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Abstract. The Proteus architecture is a highly parallel, multi- 
ple instruction, multiple data machine (MIMD) optimized for 
large granularity tasks such as machine vision and image pro- 
cessing. The system can achieve 20 gigaflops (80 gigaflops 
peak). It accepts data via multiple serial links at a rate of 
up to 640 MB/s. The system employs a hierarchical recon- 
figurable interconnection network with the highest level being 
a circuit-switched enhanced hypercube, serial interconnection 
network for internal data transfers. The system is designed to 
use 256 to 1024 RISC processors. The processors use 1-MB 
external read~write allocating caches for reduced multipro- 
cessor contention. The system detects, locates, and replaces 
faulty subsystems using redundant hardware to facilitate fault 
tolerance. The parallelism is directly controllable through an 
advanced software system for partitioning, scheduling, and 
development. System software includes a translator for the 
INSIGHT language, a parallel debugger, low- and high-level 
simulators, and a message-passing system for all control needs. 
Image-processing application software includes a variety of 
point operators, neighborhood operators, convolution, and the 
mathematical morphology operations of binary and gray-scale 
dilation, erosion, opening, and closing. 
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1 Introduction 

A variety of parallel architectures can be used for image pro- 
cessing applications. To cut short the review of these architec- 
ture types, we point out some political parallels that have been 
informally made by some noted researchers. The array can be 
likened to a Fascist dictator leading a march. The pipeline can 
be likened to a capitalist assembly line. The pyramid can be 
likened to the cell block hierarchy of Communist dictatorships; 
the multiprocessor systems, to parliamentary committees at 
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work, and the network, to political anarchy. And the recon- 
figurable network just cannot get its act together. Particular 
examples of these architectures include processor arrays such 
as Illiac IV, CLIP4, CLIP7, DAP, MPP, and GAPE systolic ar- 
rays such as WARP, pipelines such as Cytocomputer, Genesis, 
and VAP and multiprocess or systems such as PASM, POLYP, 
ZMOB, GOP, PICAP, TOSPICS, DIR FLIP, PM4, and pyra- 
mid systems. Scholarly reviews of these architectures can be 
found in the papers discussed in [6]. 

The purpose of this paper is to discuss an architecture in 
which the act of the reconfigurable network can be put together 
for computer vision in a large-grain parallelism mode. We do 
this in the context of knowing that reconfigurable networks 
for image processing have not been used and that there has 
been little discussion of architectures that are simultaneously 
suitable for low-level image processing, high-level computer 
vision, and the computational tasks required to direct robots 
and material handlers. All this must be done in near real time 
in the factory setting. 

Our viewpoint differs from the usual discussions of com- 
puter architecture. We believe that all paradigms that map 
image data onto processors like the arrays and pyramids, or 
paradigms that map specialized tasks onto various processors 
(such as the multiprocessor systems), must, of necessity, cre- 
me specialized and inflexible systems. We believe that the 
watchword of computer vision is flexibility. There must be the 
image-in and image-out operations of low-level vision. There 
must be the image-in and data structures-out operations of mi- 
dlevel vision. There must be the data structures-in and data 
structures-out operations of high-level vision. The purpose of 
any computer vision system is to be economically useful in 
the factories of the society in which it functions. Therefore, 
there must be the capability for performing numerical calcu- 
lations, data formatting operations, communication reporting 
operations, and real-time control of external devices such as 
material handlers and robots. This suggests that the approach 
must be integrated. To approach the design, we must step back 
and understand that the low-level neighborhood operators dis- 
cussed in today's archival literature can be much more com- 
plex than the Roberts and Sobel variety. We must understand 
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that the manipulation and processing of the high-level vision 
data structures may be as complex as the symbolic processing 
required by artificial intelligence computation. 

Within our universe, where can we take a stand so that our 
viewpoint can unravel the inherent complexity of this question 
of computer vision? The required flexibility suggests that the 
architecture should be able to execute algorithms of a general 
nature naturally. The quantity of data processed in a computer 
vision system suggests that it seeks a higher input rate and that 
the architecture must be, in some sense, optimized to spend a 
substantial amount of its processing time doing uniform pixel 
pushing. If  it can have high efficiency in performing a regu- 
lar pattern of operations on a large data set, it can afford to 
have a lower efficiency in performing less regular operations 
on small data sets. In other words, the architecture must spend 
its time performing a variety of  activities. If  it can configure 
itself so that it has high efficiency for the most computation- 
ally intensive activities, it can afford the overhead required to 
reconfigure itself for the less computationally intensive and 
more irregular activities. High efficiency for computationally 
intensive activities suggests, as one alternative, the algorithm- 
driven systolic network. Flexibility suggests reconfigurability 
The combination of the two suggests a dataflow architecture, 
a reconfigurable network capable of  systolic or nonsystolic 
computation. 

However, the kinds of  data units that are processed in com- 
puter vision change as the processes proceed from a low to a 
high level. Pipelines and systolic architectures that are opti- 
mized for the pixel data unit are not efficient for midlevel data 
such as the digital arc, or high-level data units such as a set 
of corresponding model-image feature points. This suggests 
that, instead of thinking that the architecture processes small 
data units such as a pixel, we can visualize an architecture that 
processes more complex data units such as the image, digital 
arc, sets, and relations. Here the idea of  systolic computation 
must dissolve, for the units are too large. 

In factory applications of machine vision, the same vision 
algorithm is applied repeatedly to a succession of  images. The 
input is not an image, but a sequence of  images. The output 
to each image processing operation, likewise, is a sequence 
of images. The clock tick of the systolic array or video rate 
pipeline gives way to the time chunk taken to process an entire 
image. The processor, instead of only processing one simple 
operation such as an add or multiply on the primitive data 
unit, now must perform an arbitrarily complex sequence of 
operations on the large data unit. The code run on the processor 
now does not have to be the kinds of specialized code used 
for vector processor, pipelines and systolic arrays, or digital 
signal processors. Rather, the code can be the same kind of 
code written in languages such as C or Ada and can be tested 
on standard workstations. 

For a high input-data rate and simple algorithms, such an 
architecture runs in a single program, multiple data-stream 
mode. For a low input-data rate and highly complex algo- 
rithms, such an architecture can reconfigure itself to function 
in a pipeline network or full multiple instruction multiple data 

(MIMD) stream mode. We call this architecture the reconfig- 
urable Proteus architecture. 

To understand what must go into the Proteus dataflow ar- 
chitecture, we must have a language in which to discuss its 
configuration possibilities. Hardware programming languages 
like VHDL or N2 and graph description languages are at too 
low a level. The interesting thing about the data flow in a net- 
work is that a high-level specification of  the configuration of  
the network is a specification of the program the network is 
executing. This is different from von Neumann architectures 
in which a specification of the architecture says nothing about 
what program may be executing on the hardware. Now, low- 
level specification of a network, or more formally, a graph 
having labeled arcs and nodes, has nothing about it that is 
sequential or procedural. Likewise, a high-level specification 
need not be sequential or procedural. A high-level specifica- 
tion of a network is just a specification of the relations that hold 
in the network. Thus, the specification of the configuration of a 
network amounts to specifying relations, and since the specifi- 
cation is the program that the network executes, the language 
used to program a dataflow network is naturally a language 
of  relations. The language must be inherently nonprocedural. 
From a high-level perspective, the semantics of the language 
specifying a computational network describes the essence of 
the architecture. 

In Sect. 2 of the paper, we describe what we mean by a 
reconfigurable computational network and its underlying dis- 
tributed control mechanism. In Sect. 3, we describe the lan- 
guage INSIGHT, a language in the LUCID family of dataflow 
languages [22], which we have developed to be used both for 
specification of  dataflow architecture configurations, and for 
the high-level expression and coding of our computer vision 
algorithms. In Sect. 4, we describe the system software and in 
Sect. 5, we describe the architecture from a hardware point of 
view. 

