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A model-based vision system attempts to find correspondences between features of
an object model and features detected in an image for purposes of recognition, local-
ization, or inspection. In this paper we pose the relational matching problem as a
special case of the pattern complex recognition problem and propose a probabilistic
model to describe the images of an object. This Bayesian approach allows us to
make explicit statements of how an image is formed from a model, and hence define
a natural matching cost that can be used to guide a heuristic search in finding the
best observation mapping. Furthermore, we show that even though the nature of
the feature matching problem is exponential, the use of the proposed algorithm keeps
the size of the problem under control, by efficiently reducing the search space.

1. Introduction

Computer vision is the area of research concerned with the analysis of sensed
images of scenes. An image is input to a program in the form of a matrix of
numeric values representing light intensities. Image processing and feature extrac-
tion operators are used to convert the matrix to a symbolic description in terms of
features such as line segments. Figure 1 illustrates an image and a set of extracted
line segments features.

A model-based vision system attempts to find correspondences between the
features of an object model and the features detected in the image for purposes of
recognition, localization, or inspection. Examples of model-based systems are
given in [1, 3-6, 8, 13, 14].

The matching algorithm described in this paper can be thought of in two
ways, as a heuristic search and as a relational matching algorithm. Although
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Fig. 1. (a) Image of an object. (b) Extracted segments.

heuristic search is easily implemented and the supporting theory is well known
[15, 23], it has been shown that the number of nodes expanded during a depth-first
search of an interpretation tree in the presence of spurious data is exponential, due
to the combinatorics of the problem [7]. Relational matching has been expressed
in several different formalisms. Early papers concentrated on graph or subgraph
isomorphisms [22]. This led to many algorithms for discrete relaxation and the
introduction of probabilistic relaxation [18]. The exact matching problem was
generalized to the consistent labeling problem [11] and to the inexact matching
problem [20]. This was extended further to the problem of determining the
relational distance between two structural descriptions [19, 21]. Some recent
related work includes structural stereopsis using information theory [2]. The pre-
sent algorithm differs from all of these in its use of a Bayesian theoretical frame-
work for the matching problem and the reduction of the search space.

2. Definitions and notation

Models and images are represented by their features, the relationships
among them, and the measurements associated with them. In order to describe
the matching algorithm, we must first provide some notation concerning fea-
tures, relations, images and models.

2.1. FEATURES

A feature is an entity that describes a part of an object or an image. It is
an abstract concept: it can be a point, an edge, a hole, a junction, or a higher level
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combination of any of these. A feature has a 7ype that identifies it, and a vector of
attributes that represent its global properties. Formally,

DEFINITION 2.1

A feature f is a triple f = (id, t, a) where id is a unique identifier, ¢ is the fea-
ture type, and a is a vector of N attributes. The dimension of the attribute vector,
N, is the order of the feature, and it only depends on the type of feature.

Examples of types of features are edge and fork; examples of attributes are
length and angles between edges of a fork.

Let Tf be the set of all possible types of features, 4 be the set of all possible
feature attribute vectors, and F a set of features. We define the type mapping
Tr: F— Tf associated with F to be the mapping that when applied to a feature
returns its type, the order mapping Op: F — Z" associated with F to be the
mapping that when applied to a feature returns the order of the feature, and the
attribute mapping Ap: F — A associated with F to be the mapping that when
applied to a feature, returns the vector of attributes associated with its type.

Associated with every feature f there is a vector of measurements, the attri-
bute-value vector v= AV ( f) of dimension Ox(f). Let V be the set of all possible
attribute-value vectors. The mapping AVy: F — V is called the attribute-value

mapping associated with F.

