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Recursive Binary Dilation and Erosion Using Digital
Line Structuring Elements in Arbitrary Orientations

Desikachari Nadadur and Robert M. Haralick, Fellow, IEEE

Abstract—Performing morphological operations such as
dilation and erosion of binary images, using very long line
structuring elements is computationally expensive when per-
formed brute-force following definitions. In this paper, we present
two-pass algorithms that run at constant time for obtaining binary
dilations and erosions with all possible length line structuring
elements, simultaneously. The algorithms run at constant time
for any orientation of the line structuring element. Another
contribution of this paper is the use of the concept of orientation
error between a continuous line and its discrete counterpart. The
orientation error is used in determining the minimum length of
the basic digital line structuring element used in obtaining what
we call dilation and erosion transforms. The transforms are then
thresholded by the length of the desired structuring element to
obtain the dilation and erosion results. The algorithms require
only onemaximum operation for erosion transform and only one
minimum operation for dilation transform, and one thresholding
step and one translation step per result pixel. We tested the
algorithms on Sun Sparc Station 10, on a set of240 250 salt and
pepper noise images with probability of a pixel being a 1-pixel set
to 0.25, for orientations of the normals of the structuring elements
in the range [ 2 3 2] and lengths, in pixels, in the range
[5 145]. We achieved a speed up of about 50 (and for special
orientations ( 2) (3 4) (5 4) (3 2) a speed
up of about 100) when the structuring elements had lengths of
145 pixels, over the brute-force methods in these experiments.
We compared the results of our dilation algorithm with those of
the algorithm discussed by Soilleet al. in [1] and showed that
for binary dilation (and erosion since it is just the dilation of the
background with the reflected structuring element) our algorithm
performed better and achieved a speed up of about four when
dilation or erosion transform alone is obtained.

Index Terms—Binary morphology, digital lines, dilation, ero-
sion, line structuring elements, recursivity.

I. INTRODUCTION

M ATHEMATICAL morphology is based onSet theory.
It is an algebraic system that provides two basic op-

erations—dilation and erosion. Combinations of these opera-
tions enable the underlying shapes to be identified and opti-
mally reconstructed from their noisy distorted forms. The theory
of mathematical morphology has been developed by many re-
searchers [2]–[14] over the years. Sets in mathematical mor-
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phology represent shapes that appear in binary or static gray
scale images. Sets in Euclidean 2-space represent foreground
regions in binary images. Sets in Euclidean 3-space may rep-
resent time-varying images, static gray scale images or binary
solids. Moreover, sets in higher dimensional spaces may include
additional information such as color or multiple perspective im-
agery. The two operations, dilation and erosion, are closely re-
lated to the Minkowski addition and subtraction respectively in
Euclidean space using translation, unions and intersections. A
combination of these two basic operations of mathematical mor-
phology gives rise to two additional operations ofopeningand
closing. Morphological algorithms can be developed that incor-
porate various compositions of dilations and erosions in order to
extract shapes from the imagery. Due to its sound mathematical
basis and nonlinear nature mathematical morphology has ex-
celled in the field of image analysis. The paper focusses on de-
signing morphological algorithms that execute faster and those
which are suitable for real-time or near real-time applications.

Several specialized image processing architectures have been
developed and built [15]–[18] that implement local, e.g.,

neighborhood morphological operations directly. Since the
general morphological operations are not restricted to
structuring elements, researchers and practitioners have tried to
achieve the speeding up of the morphological operations using
arbitrary sized structuring elements through their decomposi-
tion into primitive structuring elements [19]–[25]. Recently, re-
searchers [1], [26]–[40] have designed recursive algorithms, for
binary as well as grayscale morphology, that executed faster
than the brute-force morphological algorithms based on unions
and intersections of the images and the structuring elements.

