
because for these orientations the basic digital line structuriegnsidermg only the end points or end pixels of thgixel long
element is of length, only, = 2 pixels. Notice that in this gigjtal line structuring element. In the second passgan- 2)
caseA® = 0. point transform is generated by filling in the rest of the pixels.

After the number of rows and columns in the basic structuringhe following defines the scanning function used to scan the
element are determined, the digital line is then drawn and thﬁage, i.e., it defines the order in which the input binary image
offsets of the pixels from the starting pixel on the line are dgs scanned by the digital line structuring element.
termined and stored in a 1-D array. The following proposition pefinition V.2: Let I C 72 be the given binary image and
conveys a way of computing these offsets. 6 be the orientation of the continuous lidg. Then the order

Proposition IV.2: Let #r,, and#c, be the total number of j, \yhich the image is scanned by the digital line structuring
rows and columns in the kernel of the digital line structuringjement in defined by the scanning functistl) over image
element. Alson = max(#7r,,, #cy). Lets(i);i=0,...,(n — a5

1) be the 1-D array in which the pixel offsets are stored. d et Left-Right-Top-Down Scan, i <6 <7
be the angular orientation of the continuous line Then, the ~ S(I) = { Left-Right-Bottom-Up Scan, i <6< en

offsets are computed as Algorithm V.1: Let s(¢);4 = 0,...,(n — 1) be the array

s(rir =0,1,...,#r, — 1) of pixel offsets of the digital line, of length pixels, from its
) 7 i T<f< 3m starting pixel (corresponds to index 0 which is also its origin).
= round((7)tan(9 - _)> | brcg< ‘577, Let I C Z2 be the input binary image for which the dila-
R _ tion transform image is to be obtaineH; C %? be the cor-
8(67 C Oa 1a L] #Cn 1) . . . . .
2 responding dilation transform image. L&{/) be the scanning
—round| — ), if { T <0 <7 function over the image as in definition V.2. Let= (r, ¢) de-
tan(6 — %) <O < note an arbitrary pixel on the image. Then

The following section describes the recursive dilation trans- 1) Initialization
form algorithm. 0, ifl(re)=1

Fa(r,e) = {oo, if I(r,c)=0

V. RECURSIVE DILATION TRANSFORM AND 2) 2-Point Transform along the line from the pixel (r, ¢)
RECURSIVE DILATION
The dilation transformof a binary image is based on the Fa(r+s(n—1),c+n—1) = Fy(r,c)+n—1
successive morphological dilations of the input image with the Z2<O<3 or Z<h< and
basic structuring element. If the SBC Z? is the binary image if & Lulr,c)# o0 and
and the setd C I is the foreground or the 1-pixels iR then Fotr+s(n—1),c+n—-1)#0

the dilation transform with respect to the basic digital line struc-

turing elementD,, , C Z? is a gray scale image where the gray

level of each pixelz € I is a generalized distance ofto the F,(r +n —1,c+ s(n — 1))

setA, i.e., the generalized distancexofo the foreground pixels ??TW <8< 5% and

according to the given scanning functiofi§l) over the image. ) 6 +#7 and

That is, they depict the smallest positive integersuch that = Fa(r,)+n—1 if Fy(r,c) # 0 and

z € A® D, 4. If no suchn exists, where: ¢ A& D, 4 for all Fyr+n—1c+s(n—1))#0
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3) (n — 2)-Point Transform along the line from the pixel
(r,c)
poloofo
LFy(r+ s(i),c+4) = min{ Fy(r + s(),c+ 1), Fy(r,c) + i}
| Fa(r,c)/(n —1)] #(n — 1) = Fy(r,c¢) and oo @
if §5<6<3 or . 0 loololoojoofoofonpoloofo
T<O<T (a) (b) (©)
Fylr+i,c+ s(4)) = min{Fy(r + 4, ¢+ s(i), Fu(r,c) + i} - e
[Fa(r;e)/(n = 1)] % (n = 1) = Fu(r,c) and ; o o
if ¢ 2 <f< 3 and oo oofpo)  pojoopal s
9 7& 71' oo 2 :020 -
ooloofoolo POl Lol oo coele
wherei = 1,...,(n — 2) and |e] denotes an integer . * . '
division. (d) (e) (f)