Table 1
Feature sets and associated operators.
Symbol Description
f=(id,t,a) Feature id of type ¢ and attribute vector a
Tf Set of all possible type of features
A Set of all possible attribute vectors
vV Set of all possible attribute-value vectors
F Set of features
Te(f) Returns the type of /'
Or(f) Returns the order of f
Ar(f) Returns the attribute-vector of f°
AVe(f) Returns the attribute value of f

2.2. RELATIONS

A feature participates in spatial relationships with other features. Each such
relationship is represented by a relational tuple, which consists of a type specifying
the relationship and a vector of related features that participate in that relationship.
Associated with every relational tuple of features there is a real number between
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0 and 1 called the strength of the relational tuple. The strength is a measurement of
the confidence of the feature vector satisfying the specified relationship. Formally,

DEFINITION 2.2

A relational tuple of features r is a triple, r = (id, t,v) where id is an unique
identifier, 7 is the type of a relation over a set of features, and v is a vector of fea-
tures satisfying the relation ¢. The order of the relational tuple of features r is
defined as the dimension of the vector v.

Consider the parallelogram shown in fig. 2. It can be described in terms of its
four sides and the relationships among them. In this case, the features are the four
sides of the parallelogram, [, L, /3, and ;. Each side has an associated length attri-
bute and is related to the other three features by the relationships adjacent and
parallel.

(11, length=6)
I (12, length=5)
(13, length=6)
(14, length=5)

(parallel, 11 13)

(parallel, 12 14)
14 2

(adjacent, 11 12)

(adjacent, 12 13)

(adjacent, 13 14)

(adjacent, 14 11)

13

Fig. 2. Feature and relationships example.

Let Tr be the set of all possible types of relations among features in F, T be
the set of all possible vectors of features in F, and R be a set of relational tuples of
features in F. We define the type mapping Ty : R — Tr associated with R to be the
mapping that when applied to a relational tuple returns its type, the vector mapping
Vi : R — T associated with R to be the mapping that when applied to a relational
tuple returns its feature vector, the feature mapping Fg: R x Z — F associated
with R to be the mapping that when applied to a relational tuple returns the ith
element of its feature vector, and the order mapping Og : R — Z" associated
with R to be the mapping that when applied to a relational tuple returns its
order.

Associated with every relational tuple of features r, there is a real number s
between 0 and 1, called the strength of the relational tuple. The strength is a
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measurement of the confidence that the feature vector Vi(r) satisfies the relation of
type Tr(r). We define the strength mapping Sg : R — [0, 1] associated with R to be
the mapping that when applied to a relational tuple returns its strength.

2.3. MODELS AND IMAGES

Models and images are represented by their features, the relationships
among them, and the measurements associated with them. As in the consistent
labeling formalism [11], we will call the image features units and the model features

labels. Formally,

DEFINITION 2.3

A model M is a quadruple M = (L, R, f7, gr) where L is the set of model
features or labels, R is a set of relational tuples of labels, f; is the attribute-value
mapping associated with L, and gg is the strength mapping associated with R.

Table 2
Relational tuple sets and associated operators.
Symbol Description
r = (id, t,v) Relational tuple id of type ¢ and vector of features v
F Set of features
Tr Set of all possible type of relational tuples
T Set of all possible vectors of features
R Set of relational tuples
Tr(r) Returns the type of r
Vr(r Returns the vector of features of r
Fr(r,i) Returns the ith element of the feature vector of r
Og(r) Returns the order of r
Sr(r) Returns the strength of r
DEFINITION 2.4

An image I is a quadruple I = (U, S, fy,gs) where U is the set of image
features or units, S is a set of relational tuples of units, f;; is the attribute-value
mapping associated with U, and gg is the strength mapping associated with S.

3. Relational matching

Although it is possible to identify simple objects by finding correspondences
between some of the labels and units, recognizing complex objects having different
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parts requires the use of the spatial relationships among the labels and units being
matched.

The relational matching problem is a special case of the “pattern complex
recognition problem” [9]. An image is an observation of a particular model. Let
M = (L,R, f;,gr) be the model, and I = (U, S, fy,gs) be the observed image.
Not all the labels in L participate in the observation, only a subset of labels
L° C L is actually observed. Furthermore, only the relational tuples of labels repre-
senting relationships among labels in L° can be observed, and only a subset of them
are actually observed. Let R° C R be the subset of the relational tuples of labels
that are observed:

R° C {r|r € Ryn = Og(r), Vg(r) € (L°)"}.