The work discussed in this paper focuses on the development
of recursive algorithms for binary dilation and erosion using dig-
ital line structuring elements that run at constant time irrespec-
tive of the lengths and orientations of the line structuring ele-
ments. Here, we discuss two-pass algorithms that we have de-
veloped. In most of the applications the exact orientation of the
structuring element may not be very rigid. However, the speed
of execution of the algorithm may be of importance. The main
difference between our approach and the work previously [1]
done on this problem is the use of the concept oforientation
error between the continuous line structuring element and its
discrete counterpart. This user specifiable orientation error is
used in determining the minimum length of the basic structuring
element used in obtaining the dilation and erosion transforms.
These transforms are then thresholded by the length of the ac-
tual (desired) structuring element and then translated to account
for its true origin. This will be the desired dilation or erosion
result. Our algorithm takes onlyonemax/min operation per re-
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sult pixel for erosion/dilation respectively, whereas Soille's al-
gorithm takes four min/max operations per result pixel for ero-
sion/dilation, respectively.

1) Motivation: Performing morphological operations such
as binary dilations and erosions with long digital line structuring
elements using brute-force methods of taking unions and inter-
sections is time consuming since for a domain size of
the structuring elements takes unions/intersections for each
1-pixel in the image. Wu has designed a morphological algo-
rithm [41] for extracting the epicardial boundary of the left ven-
tricle of the heart from the ultrasound images. One third of the
morphological operations are performed using long digital line
structuring elements on the binary images obtained after prepro-
cessing the gray scale images. Speeding up of the morphological
processing of the binary images drastically improves the execu-
tion time of the overall algorithm. This motivated us to design
recursive morphological algorithms for binary dilation and ero-
sion discussed in the paper [33], [34]. However, after the pub-
lication of that paper, we realized that further optimization for
speed could be achieved by designing two pass algorithms for
binary dilation and erosion instead of the one pass algorithms
discussed in that paper.

We compare our results with those of the conventional
methods of taking unions/intersections and with those of the
algorithms developed [1] by Soilleet al. In the following sec-
tion, we briefly discuss Soille's algorithm for dilation. Then, we
discuss our recursive procedures for binary dilation and erosion
following a tutorial approach and avoid very formal treatment
of the subject. Section III states general definitions and notation
that will be used in discussing our recursive morphological
algorithm. Section IV discusses the type of digital lines that
we use and how to generate them. Sections V and VI discuss
our binary recursive dilation and erosion transforms and the
recursive dilation and erosion algorithms. Section VII discusses
the experimental protocol for comparing our results with
brute-force as well as Soille's recursive dilation algorithms, and
the complexity and timing results of the algorithms.

II. SOILLE'S ALGORITHM FOR DILATION

Soille [1] uses two intermediate buffersand of the same
size as the input image ( rows cols ) where # is a
number of operator. The output or result imageis also of the

same size. Let the length of the line structuring element be. A
digital line of length rows cols is generated from one
of the corners of the image depending on the specified orienta-
tion as depicted in Fig. 1 which is reproduced here for the sake
of clarity. The digital line is stored in an 1-D arrayindexed
by rows or columns depending on the orientation. The image is
scanned by the digital line in the direction shown in Fig. 1 de-
pending on the orientation. As the image is being scanned, at
first the line that falls inside the image plane increases, then re-
mains constant and finally decreases. During the scan dilation is
obtained by recursively taking the maximums in theleft (filling
buffer ) andright (filling buffer ) directions. Then, finally the
result is obtained using and buffers. The algorithm is repro-
duced as follows.

For any position along the line, perform the operations in
the equations shown at the bottom of the page, where

if
if
if

if
otherwise.

In the following section, we discuss the definitions and nota-
tions that will be used in the rest of the paper.

III. D EFINITIONS AND NOTATION

This section provides some background in Mathemat-
ical Morphology using set theoretic notation [2], [4]. Let

be the set of integers. Let , and
be sets in and let the be the origin of , i.e., .

A. Review of Mathematical Morphology

Definition III.1: The Translationof the set to the point
is defined as .

Definition III.2: TheReflectionof the set is denoted by
and is defined by, .

Definition III.3: Binary Dilation of a set by a structuring
element is denoted by and is defined as

, for some and .
Geometrically, the dilation can be interpreted as the transla-

tion of by all the points in and then taking the union, i.e.,
.

if
and

otherwise

if

otherwise

if
if
if
if
otherwise
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Fig. 1. Digital lines. The arrow indicates the direction of translation of the line
over the image.

