Machine Vision and Applications (1997) 9: 229-239 Machine Vision and

Applications
© Springer-Verlag 1997

Random perturbation models for boundary extraction sequence

Visvanathan Ramesh, Robert M. Haralick

Department of EE, FT-10, University of Washington, Seattle WA 98195, USA

Abstract. Computer vision algorithms are composed of dif- been established in the research literature. What does perfor-
ferent sub-algorithms often applied in sequence. Determinamance characterization mean for an algorithm that might be
tion of the performance of a total computer vision algorithm used in a machine vision system? The algorithm is designed
is possible if the performance of each of the sub-algorithmto accomplish a specific task. If the input data are perfect and
constituents is given. The performance characterization ohave no noise or no random variation, the output produced
an algorithm has to do with establishing the correspondencéy the algorithm also ought to be perfect. Otherwise, there is
between the random variations and imperfections in the outsomething wrong with the algorithm. Thus, measuring how
put data and the random variations and imperfections in thevell an algorithm does on perfect input data is not interest-
input data. In this paper we illustrate how random perturba-ing. Performance characterization has to do with establishing
tion models can be set up for a vision algorithm sequencehe correspondence of the random variations and imperfec-
involving edge finding, edge linking, and gap filling. By tions the algorithm produces on the output data caused by
starting with an appropriate noise model for the input datathe random variations and the imperfections on the input
we derive random perturbation models for the output data atlata. This means that to do performance characterization,
each stage of our example sequence. By utilizing the perturwe must first specify a model for the ideal world in which
bation model for edge detector output derived, we illustrateonly perfect data exist. Then we must give a random per-
how pixel noise can be successively propagated to derive aturbation model that specifies how the imperfect perturbed
error model for the boundary extraction output. It is showndata arise from the perfect data. Finally, we need a criterion
that the fragmentation of an ideal boundary can be describetunction that quantitatively measures the difference between
by an alternating renewal process and that the parameters tfie ideal output arising from the perfect ideal input and the
the renewal process are related to the probability of correctalculated output arising from the corresponding randomly
detection and grouping at the edge linking step. It is alsoperturbed input.
shown that the characteristics of random segments gener- In other work [13, 14], we derived theoretical expres-
ated due to gray-level noise are functions of the probabilitysions for performance characteristics of edge detectors and
of false alarm of the edge detector. Theoretical results arglescribed a methodology of automated tuning of the free
validated through systematic experiments. parameters of an algorithm sequence. In this paper we illus-
Key words: Random perturbation models — Boundary ex- trate how at:andom peyturlbatlon mode(ljf?]r the r(]adge cliete_c';]or
traction sequence — Computer vision algorithms — Perfor-.OUtqu can be successively propagated through an algorithm
mance characterization involving linking, and gap-filling. We have seen [13] that by
starting with an gaussian noise model for the gray levels in
the input image, the output perturbations in the edge detector
response could be specified by three parameters: probability
of false alarm, probability of misdetection, and the covari-
1 Introduction ance matrix of the edge location error. Assuming the error
model specified, we derive random perturbation models for

Computer vision algorithms are composed of different sub-{N€ output data at each stage of our example sequence. Due
algorithms often applied in sequence. Determination of the© the fact that there are two types of errors, misdetection and
performance of a total computer vision algorithm is pOSSi_false alarm, the output data consist of true feature entities
ble if the performance of each of the sub-algorithm con-2nd random features that appear due to spurious responses
stituents is given. The problem, however, is that for mostat the feature extraction step. Hence we analyze the problem

published algorithms, no performance characterization hal! WO parts, by deriving:

Present address and correspondence ¢: Ramesh, Siemens Corporate — Perturbation models for perturbed true feature entities in
Research, 755 College Road, Princeton, NJ, USA the output.
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— Perturbation models for purely random feature entitiesadequately modelled by a ramp edge model. This ramp edge
that appear in the output. model has three parameters: the true gradient at the pixel,

' L . . the orientation, and the scale (width) of the ramp. Thus:

The first part is directly related to the misdetection charac—the ideal boundary model, including gray-tone characteris-

teristics of the sequence. The second part is related to t ics in the neighborhood of the boundary pixels, consists of:
false-alarm characteristics of the feature extraction Sequence. . .5 i =1 L, whereg; is the true gradient
19 19 Iy Yy 91 I R | 7

B et eh MAOTIUAef, 1 the e edge orenaton and e e
mancegof ision algorithms Paramete?s of these randopm ere;dge scale at theth pixel. For the purpose of this paper, we

S OT VIS gori : P€lssume that the edge scale across a given boundary does not
turbation models can be related to measures of error such

the probability of misdetection of feature units, probabilityacshange withi and hences; = 5, a constant scale parameter.

of false alarm, and the probability of incorrect grouping. The Itis assumed that the true gradiemisare independent

issue of how these error models can be used to automate t samples from a prior distribution. The nature of the prior
. X . . istribution and the mathematical equations describing the
selection of various free parameters is taken up in anothe

study [14] 5robabi|ity density function vary with the application do-
uady o . . . .. __main. This assumption makes the analysis a little simpler.