The set U consists of the unrecognized units. Some of the units observed in U come
from labels in L°; others are unrelated and can be thought of as clutter objects. The
set S is a set of observed relational tuples of units in U.

Table 3
Model and image symbols.

Symbol Description
L Set of model features or labels
R Set of relational tuples of labels
fL Attribute-value mapping associated with L
£R Strength mapping associated with R
M = (L,R, f1,8R) A model
U Set of image features or units
S Set of relational tuples of units
fu Attribute-value mapping associated with U
gs Strength mapping associated with S
I1=(U,S, fu,8s) An image

The relational matching problem is to find an unknown one-to-one corre-
spondence & : H — U between a subset H C L and a subset of U, associating some
labels of L with some units of U. The mapping # is called the observation mapping.
Notice that the matching process not only consists of finding the model M, but also
of finding the correspondence A, which is the explanation of why the model M is
the most likely model. In general we seek to maximize the a posteriori probability

P(M, h|I).

That is, we want to maximize the probability of the model being M, and the obser-
vation mapping being 4, given that the image / is observed.
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4. Matching by tree search

The matching process can be thought of as a state space search through the
space of all possible interpretations . The state space X is called the matching

space and it is defined as follows:

DEFINITION 4.1

The matching space, ¥, is the state space of all possible interpretations, in
which each state o is defined by an observation mapping 4, with degree of match
k, = #Dom(h,), where # indicates cardinality.

The search through the state space ¥ can be achieved by doing an ordered
search on a interpretation tree 4 such as the one shown in fig. 3. Each node in
T represents a label, and each of its branches represents an assignment of the
label to a unit. A search state o in ¥ is represented by a path £ from the root
to a leaf in the tree . In the following, the terms “path” and ‘“‘partial map-

ping”” will be used interchangeably.

Search Space: All possible interpretations
Search State: A path in the tree.

Fig. 3. Search tree 7.

The main difficulty in solving the matching problem by a tree search is
the high combinatorics involved in the problem [7]. The number of possible inter-
pretations in the tree grows exponentially with the number of labels and units. The
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number of interpretations could be reduced by stopping the search before having a
complete mapping. The problem, of course, is to determine when to stop.

The usual approach towards solving this problem is as follows: A path 2 in the
interpretation tree J defines an observation mapping m, with an associated cost
Cyp = C(mgyp, M, I) that measures the correctness of the mapping. Then, the match-
ing process consists of finding the path 2* such that its associated observation
mapping mg- has the least cost. In this way, the problem of selecting the correct
interpretation has been shifted to the problem of defining an adequate cost function
such that the interpretation having the least cost is indeed the correct one.

In the following sections we will introduce a theoretical probabilistic frame-
work for the matching problem. The proposed framework allows us to define the
cost of a mapping in a rigorous way, with a strong physical meaning. Furthermore,
we will show how to find lower bounds of the defined cost, so that it can be used in
guiding a heuristic search.

5. Solving the relational matching problem

The relational matching problem is a special case of the “pattern complex
recognition problem” [9]. In the pattern complex recognition paradigm, the rela-
tional matching problem can be stated as follows:

Given a model M = (L, R, f;,gr) and an image I = (U, S, fy, gs),
find the observation mapping (4, H) such that the a posteriori prob-
ability P(M, h|I) is maximum.

That is, we want to maximize the probability of the model being M and the
observation mapping being A, given that the image I is observed. Hence, solving
the relational matching problem requires a search procedure that can identify
the model M and the mapping 4 such that the probability P(M,h|l) is maxi-
mized. In order to define such a procedure, this probability must be further broken
down and related to a cost function to be used in the search.