2 Reconfigurable computational network 

In this section, we give a perspective of the reconfigurable 
computational network that emphasizes those aspects of the 
computation that the network must handle and about which a 
programmer using the network does not have to think. Such 
a perspective illuminates the division of the hardware domain 
from the software domain. It provides the hardware-software 
interface conventions by which the semantics of the language 
INSIGHT can describe the essence of the architecture of the 
reconfigurable computational network. 

The operation of a reconfigurable computational network 
involves the flow of sequences of high-level data units through 
a network of architectural primitives. Architectural primitives 
are of two types: processors and connections. Processors have 
one or more inputs and one or more outputs. They produce 
high-level data units of the same or different kind than the input 
data units for output lines after some finite execution time. The 
amount of time taken to execute may be proportional to data 
unit size, or it may be worse than linear time, as it might be 
for a search algorithm. 
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Fig. 1. A top-level view of the reconfigurable computational network 

More formally, a network configuration consists of a set 
of Processors P and a specification C of  the interconnec- 
tions between the processors. Each processor p G P is a pair 
p = (Ip, Op) where Ip is a named set of  input lines and Op is a 
named set of  output lines. Each connection c E C is a quadru- 
ple c = (o, pl ,  i, P2) specifying that output line o of  processor 
Pl connects to input line i of  processor p2. A top-level view is 
shown in Fig. 1. 

Since different processors may take different amounts of  
time to process their input data structures and produce their 
output data structures, the control insures that a processor only 
begins processing its input data when its input buffer contains 
valid data. For this purpose, there is a state s associated with 
each buffer. Legal values for the state s are: 
1. Ready and unconsumed: the buffer has valid new data, but 

not all the processors that require it have accepted it. 
2. Ready and consumed: the buffer has valid data that has 

already been used by the processors that require it, and the 
new data to be loaded into the buffer is not yet ready. 

3. Not ready: the buffer has no valid data in it. 
A process can execute when all of  its input buffers are in 

the ready and unconsumed state, and the output buffer it has 
been assigned has had its data consumed by every process for 
which it is an input. 

The execution of the process takes some finite amount of 
time. When the execution is just starting, each of the previous 
output buffers are in the state ready and unconsumed. As soon 
as an output buffer reaches this state, it is available to the 
processes that wish to consume it. It reaches the state ready 
and is consumed only when all of  its potential consumers have 
consumed it. 

3 Insight 

Figure 2 illustrates a top-level view showing how the soft- 
ware relates to the Proteus hardware. The processors are par- 
titioned into groups. Each group is controlled by a SPARC 

Group 0 ControIler Group I I Controller 
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Fig. 2. Diagram of the software 
Fig. 3. INSIGHT program graph generated automatically by the IN- 
SIGHT translator 

board. The groups are partitioned into clusters. Each cluster 
is controlled by an Intel 960. Each cluster has four Intel 860 
pixel processors. High-level programs for Proteus are written 
in the INSIGHT programming language. The INSIGHT pro- 
gram describes the flow of a sequence of  images, other data 
structures, and their resultant data structures through the Pro- 
teus network. Each process of  the network performs one or 
more operations on its input image(s) and/or structure(s) to 
produce output image(s) and/or other data structure(s). 

The most important aspect of the INSIGHT language is that 
it expresses relationships, not commands. The order in which 
the relationships are stored in the program has no effect on the 
results. Instead, the relationships dictate a graph structure that 
defines the flow of data through the system. Figure 3 illustrates 
the graph structure for a program shown here. This graph must 
be mapped onto the Proteus hardware. 
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A typical program: 

function Detect 
(integer array[256, 256] GO;) 
(binary array[256, 256] B4;) 

where 
declare 

integer array[256, 256] G1,G2,G3; 
binary array[256, 256] B 1,B2B3; 
integer constant T1=195,T2=20,T3=25; 
integer constant W 1 =5 ,W2= 15,W3 =42 ,W4= 126 ,W5--3; 

relations 
B1 = G0<T1; 
G1 -- GO closedby box(W1,W1); 
B2 = (G1 - (G1 openedby box(W2,W2)))>T2; 
B3 = (B1 or B2) dilatedby box(W5,W5); 
G2 = fill(G1 maskedby B3); 
G3 = G2 openedby box(W3,W3); 
B4 = (G3 - (G3 closedby box (W4,W4)))>T3; 

endwhere 

The input to this INSIGHT program is a 256 x 256 gray- 
scale image GO, and the output is a 256 x 256 binary image 
B4. Intermediate gray-scale images G1, G2, and G3 and the 
intermediate binary images B 1, B2, and B3 are also produced 
during the execution of the program. The first relation says 
that gray-scale image GO is to be thresholded using threshold 
T1 (a constant), and the result is to become binary image B 1. 
The second relation says that GO is also to be the input to a 
morphological closing operation [8] with a structuring element 
that is a box (rectangle) of dimension 5 • 5, with the result 
becoming gray-scale image G1. The third relation specifes 
the production of another binary image B2 that is the result 
of performing an opening in G 1, subtracting the opening from 
G1 itself, and thresholding the result of the subtraction. The 
other relations can be analyzed in a similar fashion. 

The INSIGHT translator maps the algorithm onto the hard- 
ware. The INSIGHT translator has two main parts: the scan- 
ner/parser module and the linker/partitioner module. The scan- 
ner/parser module uses standard translation techniques. It em- 
ploys a finite machine for lexical analysis and a recursive de- 
scent parsing mechanism with look-ahead by one, augmented 
by a precedence parser for expression. The output of the scan- 
ner/parser module goes to the linker that replaces single nodes 
of the graph representing INSIGHT library routines by pre- 
stored subgraphs that came from previous translations. Also, 
nodes representing morphological operations that use possi- 
bly complex structuring elements may be decomposed into 
sequences of nodes that use smaller structuring elements [22]. 
This decomposition is beyond the scope of this paper. The par- 
titioner is the only nonstandard part of the translator. Its job 
is to map the operations in the final dataflow graph onto the 
reconfigurable network. The goal is to produce the mapping 
with the highest throughput, so that as much data as possible 
can be handled by the reconfigurable network. 

The problem of the partitioner can be stated as follows. 
Given a dataflow graph with k nodes with an estimation of 
the amount of processing time each takes, and a multiproces- 

sor shared memory system with Npro~ processing elements, 
with a specified interconnection network and interprocessor 
communication costs, determine how the operations must be 
partitioned among the processors to gain maximum through- 
put. Initially we chose a greedy technique as in [1]. 

To control the load balancing, each processor has all of 
the nodes it will process assigned to it. The algorithm keeps a 
list of all nodes that have had all of their ancestors allocated. 
This is called the ready list. A heuristic is generated for each 
of the nodes in the ready list at each step, estimating the cost 
of assigning that node to the current processor. The heuristic 
is based on the expected computation time of the node, the 
load so far on the processing block, and the communication 
required by assigning this node to this processing block. The 
lowest heuristic cost is assigned to the processor, a new ready 
list is determined, and the process repeated until no node has 
a heuristic below a threshold value. At this point, nodes are 
assigned to the next processing block. 

After allocating the nodes in this fashion, a relaxation pro- 
cedure is used to determine if one or more nodes can be shifted 
between processors to lower the maximum load. The first step 
of this procedure is to determine which processing element has 
the largest load of computation + communication determined 
by 

L(max) = max Z(t i ,~  + Ci,~) (1) 
~ = I  . . . . .  Nprnc i=1 

where Nproc is the number of processors, N~ is the number of 
nodes assigned to the nth processor, ti,~ is the computation 
time of the ith node assigned to the nth processor, and c~,~ is 
the communication time required by the nth processor due to 
the ith node. 