We organize this paper into two pieces, one containing <<\ o that there ar¥ boundary fragmentsq, ...,by)

the details of the perturbation model(s) of true feature engetected that correspond to the true boundary. Then;'the

tities at the output of the feature extraction sequence an etected boundary piece consists of a sequence of pixels
the other containing the details of the perturbation model’.” ™.~ =~ 3 . . ) i
(Fi,5,C5,% = 1,..., L;) with each pixel having estimated

for random entities occurring at the output of the feature ex-\" 7 . A A
traction sequence. Following the theoretical derivations, weattributesg; ;, ; ; ands; ;. = We developed models for per-

describe an experimental protocol for validating the theory.turbations on each edgel in the dissertation [13]. Charac-
teristics of the boundary fragments, i.e. the nature of the

distributions of parameters describing the output boundary,
2 Boundary extraction: are the subject of this paper. Specifically, we develop mod-
ideal data and perturbation model els for describing the boundary errors given the perturbation
model parameters of an edge detector: the probability of mis-

Continuous domain curves (boundaries between regions) afd€tectionp,,, probability of false alarmp;, the distribution

implicit or parametric spatial objects. In our analysis we as-Of 6, and the standard deviation for the edgel position error
sume that the ideal boundarg, can be specified in the oc.. Note that the probability of misdetection and false alarm
continuous domain by parametric equations, that is, the coshould be computed by using the marginal distribution of the
ordinates of points on the curve(f), c(s)) satisfy the equa- gradient estimate for the entire population of input images.

tions: This distribution can be derived for a given application do-
M main and the derivations are given in the paper [14]. Figure 1
r(s) = Z Qmm(s) Q) iIIustr.ates the boundary fragmentation model and associated
~ e notation for the parameters of the error model.
o In the first part pf our an_alysis we assume independence
o(s) = Z B (3) @) between edgel attribute estimates for adjacent pixels. Under
— mem this assumptiong;’;6; and g;+1, 0;+1 are independent. This

independence assumption is relaxed to include dependence
between adjacent pixels in [13]. The dependence is in part

due to the overlapping neighborhoods used in the estimation

O[Procedure. The dependence is also due to the fact that the
ngray-level noise is correlated.

where s is the arc lengthgs, ... ¢y, are the given basis
functions, ay,...,ay and Gq,..., B8y are the true coeffi-
cients. This ideal boundary is sampled at a discrete set
points to produce a one-pixel-wide, connected digital arc o
a rectangular grid. The sampling parametewisThe repre-
sentation for the digital arc consists of the discrete ordere
point sequencer{,c;,i =1,..., L), whereL is the number
of points in the digital arc sequence.

The above description for an ideal boundary just spec
ifies the details of the underlying point set and the under
lying gray tone characteristics over neighborhoods centere
on the elements of the point set are not specified. Thus, on
needs to specify additional information about the gray—tonet

characteristics of the image at the boundary locations. Thi nough. D_ue to misdetection of some edge pixels, an entire
information is partially specified by the ideal edge modelPoundary is not actually detected at the edge detector out-

and perturbation models. Specification of an ideal boundPUt: Instead, after edge labelling and linking, there are short

ary model parameters and intensity edge parameters at eaQundary segments with gaps in between them. The gaps are
point of the boundary will enable us to derive ideal model €@used by misdetected edges. A measure of performance of

parametgrs for e,dge plxels. L 1 In our analysis we do not study the effect of the scale. Most operators
Con5|sten_t V‘_”th our analysis In [13], we assume that theassume a particular value for the scale of the ramp edge and do not estimate
gray-tone variation across each pixel of the boundary can benis parameter.

% Edge linking or grouping step — analysis

A simple edge-linking procedure links adjacent edge pix-

els together. A more sophisticated edge linker would use
dge direction estimates. Neighboring edge pixels would be

%‘wked together if their spatial relationship is consistent with
eir edge directions and their edge directions are similar
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that follows we assume th& has the Von-Mises distribu-
tion with parametersio and x = gg§/o.°. Here g is the
true gradient magnitude whereass the estimated gradient
magnitude. A random variabl® is said to be Von-Mises
distributed if:

1
PO= 1)

A
C (Detected Segments)
\

/

encosb—r) << 2r 3)

k>0, 0< up<2m

C = (x(s),y(s))
(True Boundary) Here g is the meang is the precision parameter arfg(x)

is a modified Bessel function of the first kind, order zero
and is given by:

Segment Intervals Gap Intervals 1 /1 N\
" ’ \ i —
// v ‘*‘k // ‘/ IO(K) - Z 7"!2 <2H) (4)
Yz v =0
. In the case of an edge linker that links together pairs of
0 Parametric interval  [0,s] s neighboring pixels if their estimated orientations are similar
enough, the difference of the estimated orientatiénsnd
0, is computed. If §; — 0,) mod 2r is small enough, then
Difference Angle Histograms the pixels are linked. To determine the probability of linking
(snr=3.0) pairs of edge pixels whose true orientations are the same, we
(non-overtapped) (overlapped) proceed as follows. Le#; and ¢, be Von-Mises distributed
0.050 ' ' ' 0.050 ' it ' random variables with means and u, and concentration
0.040 |- | 1 0.040 | i parameters; andk,, respectively. Then the distribution of
[ the difference of the random variabled ¢ 6,) mod 2t is
0.030 0.030 derived in Mardia [11]. It is shown in [11] that the differ-
0.020 0.020 | | ence is not Von-Mises distributed, but can be approximated
by a Von-Mises distribution with meaps = p; — 2 and
0.010 0.010 | 1 concentration parametes;, wherexs is the solution to the
0,000 ¥ o 0,000 y equation:
-040 -0.20 0.00 020 040 -0.40 -020 000 0.20 0.40
Angle (in radians) Angle in Radians A(Fés) = A("fl)A(KJZ) (5)
2 A@=1- ) - 1 +ofa™) ©)

. - - 2r 812 813
Fig. 1. The renewal process for boundary fragmentation due to noise. The
segment lengths are exponentially distributed with mean paramgtar 1 \When M1 = = and k1 = k2 = K, then uz =0 andks is

the gap lengths are exponentially distributed with mean param¢ter. 1 the solution to the equation:
M (s) denotes the expected number of breaks in the process for a given arc

of length s 1 1 1 1 1 1 2
Fig. 2. Angle-difference histogram obtained over 1000 trials fgfd) = 1- 2% - Ska2 - Sa3 = {1 - 2k - 82 - 8/{3} (7)
3.0. Left histogram corresponds to the case when neighborhoods (for es- 3 3 3

timation of the angles) do not overlap (i.e., the two orientation estimatesEXpanding the right-hand side and ignoring higher order

being compared are independent random variabRgiht histogramcor- terms gives the approximate solutions ~ %, which is

responds to the case when neighborhoods overlap. Both these histograms 2!

have zero mean and the estimated precision parameter is 229.172 (theoreﬁ‘-CCl'Irate for Iarge values of. The prObablllty of the cor-

cal 225.0) for the difference of uncorrelated angle estimates. The precisiorf €Ct grouping of two _piXEIS WiII_therefor_e be _given by the
parameter for the difference of correlated angle estimates is 294.069  integral of the Von-Mises density function with parameter

k3 over the range of allowable orientation differences. We
discuss the validation of the result here in the experiment
an edge linking scheme is the probability of correct groupingsection of this paper.
of edge pixels. We derive the expression for this probability
by assuming the edge idealization specified above.

4 Perturbation model at edge-detector/linker output —

misdetection
3.1 Probability of correct edge grouping

Due to the misdetection of some edges, a model boundary
We have seen in [13] that the edgel orientation estimate ishat was supposed to be detected in its entirety appears as
Von-Mises distributed when conditioned on the true gradi-fragments in the edge detector/linker output. In other words
ent as well as the estimated gradient magnitudes and whean entire arc/line boundary entity was broken into several
a square neighborhood is used for the edge detector. Usingieces with gaps between each piece. We now illustrate how
this result, we can derive expressions for the probability ofthe fragmentation in the boundary output can be visualized
correct grouping of true edge pixels. Hence in the discussioras being generated by a renewal process. In addition, we
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illustrate how the various probabilities calculated at the pre-show that the mean number of breaks in a given interval

vious section relate to the interevent distances of the renewa$ proportional to the length of the interval, a property that

process. is intuitively pleasing since longer segments would be more
Imagine that we start from the left of the ideal arc/line likely to be broken into pieces than shorter segments.

segment and walk along an infinite line. At each step the

probability that the particular pixel will be labelled correctly

as an edge pixel in the outputpis= 1—q. A breakage occurs 4.1.1 Probability density function of interval

when we first encounter a pixel that is labelled incorrectly. between two breaks

Similarly, if we continue walking until we again encounter

a pixel that is labelled correctly we would have traversedin this section we derive the expression for the probability

on top of a gap. If one continues walking until the end of density function for the interval between two breaks in the

the ideal segment is reached, one would have traversed lme-breaking renewal process. We know that the renewal

number of edge segments and gaps. The instances whepeocess consists of alternating edge segments and gaps. The

an edge segment follows a gap can be considered as everddge-segment lengths and the gap lengths are geometrically

of a discrete renewal process and the interevent times areistributed. Here we approximate the geometric distribution

distributed as the sum of edge segment length and the gapy its continuous analog, the exponential distribution.

length. A random variableX is exponentially distributed with
The probability mass function for the length of the edge parameten\ if:

segment is given by: (@) = Aeap= T, (12)

— — .k
Psegmentiengin(l = k) =p"q. @) We now show that the exponential distribution is the con-
This is the geometric distribution that is a special casetinuous analog of the geometric distribution. The probability
of the negative binomial distribution. The distribution of gap mass function for the geometric distribution is given by (with
lengths between two edge segments is given by: p being the probability of success and- 1 — p.):

anplength(l/ = k) = qkp~ (9) P(X = k) = pkq k > 0 (13)