Definition III.4: Binary Erosionof a set by a structuring
element is denoted by and is defined as

for every .
Geometrically, the erosion can be interpreted as the transla-

tion of by all the points in and then taking the intersection,
i.e., .

B. Review of Recursive Operators

Recursive operations [29] on binary images are accomplished
using a particular scan order of pixels in the image. This scan
order can be specified using scanning functions.

Definition III.5: A scanning function is defined as a
one-to-one mapping from a finite set

to the set . If
and , then the output value at is

computed before the output value at. Fig. 2 illustrates few
scanning functions.

Definition III.6: A recursive operatoron a binary image is
an operator whose output depends not only on the input pixels
in the domain of its kernel, but also on the values of the previ-
ously computed pixels, with respect to a given scanning func-
tion . If is the input binary image and is the
output of the recursive operator, then output at the pixel

with respect to the given scanning functionis
. Fig. 3

illustrates a recursive operator.
In the next section, we discuss the concept of digital lines, ori-

entation error between a continuous line and its digital counter-
part, and motivate the need for the concept of orientation error.

IV. DIGITAL LINES

This section discusses definitions and propositions related to
the continuous lines and their discrete counterparts what we call

Fig. 2. Examples of scanning functions.

Fig. 3. Example of a recursive operator.

Fig. 4. A continuous line.

digital lines. These digital lines are only approximations to the
continuous lines [42], [43].

Definition IV.1: A line in the continuous domain, whose
normal is oriented at anglemeasured counter-clockwise from
the row axis or -axis in the row-column or - coordinate
system and passing through the origin is denoted by
and is defined as .
Fig. 4 illustrates a continuous line.

From now, any reference to “line oriented at angle” refers
to a “line whose normal is oriented at angle”. The following
defines a digital line closest to the continuous line oriented at
angle .

Definition IV.2: A digital line closest to the continuous line
oriented at some angleis denoted by , and is defined
as for some .
Fig. 5 illustrates a digital line closest to the given continuous
line.

The above definition can be implemented using the dis-
cretization operator as in the following definition.

Definition IV.3: Let be a given set in .
The discretization operator is defined as

and
where is the operation of rounding off to the nearest
integer.

If we replace in the above definition by the line
, the discretization operator can be used to obtain
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Fig. 5. A digital line closest to the given continuous line.

Fig. 6. An example of the digital line generated by an algorithm of the type of
Bresenham algorithm, closest to the given continuous line.

the digital line . However, the digital line thus created (see
Fig. 5) gives rise to overlapping patterns when it is used to scan
the image during dilation and erosion. Therefore, in our imple-
mentation we avoid such patterns. This can be achieved by using
algorithms such as Bresenham [42] which by their nature avoids
patterns such as shown in Fig. 5. An example of the types of
digital lines that are generated (similar to Bresenham) closest to
the given continuous lines and the types that we use in our al-
gorithms is given in Fig. 6.

From now, when we saydigital line, we mean that it is of the
type of Bresenham line. The above definitions do not include
the length of the digital lines. The following defines a digital
line of particular length, say, pixels.

Definition IV.4: Let be a positive integer . Then
a digital line of length pixels closest to the
given continuous line oriented at an angle, where

is given by
.

The orientation or slope of the digital line is different from
that of the corresponding continuous line. The following defi-
nition states the concept of orientation error or the angular dis-
tance between two orientations.

Definition IV.5: Angular distance or angular separation be-
tween two orientations , denoted by

, is defined as
. This concept is illustrated in Fig. 7.

The following defines the angular orientation of the digital
line that is closest to and obtained by the discretiza-
tion of the continuous line oriented at a counter-clock-
wise angle from the -axis and passing through the origin.

Fig. 7. Angular distance or angular separation between two orientations
� ; � 2 [(�=2); (3�=2)].

Fig. 8. Angular orientation of the digital lineD .

Fig. 9. Orientation error between the continuous lineL and its length-n
discretizationD(n; �).