5.1.  PROBABILITY OF AN OBSERVATION MAPPING

An observation mapping 4 consists of a domain contained in the set of labels
L, and of the correspondences of these labels to some units belonging to the set of
units U. Let H C L be the domain of the mapping 4. In the following, whenever we
want to make explicit the need to consider both the correspondence / and its
domain H, we will denote them as the pair (h, H). By the definition of conditional
probability,

P(M,(h,H),I)

P(M,(h,H)|I) = 20
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Since M, and (h, H) do not appear in the denominator, maximizing the conditional
probability P(M, (h, H)|I) is equivalent to maximizing P(M, (h, H),I). Replacing I
by its components, and using the definition of conditional probability, we have

P(M7 (h’H)7I) :P(SvgslvaUaMa (th))'P(vaUvMa (h’H)) (1)

Assuming that measurements and relationships are conditionally independent
given M, U, fy, and (h, H), and further that the relationships are independent of

the feature measurements, we have

P(S,gs|U, fu, M, (h, H)) = P(S|U, M, (h, H)) - P(gs|U, fu, M, (h, H)).  (2)
By definition of conditional probability,

P(U, fu, M, (h,H)) = P(fy|lU, M, (h,H)) - P(U, (h, H)|M) - P(M).  (3)

Substituting eqs. (2) and (3) in eq. (1), and reordering we obtain

P(Ma(hﬂH),I):PM'PU'PfU°PS'PgSv (4)
where
PU:P(Ua(th)IM)v
Pfu =P(fU'U7M7 (h’H))a
PS:P(S[UaMa (haH))’
Pgs = P(gS’U’fU7M7 (h’H))

Equation (4) breaks down the joint probability of observing the model M
through the mapping 4 as the image 7 into five terms. The first term is the prior
probability of the model M. The other four terms are such that each one of
them can be directly related to one of the four elements that describe the model

and the image.

5.2. RELATIONAL MATCHING COST

In the context of the previous section, it is natural to define the relational
matching cost of the observation mapping 4 as the information content in the prob-
abilistic event that / is the observation mapping between the model M and the

image I:
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DEFINITION 5.1

Let h: L — U, with Dom(h) = H, be an observation mapping. The rela-
tional matching cost of h, C(M, (h,H),I) is defined by

C(M, (h,H),I) = —In P(M, (h, H), ). (5)

Taking the logarithm on both sides of eq. (4) and changing the sign we have
that maximizing P(M, (h,H),I) is equivalent to minimizing

C(M, (h,H),I) = Cyy + Cy + Cs + Cp, + Cy, (6)
where

Cy = —In Py,

Cy = —InPy,

Gy = —InPy,

Cs= —InPg,

Cee= —InP,.

Equation (6) shows that the cost C depends on the model, the label-unit
assignments, the relational structures, and their measurements.

5.3. A PROBABILISTIC MODEL

To compute the relational matching cost defined in the previous section we
need the corresponding probabilities. In this section we propose a model to
compute these probabilities based on their physical meaning and the Central Limit
Theorem [17].

e Model cost

The probability P(M) is the prior probability for the model M to be
observed, and it is available from the prediction system. The cost C,, is the cost
associated with the model being considered, and it penalizes the selection of
models whose prior probability of occurring is low.

o Label-unit assignment cost

The probability Py, = P(U, (h, H)| M) evaluates the likelihood of the number
of labels in H being matched through the mapping 4 to a subset of the observed
units U. Since for the model M, the set L designates the set of possible labels, it
is natural for P(U, (h, H)|M) to depend on the difference between the size of the
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set L and the size of the domain of 4, as well as on the difference between the size of
the set U and the size of the range of 4. This probability should be high for obser-
vation maps that assign corresponding labels and units, and lower for those map-
pings that either miss assignments or assign labels to spurious units. Defining the

feature error of mapping h, E;(h) as

Ef(h) = #L— #H+ #U - #H = #L + #U — 24#H, (7)
it is reasonable to model
B 1 1 (Efh) - u,>2
PU_P(U7(h’H)|M)_\/§EUfeXp[ 2( o ) (8)

where yi;and oy are the mean and standard deviation of Ej. In the sequel, Py will be
referred as the feature error distribution. Figure 4 shows a Venn diagram represent-
ing the set of labels L, the set of units U, and the mapping 4 : H — U, with HC L.
The probability P(U, (h, H)| M) as defined in eq. 4 penalizes those mappings 4 such
that the hatched area is large or very small.