Since the length of the structuring element is only 2 for the
cases whe# is equal to(w/2), (3w /4), m, (5w /4), (37/2) we
need to carry out only the first two steps—Initialization and the
2-Point transform. This explains the shorter execution time of
the algorithm for these orientations compared to other orienta-
tions (see Section VII). 1

B. Recursive Dilation 1 1

The following definition states that the dilation of the sigby (g) (h)
a digital line structuring element of length can be obtained by

thresholding, byn, the dilation transform ofd obtained using Fig. 11. lllustration of recursive dilation algorithm. (a) Input binary image, (b)

the basic Structuring elemeft, 4. init_ialization, (c) basic SE of Iength = 3, (d) 2-point transform, (¢ — 2)
’ point transform, (f) actual structuring element of length= 5, (g) transform

. . L 9
Assertion V.1: Let_m be a p_05|t|VG '”tege“ c zisa S_et_ thresholded byn = 5, and (h) translate the thresholded image to account for
andD),, ¢ be the basic digital line structuring element containinge true origin. This is the final dilation result.

the originO € D,, ¢ at one endFy(A, D, ) is the dilation

transform image and,,, = {z € Z%|0 < Fu(A, Dy o)(x) S positive integen such that: € A D,, . The generalized dis-

m — 1}, thenA @ Dy, 9 = Bpn. tance at a pixet indicates the maximum number of consecutive
The following definition states that if the origin of the actuakgsions of4 by D,, 4 such that: is still contained in the eroded
structuring element of length is different from that of the basic image foreground. The support for erosion is the foreground set

structuring element of the lengthused to obtain the dilation 4 This is, in other words, saying that the dilation of the back-
transform and the dilatiod,,, then the final dilation can be ground by a structuring element is the same as the erosion of the
obtained by a simple translation &%,,. foreground by the reflected structuring element. The following
Assertion V.2:Let¢ € Z? be the required translation. Thengefinition formally states the above concept.
the final dilation result5 is obtained by translating the image pefinition VI.1: Let] C 72 be abinary image and C I be
By bytasB = {z +t|x € By, andt € 2%} the set of foreground or one pixelsinLet D, , C Z2 be the
Fig. 11(a)—(h) illustrate all the steps discussed in Algorithiigita| line containing the origit® € D,, 4. The erosion trans-

V.1 for obtaining the dilation transform and Assertions V.1 anghrm of the setd with respecttdD,, 4 is denoted by (A, D, o)
V.2 for obtaining the final dilation through thresholding angyng is defined as ’ ’

translation of the dilation transform image.

_ Jmax{n|z € Ao D,e}, fzecA
VI. RECURSIVE EROSION TRANSFORM AND Fe(A, Dng)(x) = {0, ifzg A
RECURSIVE EROSION

The recursive erosion transforns based on the successive . ,
morphological erosions of the binary image. It is a generaliz&: Erosion Transform Algorithm
tion of the distance transform commonly known in the literature Since we have already established the recursive dilation in a
[31]. rigorous manner, we believe that such rigorous treatment is not
Given a binary imagd C Z2 and the setd C I of all the necessary in the recursive erosion transform. We simply note the
one or the foreground pixels, the erosion transform @fith re-  changes that are required in the structuring element offset array
spect to the digital line structuring elemedt, o C Z? isagray and the scanning function over the image and proceed to de-
scale image where the gray level of each pixel A is the gen- scribe the algorithm. The required final translation of the image
eralized distance of to the image background, i.e., the largestfter the thresholding step is same as that we used for dilation.
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The changes required in the structuring element and scannifg(r — ¢, ¢ — s(¢))

function are as follows.