The above distributions assume that the value for the-€tp = ;5. Then the probability of having discrete lengths
lengths can theoretically be infinite. Léf; be the length  ©Of t/e or more is given by:

of the ith edge segment encountered in the walk. Ket A\ 1 k
denote the length of th&h gap along the walk. SNPx=K=Y" ( € ) ( )
If we assume that the true arc/line lengthlipixels, we =% Pyt 1+Ae) \1+Ae
are dealing with a situation where the lengths cannot exceed™ ° o .
L pixels. Hence the more realistic distributions would be : ( 1 > (14)
the truncated geometric distributions. The probability mass T\ 1+

function for the short-edge segment lengths would then b(?f we let ¢ go to zero, we can compute the probability that

iven by: . .
g y a continuous random variablé&’, would be greater than or
(p*q) equal to a specified length That is:
Rqegmentlength(l = k) = 1— pL+1- (10)
, e

Similarly, the probability mass function for short gap £ 70X = 1) = lim (1 +>\e> (15)

lengths would be: = exp M (16)
k
Pyapiengin(l! = k) = (a pL)+l' (11)  This means thak" is exponentially distributed. The param-
1-4q eter \ of the exponential distribution is equal {gp.

When an edge linker uses additional criteria than just twvo ~Now we model the breaks by assuming that the arc
pixels being detected as edges and being neighbors, then tisegment lengths and the gap lengths are exponentially dis-
calculation of edge segment can be done, providing that th&ibuted with rate parameters;, and \,, respectively. The
probability of linking to the previous edge pixel, given that parameter\; is an indirect measure of how often a line or
the current pixel and the previous pixels are edge pixels, isurve of fixed length would break up since it is related to
available. the mean segment length. The parameteis a measure of

how long these breaks would be.

Let X denote the random variable giving the distance

4.1 Perturbation model at edge detector/linker output — between two successive starting points of short edge seg-
properties ments. First we derive the expression for the probability

density function for the random interval. We then derive
In order to model the gap and segment lengths easily, wéhe expression for the mean number of breaks in a line/curve
approximate the discrete distributions used in the above se®f length L in the subsequent section. L& be an expo-
tion by their continuous analogs. We then derive theoreticahential random variablefZ(\;), with rate parametek;. Let
expressions for the probability density function of the in- X, be an exponential random variable with rate parameter
terevent distances of the line-breaking process. Further, waz, E()\2). Since Alz corresponds to the mean gap length,
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X2 >> A1. We know that:X = X; + X,. The probability  Using H®*)(y) to denote the distribution function correspond-

density function of X is therefore the convolution of the ing to the density functiorh*)(), the probability that ex-

individual probability densities of; and X,. Therefore: actly £ events (or breaks) occurred in an interval tofs
given by the differencéd ¥ (t) — H**1(¢). Therefore:

px(@) = [ due e ey (17) x
0 M@) =Yk (HO@) - H*D()) (24)
Simplifying, this expression results in: k=1
A1 , = (k)
pX(CU) - 112 (e—)\lx _ e—)\zx) (18) ZH (t)
A2— A1 k=1
The probability distribution function foX can be shown Taking the Laplace tranforms on both sides of the above
to be: expression, we can find that:
h(s)
— 1 —A1T —A2T M = 25
Prob(X <z)=1-— (Az B A1> (Aoe™1% — Ne™2") (19) (s) s(1— h(s) (25)
whereh(s) is the Laplace transform of the density function
h(y). It follows that:
4.1.2 Derivation for expected number of breaks Ao
in a line/curve M(s) = ! (26)

s%(s+ A1+ \2)

In the discussion that follows we derive expressions for thel@king the inverse Laplace transforms on both sides of the
mean number of breaks by considering each break to be afPove equation, we get:
event with the interevent distances being distributed accord- A 1 — e~ (et
ing to Eq. 18. M(t) = ( 172 ) [ - } (27)

Let Y1,Y5,..., Yy, be ii.d random variables with prob- Mt Ao At Az
ability density function given by Eq.18. Le¥(t) denote  From the above expression we can see thaisfzeroM (t)
a counting process that gives the number of breaks in afs zero and as tends towards infinityl/(¢) also approaches

interval t. The process generated is a renewal process witlinfinity. Normally, \; is very small compared td, and

probability density function for each interval being: under this circumstance the expression fd(t) becomes:
ANy ey (1— e

= e MY — e 20 M@) =M |t— 28
pr)=, ) (20) M) 1{ N } (28)
Let W; denote the random variable giving the sum of theIf the second exponential term is small compared to 1 (which
random event intervals until théh event. Then:lW; = will be the case sinc#; is large for small noise levels), then:
Y1+Yo+......+Y,. We leth(y) denote the probability den- _
sity function of the i.i.d. random variablés. We useH (y) M(t) = At (29)

random variabled’;. We use.*)(y) to denote the function equal to the ratio of the length of the entire line to the mean
obtained by k-fold convolution ok(y). The Laplace trans- yajye of line-segment length.