Fig. 4. P(U,(h,H)|M) Venn Diagram. This probability penalizes
those mappings 4 such that the hatched area is large or very small.

Using egs. (6) and (8), the label-unit assignment cost or feature cost is given by

E;(h) — pr\?
Cy= —lnPU=1nv2naf+l<M> ) 9)
2 O'f
= InV2no,+ 1||Ep(h) — pyll3,, (10)

where || Ef(h) — pyl|,, is the Mahalonabis distance between Ej(h) and py. Thus, the
term Cy, is the part of the cost that penalizes for the differences of sizes between the
set of observed features U and the set of features of the model L.
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o Relational structural cost

The probability Py = P(S|U, M, (h, H)) evaluates how well the relationships
among the labels are preserved by the mapping 4. We will take this probability
to be dependent on the number of relational tuples that are not preserved by the
mapping.

Let Tr be the set of all possible types of relational tuples of labels. We define
the composition of a relational tuple of labels of order N, r € (Tr x H M) C R, with
the mapping 4, as a relational tuple of units of the same type as r such that each
unit of its feature vector corresponds to a label in r through the mapping h:

DEFINITION 5.2

Given the one-to-one mapping 4 : H — U, and the relational tuple of labels
re(Trx H N ) C R, the composition of r with h is denoted as 4 o r, and is defined as
the relational tuple of units given by,

hor=(t,(u,uy,...,uy)),

where ¢ is the type of tuple r, N is the number of labels participating in tuple r, and
u; = h(Fg(r,1)) for 0 < i < N, where Fg(r, i) denotes the ith element of the feature
vector of r.

The composition of the set of relational tuples of labels R with the mapping
is defined as the set of the relational tuples of units resulting from composing each
of the relational tuples r € (Tr x HY) C R with h.

DEFINITION 5.3

Given the set of relational tuples of labels R, and the one-to-one mapping
h: H — U, the composition of R with & is denoted as s o R, and is defined as the
set of relational tuples of units given by

hoR={s=horlre (Trx HY)CR}.
The compositions of a relational tuple of units s and of the set of relational
tuples of units S with the inverse mapping h~! are denoted by h~! o s and hlos,
respectively and are defined in a similar way.

DEFINITION 5.4

Given the one-to-one mapping 4 : H — U, and the relational tuple of units
s € (Tr x Rge(h)¥) C S, where Rge(h) denotes the range of the mapping 4, the
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composition of s with h~'is denoted as 4! o s, and is defined as the relational tuple
of labels given by

hlos=(t,(l,b,...,1y)),

where ¢ is the type of s, N is the number of units participating in s, and
l; = k™' (Fg(s,i)) for 0 <i< N, where Fg(s,i) denotes the ith element of the

feature vector of s.

DEFINITION 5.5

Given the set of relational tuples of units S, and the one-to-one mapping
h: H — U, the composition of S with A~ is denoted as 4~ o S, and is defined as
the set of relational tuples of labels given by

h™' 0§ = {r|there exists s € (Tr x Rge(h)¥) C S, N = Og(s),such that r = h~' o 5}.

The Venn diagram given in fig. 5 shows the sets of relational tuples R and
S and their composition with 4 and 4!, respectively. We will model the prob-
ability P(S|U, M, (h, H)) to penalize the number of relational tuples not preserved
in the match as well as the number of relational tuples matched to spurious
relational tuples in the image, i.e. to penalize those mappings 4 such that the
hatched area in fig. 5 is large or very small. Defining the relational error of

mapping h, E,(h) as
E(h)=#[R—-h"'o0S)+#(S—hoR), (11)

it is natural to use the concepts introduced above to model:

N2
Ps = P(S|U,M, (h,H)) :ﬁexp[—%(w> } (12)

Pg will be referred as the relational error distribution. Using eqs. (6) and (12), the
relational structural cost or relational cost is given by

__ 2
Cs=—InPg = ln\/2_nar+%<m) (13)

g,

(14)

= InV2no, +%'|Er(h) — K (27,7
where ||E,(h) — p,||,, is the Mahalonabis distance between E, () and p,. Thus, the
cost Cg is the part of the cost that accounts for the differences between the set of
observed relationships S and the set of relationships of the model R.