Definition IV.6: The angular orientation of a digital line
is denoted by and is defined as

This is illustrated in Fig. 8.
The following defines the orientation error between the con-

tinuous line oriented at an angle and its length-
discretization oriented at angle with the
aid of Definition IV.5.

Definition IV.7: The Orientation Error between the contin-
uous line oriented at angle and passing through the
origin and its corresponding length-digital line oriented
at angle is denoted by and is defined as

. Fig. 9 illustrates this concept.
As the length of the digital line increases the number of

possible directions in a square lattice increases. For an odd,
there are a total of possible orientations. Therefore,
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Fig. 10. (a)–(r) Show the increase in the number of angular orientations of the
digital line with an increase in its length (or the size of its rectangular domain).

as increases the orientation error between the digital line of
length and the corresponding continuous line decreases.
A few examples of this concept are illustrated in the Fig. 10.
The following definition formally states the same concept.

Definition IV.8: The Orientation error between
the continuous line and its length- discretization de-
creases as increases, that is,
where .

A. Motivation for the Use of Orientation Error

If the normal to the continuous line is oriented at an angle,
, the continuous line

can be represented exactly in digital domain using only 2 pixels.
However, if the normal to the continuous line is oriented at some
arbitrary counter-clockwise angle, say, 35.36from -axis, it
will require more than 200 pixels to represent the line, very ac-
curately, in the digital domain. This by no means is an advan-
tage to us in obtaining the transforms, if the length of the de-
sired structuring element is of length, say, 100. Also, the length
of the structuring element is bounded by the maximum dimen-
sion of the image. Therefore, for smaller sized images we may
not be able to accurately specify the structuring element. There-
fore, we require that theorientation errorbetween the contin-
uous line and its discrete counterpart be a control parameter in
the design of the recursive dilation and erosion discussed in this
paper. As stated previously in Definition IV.8, the length of the
digital line structuring element increases as the angular error
decreases. Also, in most of the applications the constraints on
the orientation of the digital line structuring elements may not
be rigid; the speed of execution of the algorithm may be cru-
cial, instead. The user should be able to specify the maximum
limit on the error in the orientation of the continuous line and its

length- discretization. Using this user specified information it
is then possible to determine the value ofthat results in this
error. This will be the minimum length of the digital line struc-
turing element for the given orientation error. Thus,orientation
error is a crucial concept in the design of the recursive dilation
and erosion algorithms discussed in this paper. The following
definition formalizes this concept.

Definition IV.9: If is the user specified maximum limit
(tolerance) in the orientation error between and its
length- discretization , then, the smallest that results in

is obtained as .
In practice, we create a look-up table relatingto the max-

imum (worst-case) orientation error between the continuous line
and the digital line of length , in an off-line procedure using

(1)

In constructing the above look-up table, when , we take
.

This look-up table is stored in a one-dimensional (1-D) array
indexed by the length, in pixels, of the digital line. The value
stored at each location in the array indexed by the length of the
digital line is the worst-case orientation error for that length.

In the following section, we describe the way of generating
the basic digital line structuring element used in obtaining the
dilation transform of the given binary image.

B. Generation of Basic Digital Line Structuring Elements

In this section, we discuss the way of generating the basic dig-
ital line structuring element of minimum length using the user
specified allowable orientation error. This basic structuring el-
ement will be used in obtaining the dilation and erosion trans-
forms of the binary image. The transforms will be thresholded
by the actual length of the structuring element to obtain the de-
sired dilation or erosion.

When the user specifies worst-case orientation error that
he/she can tolerate, that value is compared to the values in
the look-up table. Then, the value from the look-up table
corresponding to the closest orientation error value is chosen to
be the length, in pixels, of the digital line structuring element to
be used as the basic structuring element for obtaining recursive
dilation and erosion transforms. The user will also specify the
angular orientation of the continuous line structuring element

. This orientation and the length of the digital line struc-
turing element from the look-up table are used in constructing
the digital line structuring element.

The digital line structuring element is stored in a 1-D array
indexed by the rows or columns of its kernel depending on.
The values stored in the array are the offsets of the pixels in the
digital line with the starting pixel on the line as reference.



754 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 5, MAY 2000

The following proposes a way of determining the number of
rows and columns in the kernel of the basic digital line struc-
turing element.