form of the probability density function ofi;, denoted as
h*)(s), is given by:

B0 (s) = ( Az )k 21)
(s+A1)(s+A2) After edge linking, the boundary gaps must be filled. The

Using the inverse Laplace transform tables in [1], we get; Poundary gap-filling procedure will fill gaps of length less
than a specified lengtih. The perturbation model for the
(MA2)* y k=3 a2 ipput data is not_hing but the renewal process, and the ques-
) \/7T<)\2 _ /\1> e Ry tions are: What is the data model for the output of the gap
filling algorithm? What is the distribution of gap lengths and
I, ()\2 - A1y> (22) what is the distribution of segment lengths? We show here
T2 2 that the mean number of gaps that are left unfilled in the

. . . output is the product of the mean number of gaps in the
!—!ereF(k) '_S the Gamma fu'nctlon anqﬂfé(x,) is the mog- input and the probability that a random gap is not filled.
ified spherical Bessel function of the first kind.

X ) , Edge or gap filling can be thought of as a process that
The expected number of events in an intervaltds s in gaps of lengths less than some threshold, Eagfor

5 Gap filling algorithm — analysis

WM (y) =

given by: the analysis, we assume that we have a broken-line segment
0o with the gap length and line length parametersigfand
M(t) = N(t) = Z kProb(N(t) = k) (23) A1, respectively. Assume that the line-breaking process is a

=0 renewal process with event interval length density function
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as given in Eq. 18. The problem is to find the output distri- Taking inverse Laplace transforms we can show that the
bution lengths obtained by filling gaps in the input of length expression for the mean number of breaks in the output of
less thanL given that the length of the ideal input segment the gap filling procedure is given by:

is t. Let ¢ denote the probability that the gap length in the

: ; . A1A2p
input is less tharL. Then: M(t) =
P £() (()\1+/\2)2>
L —(Ar+A2)t
q= / Aoe ™ Y dy =1—e ek (30) x [+t —(1—e )] (33)
0

Since )\, >> \;, we can approximate the above expression
If there aren gaps in the input then the probability that by setting\; + Ao ~ X, to:

exactly: gaps will be filled is given by: )
Me(t) = ( lp) [/\215 —(1- eiAzt)]

n . .
(V)aa-o (31) Yo
. . - A1p —Xot
and the mean number of gaps filled will be: = At — ( Ao ) (1— e )
= 2"21 (n) (1 — g = ng From the above expression it can be seen that the mean
= ) number of the gaps in the output is related to the mean
” N number of gaps in the input\{t) and to the probability )
=n(l—e %) of not filling a gap. It can also be seen that:

'kI)'he me;’;ug number of gaps that are not filled is then givean(t) = M(t)p = M(t)e L. (34)
lne e,
Y We have already seen that the mean number of break&his means that the mean number of gaps 'in the.output is
in a line as given by Eq. 27 is dependent on the mean linethe product of the expected number of gaps in the input and
segment lengths and mean gap-segment lengths. Here W€ probability that a gap is not filled.
have shown that given that there atebreaks in the input
the mean number of gaps that are filled just depends on the o
mean gap-segment length. 5.0.3 Dlstr|but|_o_n of the gap lengths

The input to the gap-filling procedure is a renewal pro-after the gap-filling process
cess, and the output obtained from the procedure is also a o .
renewal process. We now derive the expression for the probIhe distribution of gap lengths after the gap-filling process
ability density function of the interval times in the output IS €asy to derive. The gaps in the output arise only if the
renewal process. Consider an interval in the output procesdndividual lengths are greater than the gap threshbldlso,
This interval was obtained by deleting multiple events (fill- the gap distribution at the input to the gap-filling algorithm
ing gaps of length less than some threshold) from the inputvas exponential with parametep. Hence: the pdf of the
process. The probability of a gap in the input being filled 9aP lengths at the output is given by:
was (1-e(—*2)). Letp = e—*2L. Given that there are exactly
1 intervals in the input process the probability that exactly v ule—L)
1 — 1 intervals vanish to produce the output is given by: px (@) = doe™ _ Vit a1 (35)
p(1—p)i—t. = 0 otherwise

Since the output process intervals are obtained by ran-
dom convolution of the interval times in the input process, o
the Laplace transform of the probability density function, 5-0.4 Distribution of the edge-segment lengths
(hs(s)), for the interval time in the output process is related after gap filling
to the Laplace transform of the probability density function

for the input processh s (s) is related toh(s) as follows: Suppose that exactlygaps were filled to produce a single
segment in the output. Hence there are exattlyl edge

- imlyd segments anflgap lengths between these segments. The gap
hy(s) = Zp(l —p)Th(s) lengths were all less thah; otherwise they would not have
=1 been filled. LetX;,j = 1,...,i + 1 denote the sequence of
— ph(s) random variables for the edge-segment lengths in the input
1— (21— ph(s) and X,k = 1,...,i denote the sequence of gap lengths
B A1 oD in the input. Then the length of a single output segment is
T 82+ (AL + A2)s + Aop given by:

The mean number of breaks in the output process can thereg=1 g

fore be obtained by using the expression for(s). The ZX]- +ZX;'C~ (36)
Laplace transform of the expression for mean number ofj=1 k=1

breaks can be shown to be equal to:

A1A2p
82(8 + A\ + )\2)

But we know thatX;'s are i.i.d exponential random vari-
ables with parametex; and X/'s are i.i.d truncated expo-

M;y(s) = nential random variables with probability density function:

(32)
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() = Aoe 2" if o< L 37) pattern generated follows a discrete random process. The dis-
P 1—e Pl crete random process we use is Bernoulli lattice process
= 0 otherwise. (see [16]). The Bernoulli lattice process is the discretized

. . . analogue of the Poisson point process.
It can be shown that the probability density function for the  pafine w to be the width and height of each pixel and

sum of 7 + 1 exponentially distributed random variables ( |gt L., denote the lattice formed with parameterthe mesh

Xj's ), with parameteny, is given by: of the lattice. Then the Bernoulli lattice process., is a
O y)i)\ e~y random subset of,,. Each point ofL,, is contained inp, .,
py(y) = o with probability p; independently of all others.

il If nr andnc denote the number of rows in the image and
O<y<oo (38)  the number of columns in the image, respectively, then the

Similarly, it can also be shown that the pdf for the sum of mean number of pixels in the process is givenjynr+nc.

truncated exponential random variables, with paramiger ~ The intensity of the process\Y, defined as the number of

is given by: points per unit area, is given by/w?. If both p andw tend
i1 \ to zero together such that the intensity tends to the limit,
py(y) = (A2y)" " Aze™ "2 ' then the process becomes a Poisson point process.
(i — DL — e L)’
0<y<(k-1L (39)

6.0.5 Nearest-neighbor distance distribution

Hence the lengthZ, of the output segment (given that of the point process
gaps were filled) is distributed as the sum¥ofandY”’. The

pdf for the sum is given by: We have seen that the spatial process seen at the output of the
edge detector is the discretized version of the Poisson point
pz(2]i) = Cie™?** process. Since two points in the input of the edge linker are
i 2 linked in the output if the distance between the points is less
X [Z (2) (—1)kz"/ y“’“le(AZM)ydy] than a specified threshold, the distance distribution between
k=0 0 events in the input is of interest to us. We give expressions
0< 2 < 00 for the nearest-neighbor distance distribution for the events
B PN of a Poisson point process here. The derivation we give is
C; = rone , (40)  actually a special case of the general solution given in [16].
il — UL — e L)’ Let D(r) denote the probability distribution function of

From this we can compute that the probability that the out-the néarest-neighbor distance. Given that an evéntoc-

put segment length is z by,(z) = .., pz(z]i gaps are curred at a particular location, we wish to compute the prob-

filled)P(i), where P(i) is the probabili@ that there will be ability that the distance to another event will be less than or

exactly i gaps filled. equal tor. This probability is clearly equal to 1 minus the
probability of finding no event within a circle of radius r.
That is:

6 Perturbation models for random entities
D(r) =1— P( No event within a circle of radius|E;).

In the above analysis we modelled the perturbations to the (41)
features we are looking for, namely, curvel/line segments.
Everything that was said was conditioned upon the fact that Since E; is an event of probability zero, we have to
a true model line/curve segment got broken into multiplederive D(r) by assuming thaE; occurred within a circle of
pieces. Here we now focus on modelling noise due to whichradiuse and then let tend to zero. Doing this, we can show
the algorithm sequence produces false features. For exanthat:
ple, a sequence of correlated noise pixels gives rise to (r)=1— —Or?d) (42)
false edge and hence a false-line segment. Typically, thes "= € '
line segments are of small length. A cleaning step may re- The mean distance can be shown to be:
move these segments, but during the process one may end 1
up missing a number of model features. Ly = .

If we had correlated noise in the gray-level image, the 2v/A
edge detector would label non-edge pixels as edge pixels A given edge pixel in the input has a probabiljtyl)
and the edge linking and fitting step would produce short-of getting deleted in the output, wheggl) is the prob-
line segments at the output. The input perturbations (duebility that no edge pixel exists within a radius of length
to spurious edges) are specified by the probability of falsel. around the given edge pixel. This suggests that the in-
alarm of the edge detector. The set of points at the input oput Poisson process is being thinned to produce the output
the edge linker can be modelled as a random point procesgrocess. It is shown in [16] that the process produced by de-

Thus, in the analysis that follows we take a look at the pendent thinning results in a cluster-point process. However,
spatial pattern of these random false labellings over an imthe gap-filling algorithm fills the gaps and therefore produces
age. Since each non-edge pixel in the image gets labelledegments instead of points. The process so obtained is a line-
incorrectly as a true edge with probabilipy, the spatial segment process.