When the processor with the largest load has been deter- 
mined, then each node assigned to that processor is checked 
to see if it can be moved to the previous or the next processor. 
A node can be moved to the previous processor if none of its 
input arcs are generated by nodes on the processor to which 
this node is currently assigned. Similarly, a node can be moved 
to the next processor if none of its output arcs are consumed 
by nodes on the processor to which this node is currently as- 
signed. If a node can be moved, then the new maximum load 
(see Eq. 1) that this new assignment would create is calculated. 
If this new maximum load is less than the current maximum 
load, then the movement that reduces the new maximum load 
is taken, and the process is repeated. If none is found that 
reduces the maximum load, then the relaxation is complete. 
Two methods of selecting the modification have been used: 
(1) The maximum optimization rule: the node that lowers the 
maximum load the most is selected, and (2) the minimum dis- 
turbance rule: the node that lowers the maximum load the least 
is selected. 

The low-level software support for the high-level program- 
ming environment is the processing library. As an example, the 
image-processing library contains the processor code for the 
operations in the INSIGHT application program. Each image- 
processing operation in the following is a verb in INSIGHT. 



The initial set of functions in the library include arithmetic and 
logical operations on images, geometric spatial transforms, 
convolution and morphological operations, neighborhood op- 
erations, connected components, and masking. 

In the Proteus system, users are allowed to choose the 
number of processors among which they wish to partition the 
algorithm. This partition is then replicated with successive 
inputs images routed to successive processor blocks until all 
processors have been used. 

4 System software 

The system software consists of a loader and debugger running 
on the Proteus host, message processing and control modules 
running the group and cluster controllers, and an interrupt han- 
dler that is the only system-level software resident on the pixel 
processors. 

4.1 Loader 

As specified by the INSIGHT program and the number of 
processors the user chooses to use for each task, the translator 
generates an assignment file. Each assignment file defines a 
set of generic processors and the job partitions between them. 
Each assignment fiIe defines a task class. The Proteus system 
can execute multiple instances of a single task class or single 
instances of multiple task classes. 

The user issues a task(s) request to the host to start load- 
ing and task execution. A task(s) request indicates which task 
class(es) should be executed, the external data sources for each 
task class if they need to be defined. As specified by the user's 
task(s) request, the loader retrieves the assignment file(s) pro- 
duced by the translator. It determines if the Proteus hardware is 
capable of executing the specified assignment. If all is well, the 
loader performs the mapping of the logical processor names 
in Proteus to the symbolic processor names used by the trans- 
lator to define the generic processor set. The mapping can be 
many-to-one or one-to-one. Physical processors are the true 
working horses for computation. For reasons of flexibility and 
fault tolerance, the loader does not assign jobs to physical pro- 
cessors directly. The cluster controller has that responsibility. 
At run time, it makes a one-to-one mapping between a logical 
processor name and the true physical processor. 

Throughout the system, the logic and physical mapping is 
decided hierarchically. The host decides the mapping between 
the logical groups and the physical groups. Each group con- 
troller decides the mapping between logic clusters and physical 
clusters. Each cluster controller assigns physical processors to 
logic processor names. The containing relationships between 
logical processors, logical clusters, and logical groups are pre- 
defined, i.e., a logical processor belongs to a certain logical 
cluster, which, in turn, belongs to a certain logical group. 

Each logical processor inherits the assignments from its 
corresponding symbolic processor. According to the inheri- 
tance relationship, each logical processor has a list of jobs 
to be executed. Each job contains the following attributes: 
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program_id, input_arcs, output_arcs, and constant parameters. 
Each job has a uniqe identification assigned by the loader. 
Each arc has a unique arc identification assigned by the loader. 
Buffers are assigned to each arc. How many buffers should be 
assigned is decided by the translator. The cluster controller 
assigns actual memory addresses to each buffer. 

The loader packs all the schedule information needed by a 
logical cluster into a scheduling file and all the constant param- 
eters needed by the jobs executing within that logical cluster 
into a constant file. At run time, the cluster controller transfers 
task scheduling information from the cluster to the pixel pro- 
cessor via a task control block. The task control block contains 
the identification tag, starting address of the program to be ex- 
ecuted by the pixel processor, and pointers to the buffers to be 
used for input and output. According to the jobs assigned to 
the logical pixel processors with each logic cluster, the loader 
determines which programs should be loaded to that cluster 
and assigns memory space in shared memory to each program. 
Then, the loader creates a transfer request file for each group. 
Each transfer request file has a list of file transfer requests. 
Each request has the following format: 

<request> := <source> <destination list> 
<source> := <file_name> <file_size> 
<file_name> := full path name of the file to be transferred 
<destination_list> := <destination> I 
<destination> <destination_list> 
<destination> := <logic_cluster_name> 
<physical_starting_address> 
After all the required files are generated properly, the host 

uses the socket facility of the Unix system to send a load- 
ing request to each group via Ethernet. Each request includes 
two parts. The first part specifies that the action is loading. 
The second part is the full path name of the transfer request 
file. According to the message received, each group controller 
retrieves the transfer request file through the network file sys- 
tem (NFS) from the disk. Each group controller reads in its 
file specified in the request file, writes it to the VME buffer of 
the destination cluster(s) and requests the destination cluster 
controller to move it to the shared memory starting from the 
physical address specified in the request file. The cluster con- 
troller uses the check sum stored in each file to check for any 
transmission errors. 

When all the files specified in the transfer request file have 
been moved to the clusters, the group controller sends a file 
transfer complete message to each cluster in the group. If the 
file-transfer-complete messages have been received, every file 
is properly stored, and every processor in the group is ready to 
work, the cluster controller sends a ready-to-work message to 
the group controller. After receiving a ready-to-work message 
from all the clusters wihin the group, the group controller sends 
a ready-to-work signal to the host. After receiving the ready- 
to-work message from all the groups, the host synchronizes 
the external data sources, and the Proteus system begins the 
task(s) execution. 
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4.2 The communication system 

The processing and computation in Proteus use a variety of 
software and hardware control mechanisms. Each pixel pro- 
cessor in a cluster and the cluster controller have shared- 
memory mail boxes. They also communicate with each other 
via interrupts. At run time, the cluster controller dispatches a 
job to each idle pixel processor by putting the job in the task 
control block and interrupting the pixel processor to indicate 
that the task control block is ready to be read. When a pixel 
processor finishes its assigned job, it creates a task completion 
record and interrupts its cluster controller to report the results. 
After receiving the interrupt signal from the pixel processor, 
the cluster controller reads the completion record to get the in- 
formation trom the pixel processor, updates the status of data 
regions due to the task just completed, and continues to acti- 
vate sleeping processors. When a busy processor completes a 
task, it consults its task control block area to determine its next 
task. In this manner, busy processes do what they have to do 
without ever having to be interrupted once they begin their pro- 
cessing. If all tasks in the processor's task control block have 
been completed, the pixel processor will interupt the cluster 
controller with the run completion message and put itself to 
an idle state. 

All messages passing between processors consist of copy- 
ing the message (header and data) from the source-processor 
memory to a memory location that the receiving processor can 
access. This memory is accessed in a synchronized manner to 
prevent confusion. The sending processor and receiving pro- 
cessors view the buffer in a complementary fashion as shown 
in Fig. 4. 

In Fig. 4, processors A and B are shown sharing a set of 
message buffers. Notice that the Processor B Transmit buffer 
is the processor A reception buffer and vice versa. Data from 
A to B are copied into the buffer shown on the right and data 
from B to A are copied into the buffer on the left. 

The general steps processor A goes through to send a mes- 
sage to Processor B are: 
1. Processor A checks its transmit buffer state and if in the 

unread state waits until a later time to send the message. 