» Use—s(i) as the array of offsets, instead «f).
* The scanning functio®¥ (/) is

it <6<
it <6 <3F

S(I) = Right-Left-Bottom-Up Scan,
Right-Left-Top-Down Scan,

Algorithm VI.1: Let —s(¢);¢ = 0,...,(n — 1) be the array

of offsets in the reflected digital line, of lengthpixels, from its

( LEFe(r,0)/(n = 1] * (n=1) = Fe(r,0)
f an
oo F(r—i—1lc—s(i+1))=—-occ and
T <0<’ and §#7
=< max{F.(r —i,c— s(v),Fe(r,c) + i}
LEe(r,0)/(n = 1)) (n = 1) = Fe(r,0)
it and
F(r—i—1lc—s(i+1))# —occ and
\ <3 and O#£7

starting pixel (corresponds to index 0 which is also its origin).

Let S(I) be the scanning function over the image as in (3). Let
I C Z? be the input binary image for which the erosion trans-
form image is to be computed, C R? be the corresponding

wherei = 1,...,(n — 2) and |e| denotes an integer
division.
Special cases in the orientation of the digital lines discussed

erosion transform image. Let = (r,c) denote an arbitrary for recursive dilation apply to recursive erosion, also.

pixel on the image. Then
1) Initialization

0, if I{r,c)=1
—o0, If I{r,c)=0

F.(r,c)= {
2) 2-Point Transform along the line from the pixel (r, ¢)

F(r—sn—1),c—n+1)=F.(r,c)+n—1
o [5<O<E o F<o<TF
if ¢ F.(r,¢)# —o0 and
F(r—s(n—1),c—n+1)# —o0
F(r—n+1l,c—s(n—1)=F.(r,c)+n—1
<< and
if J 07
L.(r,¢) # —c0 and
F.r—n+1lc—s(n—1)) # -

3) (n — 2)-Point Transform along the line from the pixel

(r,¢)

LF(r,c) =0
it |Fe(r,e)/(n—1)] =« (n—1)=F.(r,¢) and
F.ir—s(l),c—1)= -
F.(r —s(i),c—1)
( ([Fe(r,0)/(n = )]+ (n —1) = Fe(r,c)
and
oo If S Fe(r—s(i+1),c—i—1)=—0
and
(Z<0<23 o <<t
= InaX{Fe(TQ— s(i), ¢ : 1), Fe(TjLC) +i} 2
(LEe(r0)/(n = D))+ (n = 1) = Fe(r, )
and
if ¢ Fo(r —s(i+1),c—i—1)# —o0
and
L (Z<O<3 o F<h<?
LF.(r,c) = o0
|Fe(r,e)/(n—1)] =« (n—1)=F.(r,¢) and

i {Fe(T —1l,c—s(l))=—

B. Recursive Erosion

The Recursive erosion result is then obtained by thresholding
and then translating the recursive erosion transform according
to Assertions V.1 and V.2. Fig. 12(i)—(p) illustrate all the steps
discussed in the Algorithm VI.1 for obtaining the erosion trans-
form and Assertions V.1 and V.2 for obtaining the final erosion
through thresholding and translation of the erosion transform
image.

VIl. PERFORMANCEEVALUATION

In this section we briefly discuss the experimental protocol
that we followed in evaluating the execution times of our re-
cursive algorithms against those of the raw or conventional al-
gorithms of taking unions/intersections as well as Soille's algo-
rithm. We then present the timing results.

1) Experimental Protocol:We used salt and pepper noise
image of size&40 x 256 with the probability of a pixel becoming
a l-pixel set to 0.25. Then our recursive algorithms as well as
the conventional algorithms were run on this image and the ex-
ecution times are noted. We also compared our recursive dila-
tion algorithm with that discussed in [1]. Due to the nonavail-
ability of the software from the authors of that paper, we reim-
plemented the dilation algorithm discussed in that paper. All
the software was written in General Image Processing System
(GIPSY) environment. The algorithms were run under GIPSY
environment on SUN SPARCstation 10 and the execution times
were noted. The length of the structuring element is varied in the
range[5, 145] pixels and its orientation in the ran¢@®, 180°].

The user specifiable tolerance in orientation error is set &t 2
these experiments. Then the graphs are plotted with the lengths
of the structuring elements, in pixels, on theaxis and the
elapsed CPU time in seconds on tHeaxis

2) Results and DiscussionThe comparison of execution
times of the our recursive dilation, conventional, and Soille's
algorithms is given in Fig. 13. Fig. 14 shows similar results for
the recursive erosion and conventional algorithms.