Proposition IV.1: If is the angular orientation of the con-
tinuous line structuring element the length, in pixels, of
the basic digital line structuring element (obtained using the
Definition IV.9) corresponding to the user specified orientation
error tolerance , then the number of rows and columns in the
kernel of the basic digital line structuring element are defined as

if and

and

if and

where is a number of operator.
Notice that in the above proposition, angles

and are not included. This is
because for these orientations the basic digital line structuring
element is of length, only pixels. Notice that in this
case .

After the number of rows and columns in the basic structuring
element are determined, the digital line is then drawn and the
offsets of the pixels from the starting pixel on the line are de-
termined and stored in a 1-D array. The following proposition
conveys a way of computing these offsets.

Proposition IV.2: Let and be the total number of
rows and columns in the kernel of the digital line structuring
element. Also, . Let

be the 1-D array in which the pixel offsets are stored. Let
be the angular orientation of the continuous line. Then, the
offsets are computed as

if

if

The following section describes the recursive dilation trans-
form algorithm.

V. RECURSIVE DILATION TRANSFORM AND

RECURSIVEDILATION

The dilation transformof a binary image is based on the
successive morphological dilations of the input image with the
basic structuring element. If the set is the binary image
and the set is the foreground or the 1-pixels in, then
the dilation transform with respect to the basic digital line struc-
turing element is a gray scale image where the gray
level of each pixel is a generalized distance ofto the
set , i.e., the generalized distance ofto the foreground pixels
according to the given scanning functions over the image.
That is, they depict the smallest positive integers, such that

. If no such exists, where for all

, then the dilation transform at is designated zero. The
following definition states the above concept formally.

Definition V.1: Let be the binary image and
be the set of foreground or 1-pixels in. Let be
the basic digital line structuring element containing the origin

at one end. The dilation transform of the setis
then denoted by

if
if

(2)

A. Dilation Transform Algorithm

In this section we describe the two-pass algorithm for ob-
taining the recursive dilation transform of a binary image with
the basic digital line structuring element generated in Section
IV-B.

The recursive dilation transform algorithm comprises of two
passes. In the first pass, atwo point transform is obtained by
considering only the end points or end pixels of thepixel long
digital line structuring element. In the second pass an
point transform is generated by filling in the rest of the pixels.
The following defines the scanning function used to scan the
image, i.e., it defines the order in which the input binary image
is scanned by the digital line structuring element.

Definition V.2: Let be the given binary image and
be the orientation of the continuous line. Then the order

in which the image is scanned by the digital line structuring
element in defined by the scanning function over image
as

Left-Right-Top-Down Scan, if
Left-Right-Bottom-Up Scan, if

Algorithm V.1: Let be the array
of pixel offsets of the digital line, of length pixels, from its
starting pixel (corresponds to index 0 which is also its origin).
Let be the input binary image for which the dila-
tion transform image is to be obtained, be the cor-
responding dilation transform image. Let be the scanning
function over the image as in definition V.2. Let de-
note an arbitrary pixel on the image. Then

1) Initialization
if
if

2) 2-Point Transform along the line from the pixel

if
or and
and

if

and
and

and
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3) -Point Transform along the line from the pixel

if
and

or

if
and

and

where and denotes an integer
division.

Since the length of the structuring element is only 2 for the
cases when is equal to we
need to carry out only the first two steps—Initialization and the
2-Point transform. This explains the shorter execution time of
the algorithm for these orientations compared to other orienta-
tions (see Section VII).

B. Recursive Dilation

The following definition states that the dilation of the setby
a digital line structuring element of lengthcan be obtained by
thresholding, by , the dilation transform of obtained using
the basic structuring element .

Assertion V.1:Let be a positive integer. If is a set
and be the basic digital line structuring element containing
the origin at one end, is the dilation
transform image and

, then .
The following definition states that if the origin of the actual

structuring element of length is different from that of the basic
structuring element of the lengthused to obtain the dilation
transform and the dilation , then the final dilation can be
obtained by a simple translation of .