2. When the buffer state is set to read by processor B, proces- 
sor A has control of the contents of the processor A transmit 
buffer. Processor A then cupies both the header and the data 
of the message into the processor A transmit buffer. 

3. Processor A then sets the buffer state to unread, indicating 
a new message is in the buffer. 

4. Processor A completes its portion of the message transfer 
by interrupting processor B to cause it to check its reception 
buffer. 
When a processor B receives a message, it performs the 

following processing: 
1. It receives an interrupt that causes the processor to stop 

its current processing and check to see if it has received a 
message. 

2. The message check consists of making certain its reception 
buffer is in the unread state. 

3. When processor B has finished with the reception buffer 
(either by copying it into a local buffer or processing it 
directly), it sets the buffer state to read. 
Finally, to provide an aid for execution tracing that can be 

used in performance monitoring, tuning, and debugging, the 
Proteus system software has been provided with the portable 
instrumented communication library (PICL) developed by 
Oak Ridge National Laboratory [8, 9, 12]. The PICL commu- 
nication library was originally developed to provide portability 
and easy parallel program development. It has a good facility 
for execution tracing, which is its major use in Proteus. 

4.3 The debugger 

The debugger of the Proteus system is implemented as two 
communicating processes, one on the host and the other on the 
Proteus system. The debugger interacts with the user through 
the host's window system. It has the capability of supporting 
the development of system and application programs. The de- 
bugger provides the user with the capabilities of controlling 
and monitoring the execution of all the pixel processors in the 
Proteus sytem. Therefore, the user must have full knowledge 
of the system architecture, how the system operates, and its 
physical sources of input images during the run time. 

On the host, the debugger is simply a graphical user in- 
terface (GUI) that interacts with the user, and manages the 
bulk of debugging information (e.g., symbol tables) that al- 
lows it to map symbolic information to physical addresses in 
the hardware. However, the physical laydown of code break- 
points, memory accesses, and modification of processors' exe- 
cution states must be done by system services provided by the 
cluster controllers and the pixel processors from the hardware 
side. 

Along with the execution of the hardware, the debugger 
is also in control of three other system applications on the 
host. They are the loader, the high-level simulator, and the 
low-level simulator. Each of them supports the debugging of 
image processing application programs at a different level. 

At the application level, the subject language is INSIGHT. 
At this level, the debugger allows the user to control execu- 
tion by setting image watchpoints (i.e, data breakpoints) in 
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the INSIGHT dataflow graph. When a pixel processor picks 
up a task that will be producing an output image associated 
with an image watchpoint, it is interrrupted and the debugger 
takes control of its execution. At this debugging level, the user 
can invoke the high-level simulator to execute the correspond- 
ing INSIGHT program. The simulator, which also runs on the 
host, will produce a trace of images that can be compared to 
those that are generated by the hardware. To allow the user to 
visualize the results, the debugger can compare two images 
and display the corresponding images in a window. 

At the system level, the subject language is the assem- 
bly language of the i860 pixel processor. The user may trace 
through the execution of a program by a pixel processor by 
setting code breakpoints inside the program and single step- 
ping through the program. The user may invoke the low-level 
simulator to execute this program in the same sequence that 
would be executed in the hardware. By comparing the execu- 
tion states of the pixel processor against those generated by 
the simulator at Certain points of the course of execution, the 
debugger is able to locate any error that could occur. 

The high-level simulator, written in ADA and executed on 
the SparcStation host, is designed to verify that INSIGHT algo- 
rithms and the Proteus image-processing library are correctly 
implemented in Proteus. Under the control of the Proteus de- 
bugger, the high-level simulator executes vision algorithm that 
are exactly the same algorithms executed by the Proteus hard- 
ware. A comparison between the two results can then provide 
information about the correctness of Proteus's result. 

There are three major components in the high-level sim- 
ulator: a debugger interface, a controller, and an application 
library. The debugger interface parses the command line for 
the simulator passed down from the debugger. The controller 
figures out the appropriate tasks to carry out while the ap- 
plication library is accessed by the controller for the number 
crunching. The high-level simulator can be instructed to start 
a new application by loading in an INSIGHT program. It is 
able to find the exact steps involved in performing the cal- 
culation for each node in the INSIGHT dataflow diagram. It 
also provides a session-save feature so that intermediate re- 
sults and system status can be loaded back into the system in a 
future session with the session-reload capability. Although it 
functions under the control of the Proteus debugger, the high- 
level simulator is a full-fledged image-processing system on 
its own. 

Graphical user interface. The GUI was developed under an X 
Window-based platform called the transportable application 
environment (TAE). It has: 
1. One master control window that allows users to set/change 

the debugger context at the cluster level and to view the 
INSIGHT source subject to the debugger session 

2. One cluster control window that allows users to control the 
execution of the dataflow graph associated with the subject 
INSIGHT program 

3. One processor control window that allows users to control 
the execution of particular application program in sequen- 
tial fashion 

4. A number of pop-up windows that prompt for user inputs 

The debugger is a mouse-driven system that takes input 
parameters from the keyboard for some debugger functions. 
Through the GUI, users can view the updates of the program 
state and control program execution conveniently during a de- 
bugger session. 

Set image watchpoints. In a debugger session, when the user 
suspects that the output image of a primitive operation is not 
correct, he/she may switch the debugger context to the asso- 
ciated cluster in which the image is generated and establish 
a watchpoint on the image. The debugger maps the symbolic 
name of the image to a logical identification number. Then 
the debugger processes the schedule file corresponding to the 
designated cluster and determines all the physical identifica- 
tion numbers associated with that image in the context cluster. 
Finally, the debugger marshalls the destination address of the 
cluster and the physical identification numbers into a debugger 
message and delivers it to the cluster controller of the desig- 
nated cluster. 

When the cluster controller receives the debugger message, 
it checks all the task control blocks in the cluster, tagging those 
of the designated output images. The tag tells the microproces- 
sor that picks up the task control block to stop execution once 
after it has picked up the task. At that time, the corresponding 
microprocessor is under the control of the debugger; it polls 
for debugger messages from the host and acts as requested. 
The microprocessor remains under the control of the debug- 
ger until a debugger message tells it to resume execution. 

The list of possible user requests include: 
1. Set data breakpoint on any particular memory location. 
2. Set code breakpoints in the assembly program associated 

with that task. 
3. Peek and modify the contents of specific image pixels or 

registers. 
4. Probe for the execution status of the microprocessor. 
5. Single step through the program. 
6. Resume the execution of the assembly. 

Therefore, when the user wants to trace the execution of 
a particular program that might produce an erroneous image 
he/she is interested in, he/she must set an image watchpoint 
on that image before the execution of the INSIGHT algorithm 
gets to that point. 

Furthermore, the user is also allowed to remove any image 
watchpoints that have been established in a debugger session. 
The debugger puts the physical identification numbers asso- 
ciated with the specified image into a debugger message. The 
message is delivered to the subject-cluster controller, which 
then removes the watchpoint tags from the associated task 
control blocks. Their output images are identified by those 
numbers enclosed inside the message. 

Code breakpoints. In the debugger, code breakpoints can be 
established in and removed from application programs dur- 
ing a debugger session. The implementation of breakpoints 
illustrates the division of labor between the two components 
of the debugger. Based on user commands and symbol table 
information, the host component is responsible for deciding 
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where breakpoints are located and maintains a list of break- 
point records for each application program. For each request, 
it sends a debugger message to the interrupt handler of the 
designated processor, which is responsible for laying down 
the software trap instruction and then later restoring displaced 
instructions, as the user requests the removal of the associ- 
ated breakpoints. It is also the responsibility of the interrupt 
handler to maintain the finer details of the state of the sub- 
ject program. If the subject prograin is to be resumed from a 
halt at a breakpoint, the interrupt handler knows that it must 
back up and single step the lost instruction, before re-laying 
the breakpoints and restarting the subject program. 