The results show that we achieved a speed up of about 50 over
the conventional algorithms when the actual structuring element
is 145 pixels long and & {(w/2), (3w /4),n, (57 /4), (37 /2)},
under the conditions described in Section VII. Under these con-
dition the recursive algorithm ran at a constant time of about
200 ms. Wher® € {(n/2),(3n/4),n, (5w /4),(37/2)}, we
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Fig. 14. Comparison of the elapsed times of the recursive and conventional
erosion algorithms. The angles shown in the figure are actually the orientations
of the line. To get the orientatiof of their normals we need to compute=

a4+ (7/2).

Algorithm V.1. We also showed that we performed better over
Soille's algorithm when used in binary morphology.

3) Computational ComplexityThe conventional algorithm
of taking unions and intersections of the structuring element
whose domain size i x k, with the image, requires?
unions and intersectiongk? comparisons, arit? memory

Fig. 12. lllustration of recursive erosion algorithm. (i) Input binary image, GRCCesses (a total ofk? operations) per pixel to obtain di-

initialization, (k) basic SE of length = 3, (I) 2-point transform, (mjn — 2)
point transform, (n) actual structuring element of length= 5, (0) transform
thresholded byn = 5, and (p) translate the thresholded image to account fi

the true origin. This is the final erosion result.

Elapsed CPU time in Seconds

Fig. 13. Comparison of the elapsed times of the recursive (reclin
conventional (Morphz) and Soille's dilation algorithms. The angles shown
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lations and erosions, respectively. Soille's algorithm is inde-

pendent of domain size (i.e., length of the structuring ele-

ment) and uses four min/max operations, 19 comparisons,
23 additions and subtractions, 14 divisions, 30 memory ac-
cesses (total of 90 operations) per result pixel. Our algorithm,
which is only for binary imagesis also independent of the
length of the line structuring element and requires 14 com-
parisons, one min/max operation, 15 memory accesses, two
divisions and multiplications, 15 additions and subtractions,
one thresholding, and one translation operation (a total of 48
operations) per result pixel. Considering only the min/max
operations used for obtaining the dilation/erosion transform
images, we have a speed up of about four over Soille's al-
gorithm.

VIIl. CONCLUSION

In this paper, we presented two-pass algorithms that ran at
constant time for obtaining dilations and erosions of binary im-
ages, irrespective of the length and orientation of the line struc-
turing elements. One of the main contributions of this paper has

eﬁ]een the use of the concept of orientation error between a con-

the figure are actually the orientations of the line. To get the orientation tinuous line and its discrete counterpart. This user-specified ori-
their normals we need to compute= o + (7/2).

entation error was used in determining the minimum length of
the basic digital line structuring element used in obtaining the
transforms. The transforms were then thresholded by the actual
length of the structuring elements to obtain the binary dilation

achieved a speed up of about 100, when the structuring elemand erosion results. The algorithms required only 48 operations
is 145 pixels long. In this case the algorithm ran at a constagr result pixel, as opposed to Soille's algorithm which used 90
time of about 100 ms. The reason for different speed ups amgerations per result pixel. We tested the algorithms on a set of
due to the special treatment of some orientations as explaine@40 x 250 salt and pepper noise images with probability of a



758

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 5, MAY 2000

pixel being a 1-pixel set to 0.25, on Sun Sparc Station 10 fo[21] J.L. Davidson, “Lattice structures in the image algebra and applications
orientations in the rang@°, 180°] and lengths, in pixels, in the
range[5, 145]. We achieved a speed up of about 50 (and for, 2]
special orientations discussed in Algorithm V.1 a speed up O[F
about 100) when the structuring elements had lengths of 145
pixels, over the conventional methods in these experiments. We3]
also compared the results of our dilation algorithm with that dis-

cussed by Soillest al,, in [1] and showed that for binary dilation [24

or erosion our algorithm performed much better and achieved a
speed up of about four when dilation or erosion transform alone

is obtained. (25]
[26]
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