(43)
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7 Validation of theoretical results 0.42
for boundary error model £ 03 1000 J Probability mass function
E 0.22 for number of breaks

This section describes the experimental protocol employeds o.12 j (total length of interval = 1000.0)
to validate the theoretical results provided in this paper. We 0.02 200300
have seen that the probability of correct edgel grouping
based on similarity orientation estimates can be computed 040 ——————— 040 ————] 040 ———
from the distribution of orientation estimate differences. This £ 030 | 400 7 0830 goo ] 030 800 ]
distribution was shown to be approximated by a Von-Mises § 0.20 1 020 1 020
distribution. We have also seen that the output error model& 0.10 hk 1 010 0.10 L 1
for the boundary extraction scheme can be described by the 090 55205500 ©%%0 100200300 %0 10,0200 300
probability distribution of segment lengths and by the prob-
ability distribution of the lengths of random segments. The 040 (——————— 040 ——————— 040
errors in the pixel positions are not considered in this paper;% 030 1 s0 ] 030r 100 1 030 200
but are also studied in [13]. Given a noisy image contain-§ %20 [ 1 020¢ 1 020 1
ing a true line feature of a particular length, we therefore & 010 | il 010 ¢ Al 1 0107 1
obtain plots for the empirical distributions of the following %% 500200300 °%0.0 100200300 %0 100200300
measures for a given signal-to-noise ratio: # of breaks # of breaks # of breaks

— Distribution of angle-estimate differences Fig. 3. Probability mass function of number of breaks in an interval of

_ Segment-length distribution length 1000.0 units. Thaumber inside each grapimdicates the value of

A2 = 1/X1 used to generate the distribution. Note how the number of breaks

— Gap-length distribution increases as the mean segment interval length decreases

— Distribution of number of breaks in true line

There are two parts to the experiment. Since the first part of . . o
our theoretical derivations is in the discrete (pixel) domainfor the ramp edge and is the noise standard deviation.
and the latter part of the derivations extends these into théround-truth edge images were generated by using the fol-
continuous domain, our experiments were done both in thdOWing function wherep = (r — R)cos(f) + (c — C)sin(6).
discrete and continuous domain. For our continuous-domair,(r ¢) =0 p < —0.5 (45)
experiments we assume exponential models for the segment -1
and gap-length distributions, simulate the alternating renewal
process and validate the analytical results. For our discretelz(r; ) =0 p <05
domain experiment involving the validation of our analytical =1 otherwise
result on the distribution of angle differences, we generate ;. ¢) = 1,(r, c) exor I(r, c)
synthetic-image data using the protocol described below and
obtain the desired distributions. To keep the length of the
paper short, the segment length and gap-length distributiong 2 validation of angle difference distribution
in the discrete setting are not discussed and we concentrate
on the results from the continuous domain experiments.  Qur first step is to validate that the distribution of differ-
ence in the angle estimates for adjacent pixels can be ap-
. proximated by a Von-Mises distribution with zero mean and
7.1 Image generation precision parametet/2 (wherer is the precision parameter
o ] of each individual angle estimate). Figure 2 illustrates the
Synthetic images of size 51 rows by 51 columns werepjstograms (binsize = 0.05 radians) for the difference an-
generated with step edges at various orientations passingle estimate obtained over 1000 trials fgfc = 3.0. The
through the center pixel/,C) = (26,26) in the image. expected precision parameter for the individual angle esti-
The gray value,I(r,c), at a particular pixel,7(c), in the  mates is approximately equal tg?(c?) « f(w). The factor
synthetic image was obtained by using the function wherer(,,) here is a scale factor that is a function of the neigh-

otherwise

p = (r — R)cos(0) + (c — C)sin(0). borhood sizew, used for the estimation of row and column

I(r,¢) = Inin, p<0 (44) gradients.f(w) is equal to 50 for the 5 by 5 kernel. The pre-
-7 dicted precision parameter for the difference angle estimate
T mas is approximately 22®. The estimated precision parameter is

otherwise,l,,;, and,,,, are the gray values in the left and 229172. While this validates the theory, one must note that
right of the step edge. The variablésand C designate a the approximation provided is valid only for largés. In

point in the image on which the step edge boundary liesaddition, the approximation assumes independence between
In our experiments we sdt,,;,, to be 100 andl,,,, to be angle estimates for adjacent pixels. In reality, these angles
200. We used orientatior) values of 0, 15, .., 175deg. are actually dependent because of the overlap in neighbor-
To generate ramp edges, we averaged images containing th@od windows. When the dependence is considered, then
step edges with a kernel of size 5 by 5. To these ramp edgthe angle-difference distribution still has mean zero, but a
images we added additive Gaussian noise to obtain imagegduced variance (or in other words, increased precision pa-
with various signal-to-noise ratios. We define signal-to-noiserameter value). The estimated precision parameter for this
ratio as:SNR = 7. whereg is the true gradient magnitude case is found to be 29969.
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Mean number of breaks

( vs true interval length / mean segment length )

Mean length of observed gaps

( versus 1/lambda_1)
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Fig. 4. Plot of mean number of breaks (with corresponding standard deviation estimates from the probability mass functions in previous figure) versus
A1 * 1000. The theoretical approximation for large's is the linear function plotted