In the debugger, code breakpoints are implemented via the 
software breakpoint mechanism. A code breakpoint can be 
established in a program by replacing the 4-byte object code of 
the instruction at the designated program location with that of 
the software trap instruction. This modification is done directly 
by the interrupt service routine on the copy of the application 
program that is stored in the shared memory of the context 
cluster. 

Some features of the i860 microprocessor impose con- 
straints on the establishment of breakpoints in application pro- 
grams. There are three constraints: 
1. Breakpoints cannot be established at floating point instruc- 

tions that will be executed in dual instruction mode. 
2. No breakpoint may be established at the next instruction 

that follows a delayed branch instruction in single instruc- 
tion mode. 

3. No breakpoint may be established at the next three instruc- 
tions that follow a delayed branch instruction in dual in- 
struction mode. 
The first constraint is due to the dual instruction mode 

in the i860 microprocessor, in which the integer core unit and 
floating point unit can execute instructions in parallel. This ca- 
pability is supported by an instruction-fetch unit that can fetch 
two consecutive instructions (one integer instruction and one 
floating point instruction) at the same time. During execution 
in dual instruction mode, the instruction sequence consists of 
eight-byte aligned instructions with a floating-point instruc- 
tion in the lower four bytes and a core instruction in the upper 
four bytes. However, the software trap instruction is defined 
in the core instruction set. The result of placing a core instruc- 
tion in the lower four bytes of any instruction sequence that 
would be executed in dual instruction mode is undefined. An 
error may occur when the floating point unit decodes the core 
instruction, as if it were a floating point instruction. 

The second constraint is due to the pipelined execution of 
instructions in the processor. In the delayed branch mecha- 
nism, the instruction that follows the delayed branch instruc- 
tion in the program will be executed regardless whether the 
branch is taken. If this instruction were replaced by a software 
trap instruction, the processor would still be interrupted at that 
location, but the delayed branch mechanism would have been 
broken and the execution states could have been changed after 
the interrupt. Therefore, it is impossible to resume the program 
execution from the breakpoint location because the branch in- 
struction has already been executed before the interrupt. As a 

result, the second constraint is imposed. The third constraint 
is implied by the first two constraints. 

Based on these three constraints, the debugger builds up 
a code table for each of the application programs involved 
in the INSIGHT algorithm. The code table of an application 
program is a hash table of records containing the offset address 
and object code of instructions at which brakpoints can be 
established without violating the three constraints. When the 
user wants to set a breakpoint at a particular program location, 
the debugger will compute the corresponding offset address 
and looks up the associated code table to determine whether 
a breakpoint can be established. This mechanism is necessary 
because the user may mess up the program behavior if he/she 
is provided with too much freedom to change the application 
program. 

After the offset address of the breakpoint has been deter- 
mined, the debugger determines the physical address of the 
associated program in the cluster processor and computes the 
physical address. It marshalls the physical brakpoint address 
in a debugger message and sends it to the pixel processor. 
When the pixel processor receives the message, it simply over- 
writes the specified memory location with the object code of 
a software trap instruction. After the operation has been ac- 
complished, the processor will return an acknowledgement 
message to the debugger. 

Data breakpoint. To provide control of execution for appli- 
cation programs, the debugger uses a data breakpoint mecha- 
nism. As code breakpoints are implemented by software, the 
implementation of the data breakpoint or watchpoint is hard- 
ware oriented. Each i860 microprocessor has a data breakpoint 
register, db that supports the implementation of the watchpoint 
mechanism. 

The data breakpoint register monitors the contents of the 
address bus of the microprocessor. When the i860 micropro- 
cessor accesses an operand at the address in the data breakpoint 
register, the register generates a trap that interrupts the execu- 
tion of the processor. When a trap occurs, control is passed 
to an interrupt service routine that determines the type of trap 
by examining the trap bits in the psr register. In this case, ei- 
ther the instruction-access or the data-access trap bit will be 
set, depending on whether the operand causing the trap is an 
instruction or a datum. 

The major drawback of using the data-breakpoint regis- 
ter to implement the watchpoint mechanism is that there is 
only one data-breakpoint register available per microproces- 
sor. Therefore, only one watchpoint can be established in an 
application program at any time, and this obviously cannot 
satisfy the user's needs. 

The user can establish a watchpoint on any memory loca- 
tion that is confined to the scope of visibility of the application 
program associated with the pixel processor. It could be one 
of the following: 
1. Any pixel of the input/output images. In this case, the de- 

bugger asks the associated cluster controller for the physical 
address of the designated image buffer, and then computes 
the physical address of that pixel. 



2. Any local variable of the application program. In this case, 
the debugger finds the offset address of the program vari- 
able by looking up the program's symbol table and the phys- 
ical address of the program in question by looking at the 
corresponding schedule file prepared by the loader. They 
are then added to get the physical address of the variable. 

3. Any physical memory location, as specified by the user. 
In this case, no address mapping or translation is required 
because the specified address is already a physical one. 
After the physical address of the designated memory lo- 

cation has been computed by any one of these methods, it is 
marshalled into a debugger message, which is delivered to the 
designated microprocessor. Finally, the interrupt handler of 
the processor places the address in the i860 f db register and 
sets the BW bit in the psr register to catch any write to that 
memory location. 

In contrast, the removal of a data breakpoint from a pro- 
gram is simpler. The user simply issues the request and a 
debugger message is delivered to the designated micropro- 
cessor. The processor simply turns off the BW bit of the psr 
and the data breakpoint is deactivated. It must be noted that 
the db register of every microprocessor is deactivated when 
it has finished executing an application program because the 
watchpoint of the current scope cannot be passed on to other 
programs. 

Display-and-modify values. To display or modify the values of 
image data and program variables as execution proceeds, we 
need to know where the values are stored and we need to know 
how to print them. Thus, we need storage and type information 
for each variable from the compiler. This is usually part of the 
information kept in the compiler's dictionary, and is generally 
stored in object files produced by the compiler. 

In order for the storage information produced at compile- 
time to be accurate at run time, the code corresponding to 
each statement must store current values of variables in the 
location assigned to them by the compiler. Otherwise, if the 
current value of the variable is in a register somewhere, but not 
in the location given by the compiler, we will not get the current 
value. Some sophisticated debuggers have a list of locations 
for each variable at various program points, and they are able 
to tell the users whether the current value of a variable is active 
in memory or stored in a register at any program point. 

There are three data entities that can be accessed by the 
user. They are program variables, image pixels, and processor's 
registers. To access a variable defined in the pixel processor's 
current task, the debugger looks up the variable's offset ad- 
dress in the symbol table of that application program. Then 
it determines the program's physical address in the memory 
shared by the designated cluster processor. The lookup for the 
offset address of a variable is a 3-tuple operation: 

lookup(symbol-table, variable, offset-address) 

Then it computes the physical address of the variable, mar- 
shalls it into a debugger message, and sends it to the pixel 
processor. 

Similarly for accessing image pixels, the debugger asks 
the pixel processor for the physical address of the associated 
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buffer and the offset address of the specified pixel. Then it 
computes the physical address of the pixel and sends it to the 
pixel processor in a debugger message. 

When the pixel processor receives a message for memory 
acccess, it can do one of the following: 
1. For the display/operation, it reads the content of the spec- 

ified memory location and returns it to the debugger in a 
message to acknowledge the message it received. 

2. For the modify/operation, it extracts a value from the mes- 
sage, writes it to the specified memory location, and then 
returns an acknowledgement message in response to the 
message it received. 
In this manner, the interrupt service routines need not have 

any knowledge of what kind of data they are dealing with. 
In the case of registers, the access mechanism is different. 