Assertion V.2:Let be the required translation. Then,
the final dilation result, is obtained by translating the image

by as and .
Fig. 11(a)–(h) illustrate all the steps discussed in Algorithm

V.1 for obtaining the dilation transform and Assertions V.1 and
V.2 for obtaining the final dilation through thresholding and
translation of the dilation transform image.

VI. RECURSIVE EROSION TRANSFORM AND

RECURSIVEEROSION

The recursive erosion transformis based on the successive
morphological erosions of the binary image. It is a generaliza-
tion of the distance transform commonly known in the literature
[31].

Given a binary image and the set of all the
one or the foreground pixels, the erosion transform ofwith re-
spect to the digital line structuring element is a gray
scale image where the gray level of each pixel is the gen-
eralized distance of to the image background, i.e., the largest

Fig. 11. Illustration of recursive dilation algorithm. (a) Input binary image, (b)
initialization, (c) basic SE of lengthn = 3, (d) 2-point transform, (e)(n � 2)
point transform, (f) actual structuring element of lengthm = 5, (g) transform
thresholded bym = 5, and (h) translate the thresholded image to account for
the true origin. This is the final dilation result.

positive integer such that . The generalized dis-
tance at a pixel indicates the maximum number of consecutive
erosions of by such that is still contained in the eroded
image foreground. The support for erosion is the foreground set

. This is, in other words, saying that the dilation of the back-
ground by a structuring element is the same as the erosion of the
foreground by the reflected structuring element. The following
definition formally states the above concept.

Definition VI.1: Let be a binary image and be
the set of foreground or one pixels in. Let be the
digital line containing the origin . The erosion trans-
form of the set with respect to is denoted by
and is defined as

if
if

A. Erosion Transform Algorithm

Since we have already established the recursive dilation in a
rigorous manner, we believe that such rigorous treatment is not
necessary in the recursive erosion transform. We simply note the
changes that are required in the structuring element offset array
and the scanning function over the image and proceed to de-
scribe the algorithm. The required final translation of the image
after the thresholding step is same as that we used for dilation.
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The changes required in the structuring element and scanning
function are as follows.

• Use as the array of offsets, instead of .
• The scanning function is

Right-Left-Bottom-Up Scan, if
Right-Left-Top-Down Scan, if

Algorithm VI.1: Let be the array
of offsets in the reflected digital line, of lengthpixels, from its
starting pixel (corresponds to index 0 which is also its origin).
Let be the scanning function over the image as in (3). Let

be the input binary image for which the erosion trans-
form image is to be computed, be the corresponding
erosion transform image. Let denote an arbitrary
pixel on the image. Then

1) Initialization

if
if

2) 2-Point Transform along the line from the pixel

if
or

and

if

and

and

3) -Point Transform along the line from the pixel

if
and

if
and

and
or

if
and

and
or

if
and

if
and

and
and

if
and

and
and

where and denotes an integer
division.

Special cases in the orientation of the digital lines discussed
for recursive dilation apply to recursive erosion, also.

B. Recursive Erosion

The Recursive erosion result is then obtained by thresholding
and then translating the recursive erosion transform according
to Assertions V.1 and V.2. Fig. 12(i)–(p) illustrate all the steps
discussed in the Algorithm VI.1 for obtaining the erosion trans-
form and Assertions V.1 and V.2 for obtaining the final erosion
through thresholding and translation of the erosion transform
image.

VII. PERFORMANCEEVALUATION

In this section we briefly discuss the experimental protocol
that we followed in evaluating the execution times of our re-
cursive algorithms against those of the raw or conventional al-
gorithms of taking unions/intersections as well as Soille's algo-
rithm. We then present the timing results.

1) Experimental Protocol:We used salt and pepper noise
image of size with the probability of a pixel becoming
a 1-pixel set to 0.25. Then our recursive algorithms as well as
the conventional algorithms were run on this image and the ex-
ecution times are noted. We also compared our recursive dila-
tion algorithm with that discussed in [1]. Due to the nonavail-
ability of the software from the authors of that paper, we reim-
plemented the dilation algorithm discussed in that paper. All
the software was written in General Image Processing System
(GIPSY) environment. The algorithms were run under GIPSY
environment on SUN SPARCstation 10 and the execution times
were noted. The length of the structuring element is varied in the
range pixels and its orientation in the range .
The user specifiable tolerance in orientation error is set at 2in
these experiments. Then the graphs are plotted with the lengths
of the structuring elements, in pixels, on the-axis and the
elapsed CPU time in seconds on the-axis.