Fig. 5. Plot of observed mean segment length versuss«(s) for a boundary of lengtts = 10000 units. Note how the mean of lengths of the segments
observed deviates from the mean parameter of the renewal process (that governs the segment lengths)when&. This is the instance at which the
truncation of the process at a given lengthas significant effect on the mean parameter of the observed segment lengths. It is important to note that the
mean parameter/\; and the mean length of the observed segments are not the same

Fig. 6. Plot of observed mean gap length versugXi) for a boundary of lengtls = 10000 units. Note that in this case, since/§b) << s the observed
gap lengths are very close to the mean parameter of the renewal prgeesss in the case of the segment length distribution, whgh,lis comparable
to s, we see the effects of truncation of the renewal process at length

Fig. 7. Plot of r(Ty) = —log(My(s)/M(s))/ X2 vs gap-illing thresholdl; for a boundary of lengtls = 10000 units. The observed value¢T,) should
be equal tdl’,

7.3 Validation of continuous-domain results empirical distributions for the quantities of interest outlined
above (i.e., segment length, gap length, number of breaks,

To validate the theoretical results we used 5000 trials toetc.). The parameters governing the renewal progaesso,

generate instances in the renewal process and gathered tie(the gap filling threshold) were varied. Figure 3 illustrates
the probability mass function for the number of breaks in
an interval of lengths = 100Q0 units. Figure 4 illustrates
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the relationship between the mean number of breaks versumdge finding, linking, and gap filling. This paper discussed
A1 * s. As expected, the mean number of breaks is a lin-how it is possible to propagate random perturbation mod-
ear function of the interval length and the parametex;. els successively through the sequence. This paper does not
Figure 5 illustrates how the mean of the observed segmerdiscuss how one could utilize the random perturbation mod-
lengths varies as a function af xs. It can be seen that when els for automatic selection of free parameters of the vision
s * A1 > 5, the observed mean is not the same as the meaalgorithms. This is the subject of the paper [14]. Theoret-
segment length parameter Xy of the renewal process. This ical results concerning the boundary error model were de-
is expected since the process is truncated at lendthfact, rived. Theoretical results are validated through systematic
we should view the segment and gap length distributions agxperiments. It was assumed here that the true gradignts
being parametrized by three parametags), and s. Fig- are independent samples from a prior distribution. The na-
ure 6 illustrates how the mean gap length varies as a functioture of the prior distribution and the mathematical equations
of 1/A;. Since the gaps are very small in length compared tadescribing the probability density function vary with appli-
the total length of the intervak) the mean of the observed cation domain. This assumption made the analysis a little
gap lengths is close to the renewal process’s original measimpler. In general, the true gray values at a particular pixel
parameter for gaps (2,). Figure 7 illustrates the validation may depend on object characteristics, illumination direction,
of the analytical result relating the mean number of breakssensor position, etc. Thus, expecting th&s to be indepen-
after the gap-filling operation to the mean number of breakslent samples is not necessarily meaningful. It may often be
in the input process and the gap-filling threshold. the case that if we know something about the gradient at one
location we may be able to say something about the gradient

magnitude a few pixels away. This will make the analysis

7.4 Discussion

Even though we have validated the correctness of the analyt;
ical results provided in the paper, there are, however, sever

more involved.
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theoretical analysis, the estimated parameters at each pixel,
i.e., gradient magnitudes, angle, were assumed to be inde-
pendent of each other. This assumption, although correct fo,
the case where the neighborhoods centered on the pixels do
not share any common point, is a limiting one. Possible ways
of handling this is discussed in [13]. We did not discuss here
how the probabilities of false alarpy and misdetectiop,,

can be obtained since this is the subject of the section on

edge-detector performance characterization in [13]. In fact, 3.

the p,,, and p; are functions of the neighborhood operator

size, the gradient magnitude threshd@ldand the signal-to- 4.

noise ratio §/o) (the ratio of the true gradient magnitude to

the standard deviation of noise in the input). The parameter>:

A1 is given byp,, (T, g,0, K)/(1.0 — p, (T, g, 0, K)). Note
the usage of the notatign,,() by recognizing thap,,,() is a
function of the input parameters in the edge-detection step.
It is also to be emphasized that the derivations in this paper
assume stationarity of the sequence of binary random vari-
ables. Moreover the derivations for the length distributions

are pertinent only when questions are asked relative to a a8.

randomly chosen observed boundary fragment that is part of
a perturbed boundary. A slightly different question is: Given

an ideal boundary and a process that fragments the bound-
ary into pieces, what is the likelihood of observingieces,
bi,...,b,, with lengthsliy, ... I, and gapsgi, ..., gn_1?

This question is addressed in a different paper by Haral-g

ick et al. [7]. Haralick et al. provide an expression for the

above likelihood and analyze the effect of the morphologi-11.

cal dilation operation on an observation of a random binary
seguence.

13.

8 Conclusion

14.

In this paper we illustrated how one could set up random per-
turbation models for an example vision sequence involving

12.
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