When the debugger gains control of a processor, the contents 
of the processor's registers are marshalled into a single mes- 
sage and delivered to the debugger by the processor itself. The 
debugger copies this information from the message to a buffer. 
Any display or modification request pertaining to an individ- 
ual register is made to this host's copy. This copy of registers' 
contents is shipped back to the pixel processor before the de- 
bugger releases the control of the processor. Then the pixel 
processor restores the updated values for its registers before it 
resumes execution. 

The pixel processor interrupt handler. The pixel processors 
do not have an operating system. Each has only an interrupt 
handler to take care of its system level interactions. By putting 
as many as possible of the operating system functions with the 
cluster controller processor, the pixel processor can devote its 
entire resources to the operation. 

The interrupt handler determines and verifies the cause of 
any trap and takes appropriate action. There are three kinds of 
traps: reset, external, and software. Whenever a trap occurs, ex- 
ecution of the current instruction is aborted immediately. The 
user mode and interrrupt mode are saved in a stack, the pro- 
cessor goes into supervisor mode, and interrupts are disabled. 
Then the cause of the trap is determined, and the appropriate 
action is taken. 

On reset trap, the processor performs the boot test, flushes 
the instruction and data cache, and copies the buffer pointers 
from the reboot record to the safe storage area in the pixel 
processor's local memory. After the boot code is executed, 
the pixel processor sends a reboot done message back to the 
cluster controller. 

If an external trap other than a reset trap is detected, the 
interrupt handler performs the task specified in the message 
buffer. After it finishes the job, it sends a return message to 
the cluster controller. Then the resume address is determined 
and the process before the interrupt continues. If a software 
trap occurs, the interrupt handler deterines the cause, takes 
appropriate action, and resumes execution. 
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tween groups is through a circuit-switched enhanced hyper- 
cube connection. A separate control network of buses within 
each group, and ethernet among groups, allows additional con- 
trol and communication. A top-level view of the system is 
shown in Fig. 5. 

Image Sequence Source Group 7 

�9 32 Parallel Channels for image transfer 
�9 8 Groups ExpandabIe to 32 
�9 Each Group has up to 9 Clusters 
�9 Each Cluster has 4 Processors 
�9 Peak input rate of 25 512x512 image frames per second on each channel 

d,e 

Enha ~ ~ J  , ,~MEbus  ~ \ i  

l// "', 

Fig. 5. A top-level view of the Proteus architecture 
Fig. 6. Exploded view of the proteus system 

5 Proteus hardware description 

As illustrated in Fig. 6, our implementation of the Proteus ar- 
chitecture has tightly coupled processor clusters connected in 
groups. Communication within a cluster is through an 8-MB 
shared memory. Communication within a group is through 
a circuit-switched cross-bar connection. Communication be- 

5.1 Circuit-switched enhanced hypercube 

The binary hypercube-based computers, cosmic cube, Ncube, 
and FPS T-Series [5], use packet switching to communicate 
from node to node. Proteus uses circuit switching. A Proteus 
node, which we call a group, consists of nine clusters, each hav- 
ing four processors - a total of 36 processors. The groups are 
connected in an enhanced hypercube structure. An enhanced 
hypercube contains two links in any one dimension of a reg- 
ular hypercube, as shown in Fig. 6. The primary advantage 
of the enhanced hypercube architecture is the permutation- 
embedding capability. A centralized algorithm at the host can 
route any arbitrary permutation. The 32 groups in a full scale 
system can thus communicate with one another in an arbitrary 
permutation for the rapid exchange of data. Because the data at 
the intermediate nodes is not bufferd, the transmission across 
the diameter of the hypercube is negligible. 

The enhanced hypercube is scalable from a 3-cube to a 
5-cube with 8 to 32 nodes, or groups. The primary advan- 
tage of the large number of processors in each group is the 
efficient communication for large-grain parallelism problems 
using large blocks of data. The external input is received on 
32 parallel channels equally distributed to the enhanced hy- 
percube nodes, The enhanced hypercube of Proteus is also a 
special case of the generalized folding cube [2]. Direct applica- 
tion to algorithms is provided by trivial embedding of meshes, 
rings, tori, etc. The general interconnections available allow 
many algorithms to be mapped directly into Proteus with op- 
timal performance. The generalized cube has multiprocessors 
at each node. Studies have shown that efficiently coded algo- 
rithms on the hypercube underutilize the available bandwidth 
[9]. By clustering processors at each node, the Proteus archi- 
tecture improves link use. Detailed descriptions of the com- 
munication network and the enhanced hypercube are given in 
Sect. 5.6. 

5.2 Allocating caches 

Clustering of processors, while cost effective, may cause con- 
tention for shared resources. Detailed simulation, program 
studies, and architectural trade-offs allow us to optimize the 
use of the shared memories at clusters. In effect, the advan- 
tages of local memory and cache memory have been combined 
by the use of an innovative implementation of read and write 
allocation [20]. Read and write allocation force cache accesses 
to hit, thereby reducing shared memory accesses, and limiting 
multiprocessor contention. For initial applications, read/write 
allocation has shown that shared bus accesses are reduced by 
6.6% in the single program, multiple datastream mode [19]. 
The allocating cache is a high-performance interconnect that 
is much more general than the register memories used in the 
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orthogonal multiprocessor (OMP) [10], which requires the 
explicit loading and unloading of register variables. Proteus 
caches can be set to various modes by using mode bits in the 
address, so any combination of modes can be used in pages 
that map to unique positions within the cache. The caches are 
described fully in the design section, Sect. 5.7. 

5.3 Fault tolerance 

Initial design goals focused on the incorporation of limited 
fault tolerance. By requiring a general connectivity of clusters 
and the arbitrary assignment of jobs to processors, system- 
level faults [16] can be diagnosed at the cluster level. Pro- 
teus incorporates a small amount of spare processing capacity 
that is used for roving tests and redundant computation, to 
create on-line fault diagnosis. The fault diagnosis strategy is 
discussed further in the architecture section. 

These unique aspects of Proteus create a research com- 
puter that advances current architectural thought. The Proteus 
architecture is a test bed for hypercube communications, al- 
locating caches, and system-level fault diagnosis. Simulation 
shows these features give higher performance and reliability 
than other architectures. 

5.4 Enhanced hypercube 

The hypercube is an undirected graph of 2 n vertices where 
each vertex has n links, or edges to other vertices. A 3D cube 
has 2 3 = 8 vertices, and each vertex has 3 links. A permutation 
in the hypercube is a connectivity set used to represent the 
communication to occur. For example, a 2-cube permutation 
is [3,2,0,1] so that vertex 0 connects to 3, 1 to 2, 2 to 0, and 
3 to 1. Arbitrary permutations are possible in a cube of any 
dimensions, but this has not been proven. 

Proteus uses the enhanced hypercube static network for 
which it has been proven that arbitrary permutations can be 
embedded [3]. The enhanced hypercube uses two links instead 
of one in any one dimension of the original binary cube for 
n > 3. This gives us complete reconfigurability. Figure 6 
shows Proteus with n = 4, and the extra links connecting all 
nodes in the vertical dimension. 

The links marked a, b, e, and d are the high-speed serial 
links input and output for one group. The e link is the additional 
link that allows full permutation capability. The exploded view 
of the group contains the Unix board group controller (GC), the 
clusters (CO to C8), and the communication interface or cross- 
bar (xBar). Clusters are connected by crossbar to each other 
and to the enhanced hypercube. I/O from external sources is 
fed through the I/O buffer marked as IB. An exploded view 
of a single cluster is shown, and consists of the cluster control 
processor (CCP), the shared memory (SM), the I/O buffer and 
memory (I/O DPM), and the reduced instruction-set computer 
(RISC) processors [or pixel processors, (PP)]. Pixel proces- 
sors in a cluster share memory and a serial I/O link. External 
caches and control processors help ease contention and mul- 
tiprocessing performance degradation. 