2) Results and Discussion:The comparison of execution
times of the our recursive dilation, conventional, and Soille's
algorithms is given in Fig. 13. Fig. 14 shows similar results for
the recursive erosion and conventional algorithms.

The results show that we achieved a speed up of about 50 over
the conventional algorithms when the actual structuring element
is 145 pixels long and ,
under the conditions described in Section VII. Under these con-
dition the recursive algorithm ran at a constant time of about
200 ms. When , we
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Fig. 12. Illustration of recursive erosion algorithm. (i) Input binary image, (j)
initialization, (k) basic SE of lengthn = 3, (l) 2-point transform, (m)(n� 2)
point transform, (n) actual structuring element of lengthm = 5, (o) transform
thresholded bym = 5, and (p) translate the thresholded image to account for
the true origin. This is the final erosion result.

Fig. 13. Comparison of the elapsed times of the recursive (recline),
conventional (Morphz) and Soille's dilation algorithms. The angles shown in
the figure are actually the orientations of the line. To get the orientation� of
their normals we need to compute� = �+ (�=2).

achieved a speed up of about 100, when the structuring element
is 145 pixels long. In this case the algorithm ran at a constant
time of about 100 ms. The reason for different speed ups are
due to the special treatment of some orientations as explained in

Fig. 14. Comparison of the elapsed times of the recursive and conventional
erosion algorithms. The angles shown in the figure are actually the orientations
of the line. To get the orientation� of their normals we need to compute� =
� + (�=2).

Algorithm V.1. We also showed that we performed better over
Soille's algorithm when used in binary morphology.

3) Computational Complexity:The conventional algorithm
of taking unions and intersections of the structuring element
whose domain size is , with the image, requires
unions and intersections, comparisons, and memory
accesses (a total of operations) per pixel to obtain di-
lations and erosions, respectively. Soille's algorithm is inde-
pendent of domain size (i.e., length of the structuring ele-
ment) and uses four min/max operations, 19 comparisons,
23 additions and subtractions, 14 divisions, 30 memory ac-
cesses (total of 90 operations) per result pixel. Our algorithm,
which is only for binary images, is also independent of the
length of the line structuring element and requires 14 com-
parisons, one min/max operation, 15 memory accesses, two
divisions and multiplications, 15 additions and subtractions,
one thresholding, and one translation operation (a total of 48
operations) per result pixel. Considering only the min/max
operations used for obtaining the dilation/erosion transform
images, we have a speed up of about four over Soille's al-
gorithm.

VIII. C ONCLUSION

In this paper, we presented two-pass algorithms that ran at
constant time for obtaining dilations and erosions of binary im-
ages, irrespective of the length and orientation of the line struc-
turing elements. One of the main contributions of this paper has
been the use of the concept of orientation error between a con-
tinuous line and its discrete counterpart. This user-specified ori-
entation error was used in determining the minimum length of
the basic digital line structuring element used in obtaining the
transforms. The transforms were then thresholded by the actual
length of the structuring elements to obtain the binary dilation
and erosion results. The algorithms required only 48 operations
per result pixel, as opposed to Soille's algorithm which used 90
operations per result pixel. We tested the algorithms on a set of

salt and pepper noise images with probability of a
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pixel being a 1-pixel set to 0.25, on Sun Sparc Station 10 for
orientations in the range and lengths, in pixels, in the
range . We achieved a speed up of about 50 (and for
special orientations discussed in Algorithm V.1 a speed up of
about 100) when the structuring elements had lengths of 145
pixels, over the conventional methods in these experiments. We
also compared the results of our dilation algorithm with that dis-
cussed by Soille,et al., in [1] and showed that for binary dilation
or erosion our algorithm performed much better and achieved a
speed up of about four when dilation or erosion transform alone
is obtained.
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