Intra  ~ Clus te r~  Inter " A . - -  ~ 

Cluster I Intra ] Oro-up .~Hos~ / Group/ ; , , , -  

P 1 /  " 

Fig. 7. Communication hierarchy 

5.5 Communication 

The communication structure, shown in Fig. 7, shares re- 
sources and distributes control overhead hierarchically. Cur- 
rently, communication through hypercube links is arranged 
by the host. The group controller sets up communication 
within groups, and the cluster controller sets up communica- 
tion within clusters. All links to the crossbar are optical serial 
links that transmit/receive data at 250 Mbits/s. When a path has 
been set for cube communication, data passes directly from the 
source cluster to the destination cluster in another group. No 
storing and forwarding is done with the circuit switch connec- 
tion. 

Within the group, a crossbar connects serial links to and 
from sources and destinations. In parallel with cube commu- 
nication, additional clusters within the group can transmit and 
receive data. At any time, k clusters in a group can be using 
cube connections, so that nine k clusters can communicate 
amongst themselves. The cluster's four processors share a se- 
rial I/O link, which is accessible through a dual port memory 
buffer. The shared memory provides intracluster communica- 
tion, and the dual port buffer provides the highest I/O perfor- 
mance. The control of communication and the control network 
are described in Sect. 5.6. 

When a PPil in a cluster j l  in group ]~1 wants to send a 
block of data to another PPi2 in cluster j2 in group ha, the path 
is set up under the control of cluster controller j l ,  j2, group 
controller hi, k2 and the host in a tree fashion, depending on the 
location ofPP(il,  j l ,  kl) and PP(i2, j2, k2) .  This is depicted in 
Fig. 6. Ifj~ = j2 (then hi = k2) and cluster jl  arranges for data 
transfer through the shared memory. If f l r  f2, but ]~1 -= ]~2 
then cluster controller jl requests group controller hi (= k2) 
to set up the path through the crossbar. The group controller 
also tells the receiving cluster j2 to be ready to receive data. If 
J1 = j2 and kl = k2, then the group controller kl requests the 
host to set up a path through the enhanced hypercube. When 
the path is available, the host informs all GCs, including GC 
kl, GC k2 and the intermediate GCs. All GCs set up their 
crossbars. GC hi and GC h2 inform their respective clusters, 
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Fig. 9. Crossbar connections 
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which in turn set up their respective transmission and receive 
DMAs. 

5.6 Control 

The system is hierarchically controlled as illustrated in Fig. 8. 
Both the enhanced hypercube and the crossbar connections 
within a group are managed by the generalized communication 
interface (GCI). The link connections to the cube and clusters 
are provided in a crossbar within each group. The GCI consist 
of a 16 x 16 crosspoint switch. Each input can transmit up to 
1000 Mbits/s fiber link, but the actual speed to be used in the 
current system is 250 Mbits/s. The 16 links on the input side 
are used by the nine clusters in the group, 32/N input channels, 
and the enhanced hypercube links. A block diagram showing 
the crossbar connection is depicted in Fig. 9. 

The group controller is a single processor Unix board 
equipped with a VME bus and Ethernet interfaces. The en- 
vironment is a real-time UNIX operating system. Each group 
has a single VME bus accessible to all of its clusters. The group 
controller coordinates all activities within the group. It assigns 
tasks to each cluster and sets up communication paths. Paths 
are possibly from input to cluster within the group, intracluster 
within the group, and intergroup. Paths are set by writing to 
the GCI. 

The Proteus host sets initial configurations and manages 
cube links between groups. It is a general purpose Unix work 
station. It is responsible for system operation, user interaction, 
and output collection. Algorithms are developed at the host 
and mapped onto the system. Under the host, u = 8 to 32 
groups are connected to the Proteus host through Ethernet. 

Within the group, eight clusters (with one extra for fault 
tolerance) are controlled via the VME bus. The group con- 

troller reads sending requests and activates destination clus- 
ters through the VME bus control registers. The movement 
of data is synchronized, and each image frame transmission 
is completed within a fixed time. The set-up for all GCIs is 
synchronized. If the communication is to be restricted within 
a group, then the GCI allows asynchronous communication 
under the control of the group controller. 

The lowest level in the hierarchy is the cluster. This is 
shown in Fig. 10. The cluster has a dedicated control processor, 
the Inte1960. The cluster controller schedules tasks on the pixel 
processors, manages shared memory, arranges for receiving 
and dispatching data by serial I/O, and monitors performance 
via a hardware timer. The four RISC processors, i860s, share 
memory and have their own cache. The Intel 860 is a high- 
performance, 64-bit microprocessor. It supports parallel and 
pipelined execution with a RISC paradigm, using independent 
core/integer unit and a floating point/graphics unit. These units 
can operate in parallel, and can access on-chip caches in a 
single cycle at 40 MHz. 

Custom external caches tie directly to a shared 64-bit data, 
32-bit address bus that services the 8-32MB shared mem- 
ory and the 1 MB I/O buffer. The shared bus allows locked 
accesses for semaphore, test-and-set and compare-and-swap 
operations, and burst fetches, of four 64-bit words. 

The external cache memory holds both data and instruc- 
tions. The external cache is organized as a 1-MB directly 
mapped cache with a line size of 32 bytes. This matches with 
the internal line size of the Intel 860. The cache is designed 
for efficient multiprocessing with adaptable modes dependent 
upon the data: cached locally, cached shared, or uncacheable. 
Normal caching modes include write through and write back. 
New modes allow for the validation of tags without reading 
that line from the shared memory [20]. Cache write allocation 
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Fig. 10. An overview of the Proteus cluster 

forces a hit upon a write. This reduces the shared bus cycles 
and improves the overall performance of the system. In addi- 
tion to the novel use of these modes, line flushing, flush and 
invalidate, invalidation, and labelling are used to control in- 
dividual lines in the cache. The cache modes are established 
via multiple virtual addresses for the same physical memory. 
Software is responsible for cache management. 

For performance monitoring, the hardware provides one 
16-bit counter and one 32-bit counter for each cluster con- 
troller, each driven by a 1-MHz clock. 

5. 7 Design 

The design process started with initial discussions on ap- 
proach, performance, and applications. The design was to be 
restricted to one circuit board, if possible, to reduce the layout 
and debugging time. We were not able to create the one kind 
of board design. Proteus has two kinds of circuit boards. 

Processor selection. A processor survey was done to deter- 
mine the most applicable microprocessor. A representative al- 
gorithm, morphological dilation, was used to "paper" code 
programs to compare their performance and features. Impor- 
tant features used for comparison were arithmetic speed, num- 
ber of registers, on-chip memory (or cache) size, external bus 
bandwidth, and floating point capability. Processors investi- 
gated included the Intel 860, the MIPS 3000, the Motorola 
DSP 96002, the Texas Instruments TMS 320C30, the AT&T 
DSP 32C, the Motorola 88000, the Motorola 68040, the Intel 

80486, and the Inmos T800. The i860 proved to be the clear 
choice for design, because of a combination of a 64-bit data 
bus and 12 kB of on-chip cache memory. Analysis by Levy 
(personal communication) showed the i860 to be poor for op- 
erating system work, so extra care was taken in design to min- 
imize interruption of the i860's processing. All system-level 
functions were put on the control processor, whose principle 
job is to take care of scheduling and interrupt handling. 

Interconnection and I/0. Investigation into interconnection 
schemes and I/O to handle high input rates revealed a vari- 
ety of options. The basic requirement was to allow data to be 
sent directly to any of the 256 1024 processors. To support 
processor pipelines and distributed processing, data were also 
to be moved from processor to processor. 

The only feasible option for supporting the high input rate 
was to divide the input data over multiple I/O channels. Par- 
allel data transfer would imply large numbers of cables - not 
a desirable feature. Therefore fast serial I/O channels were 
considered. Serial-to-parallel data conversion takes place at 
the I/O interface using the recently available gallium arsenide 
derivatives. Input data is stored in shared memory using a 
DMA. A separate 64/256-bit-wide fast parallel bus for data 
exchange within a group was considered. A 64-bit-wide bus 
with the available technology could handle the average data 
load, but performance would suffer if a peak load was experi- 
enced. A 256-bit-wide bus would have forced us into a tight 
design space, as it would have required a larger board area and 
wide memory word size. Another option was using switched 
fast serial lines between clusters. High-speed parallel-to-serial 
and serial-to-parallel chips from Gazelle [7] and a fast cross- 
bar chip from Gigabit Logic [10] were available off the shelf. 
This was an attractive design option, and these chips form the 
backbone of the communication network within each gmup. 
In addition, we could realize the enhanced hypercube connec- 
tion using the same crossbar chip. With 32 I/O channels and 
8 clusters per group (plus one for fault tolerance), there were 
7 ports left for managing input/output channels and enhanced 
hypercube connections. An enhanced n-cube (n dimensional) 
requires n + 1 links at each node for n > 3 and n links for 
n _< 3. At the same time, 32 I/O channels were to be equally 
distributed among the groups. The distribution of channels is 
shown in Table 1. 

This suited us very well, and we used a 16 x 16 crossbar 
at each node as shown in Fig. 6. 

Cluster design. The most detailed analysis for design was per- 
formed on the cluster board. With the available technology, it 
was reasonable to fit four processors on one board. To support 
embedding of more general program graphs, we searched for 
a more general design. One possibility was to split the mem- 
ory into several banks and provide a crossbar interconnection 
among processors and memory banks. This could do well with 
processor pipelines, but embedding arbitrary program graphs 
would cause blocking. Thus other options were considered. 
These included (1) a shared memory with a 256-bit-wide bus 
with 4 x 256-bit data buffers [memory interface unit (MIU)], 
(2) shared memory and a local memory with each processor, 
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and (3) a shared memory with processor caches. In each case, 
it was possible to share the memory for I/O through DMA 
or provide separate buffering for I/O. The bus could be 64 or 
256 bits wide. These alternatives were compared using Net- 
work II.5 simulations and then low-level hardware description 
language (HDL) simulations. 

Several things were learned from the simulations. A large 
amount of conflict resulted whenever the input data was being 
transferred into shared memory. Because of this, closer atten- 
tion was paid to the I/O design on the board. With the use of an 
I/O buffer, the input and output data could be removed from 
the shared bus. Therefore, a dual port memory was added to 
manage the I/O. The MIU model suffered because the proces- 
sor could not cache all of its data in its on chip cache and more 
contention resulted. In addition, a 256-bit bus was thought to 
be an implementation risk. The local memory model suffered 
because no processing occurred while data was being trans- 
ferred to shared memory and because the local memory has 
a fixed size. However, local memory is advantageous when 
processing creates large results to be used again by the same 
processor. The cache solution computed while reading initial 
data did not fix the size of programs and data, and it allowed 
a 64-bit bus to achieve acceptable performance. However, de- 
pending on the algorithm, the bus could still be saturated. 

Additional optimization of caching was investigated. When 
blocks of data are to be generated as a result of computation, 
reads are not necessary for caching. Block processing of data 
leads to the idea of allowing pages of the cache to be controlled 
in a local memory mode, so local data could be forced to stay 
off the shared memory bus. Through allocation, a section of 
the cache was to allow allocated writes. These writes would hit 
irrespectively of the address tag present in the cache. If valid 
data previously in the cache needed to be flushed, this would 
be done, before the write. 

Further investigation showed that clever coding on the pro- 
cessor allowed results to be cached, which dramatically re- 
duced traffic on tile bus. Since the i860 allowed 64-bit trans- 
fers, using the bus for less than 64-bit transfers is inefficient. 
In particular, if the transfer happens to be a byte, which was 
the case for our first vision application, the performance loss 
is severe. Therefore, a scheme in which write data are cached 
and transferred to main memory in chunks of 64 bits yields 
much improved performance. Table 2 shows the results of this 
study. Three models were studied: (A) a statistical read/write 
model, (B) a deterministic read/write model, and (C) a statisti- 
cal read/write model that caches the writes. The same program 
runs on all four processors. It processes a 64-Kb image and 
creates a 64-Kb image in an optimistic 40 ms. In the first two 
models, A and B, the byte pixel writes go directly to the shared 
memory, so that all four processor writes may cause conflicts. 
Model C reduces write traffic by writing words of 8 pixels, 
which would be flushed from the on-chip cache. 

One way to force a hit on writes was to modify cache tags, a 
feature available in the i860. However, that required extensive 
modification in program development. An alternative was to 
read result locations before writing. This happens naturally in 
many applications in which the computation is of the form 

Table 1. Distribution of channels 

Channels (n) I/O channels/node Enhanced hypercube link 

5 1 6 
4 2 5 
3 4 3 

Table 2. Byte writes versus reads and flushes 

Model Delay (ns) Queue (processors) Busy time (%) 

A 15/465 0.11/3 41.6 
B 7/701 0.04/3 30.8 
C 10/378 0.011/2 12.2 

A ~-- A | B, where | is any operation and A and /3 are 
two operands. Otherwise, the compiler (or programmer) could 
insert instructions to read A before writing for operations like 
A +- /3  | C. In the second case it does not matter what data 
is read for A, as they are overwritten. If possible, then, read 
allocation [20], or forcing a hit on reads in external cache, 
was found to be useful when preparing the processor to cache 
results on chip. The processor reads the buffer from the cache 
without going to shared memory. This read is done to validate 
the on-chip cache tag, so that subsequent result writes hit in 
the cache. The addition of optional read and write allocation 
further improved the cache solution, and provided a unique 
solution to the memory bandwidth matching without changing 
the microprocessor itself. 

The final shared memory design prevents byte, 16-bit, and 
32-bit writes. This is done to prevent inefficient use of the 
shared memory bus. Programmers must use the external cache 
and explicitly flush their results from it, or use read allocation 
and flush the on-chip cache to write through to the shared 
memory. 

6 Summary 

We have presented an innovative architecture designed for pro- 
cessing applications in which large granularity may be used. 
The separate communication and control allows for high com- 
munication and I/O rates. By using Choi's recent theoretical 
developments in hypercube theory [2-4], Proteus creates com- 
plete permutation capability. This allows the embedding of 
arbitrary graphs, and the circuit switched links provide guar- 
anteed rates of communication. The problem of contention 
in shared memory multiprocessors is addressed by clustering 
processors, and by using innovative cache designs to allow for 
the ideal cache and local memory behavior. With the general 
interconnections and reassignment of clusters, system-level 
fault diagnosis is achieved for all applications running on Pro- 
teus. 

We have discussed how the system software easily per- 
mits the efficient control of large-grained parallelism without 
having to handle the general concurrency problem. We have 
described how the user can write high-level algorithms that are 
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efficiently mapped to the Proteus hardware by the INSIGHT 
translator. We have shown how the reconfigurable computation 
network can get its act together. 

The Proteus system design is not an academic design. We 
have implemented it and are in the final system integration 
stages. Our first morphological [11] image processing appli- 
cation has been prototyped. Then we expected to expand the 
application software to include higher-level computer vision 
operations as part of  the INSIGHT language. Unfortunately, 
Congress cancelled the program under which this project was 
funded, so further work was terminated. 
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