98 O.1. Camps et al., A probabilistic matching algorithm

Relations of Labels Relations of Units

Fig. 5. P(S|U,M, (h,H)) Venn Diagram. This probability penalizes those
mappings 4 such that the hatched area is large or very small.

e Metric costs

Since  the  probabilities P, = P(fy|U,M,(h,H)) and P, =
P(gs|U, fu, M, (h,H)) are both probabilities of mappings that associate values to
elements of a set, their treatment is similar. Consider P(fy o h|U, M, H), where
fv o h is the composition of fi; with & defined by

(fuoh)() =fu(h(l)), le€H.

Let p be a suitable metric and f7), represent the attribute-value mapping f;
restricted to the labels in the domain H. Then, we define the feature metric error
of mapping h, Ej, (h) as

Ey (h) = p(fuoh, fu,)- (15)

Since f7, is the attribute-value mapping associated with L, we can model Py, by

_% <Efu(h) - ufuﬂ . (16)

Ty

1
P, =P h, UM,h H) =———ex
't = P(p(fuoh, fu,)| (h, H)) Varo, p

P;,, will be referred as the feature metric error distribution. Using eqgs. (6) and (16),
the feature metric cost Cy, is given by

\/__ 1 Efu — My )
CfU:_lnPfU: In 2TE0'fU+§ T (17)
[7
= Inv2noy, +31|E;, — s, Iz, » (18)

where ||E;, — ufUH% is the Mahalonabis distance between Ej and py,. Hence, the
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farther the feature metric error is from its expected value, the larger the cost term
Cy,- Figure 6 illustrates this concept. The Venn diagram shows a label / with its
associated attribute value f; (/) = v, and its corresponding unit A(/) = u with
its associated attribute value f;; (#) = v,. The probability defined in eq. (16) assigns
a high probability to those mappings such that the values v; and v, are at the
“right” distance apart with respect to the metric p.

Attributes

Fig. 6. P(fy|U, M, (h,H)) Venn Diagram. This probability

assigns a high probability to those mappings such that the

corresponding attribute values f7 (/) and fy (h(/)) are at the
“right” distance.

Reasoning in an analogous way, the probability P,. = P(gs|U, fy, M, (h, H))
can be rewritten as P(ggo h|U, fy, M, H), where gg o h is the composition of g,
with 4 defined by

(gsoh)(r) =gsg(hor), reR, and (hor)eS.

Let p be a suitable metric. Then, we define the relational strength error of mapping
h, E, (h) as

Eg_g(h) = p(gS ° h’gR|hOR)a (19)

where gx,  represents the strength mapping gg restricted to the set 4o R.
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Since gy is the strength value mapping associated with R, we can model

P, by

&s

Py, = P(p(gs © h,g)| fu, U, M, (h, H)) =
(20)

P, will be referred as the relational strength error distribution. Using eqs. (6)
and (20), the relational strength cost C,_ is given by

1 (Eg, — pg \
Cp, = —InP, = In V2o, +3 (g—og“i) (21)
N
= In V20, + 51| Eg, — pgll, (22)

where ||Eg. — ig]lo,, is the Mahalonabis distance between E,  and py.

Having modeled the probabilities involved, we can now compute the
relational matching cost. Substituting egs. (10), (14), (18), and (22) in eq. (6), we
have

C(M, (h, H),T) = A+3}||Ep(h) — sl + SIE (h) — oI5,
+ 311, (B) =y, |I5,, + 31| Eg(B) — gl (23)

where 4 = —In P(M) +41In+2n + In(os04,0,0,,), is a constant for a given
model M.

Hence, the relational matching cost consists of four quadratic terms plus a
term that is constant for a given model. Each one of the quadratic terms depends
on a different type of error; i.e., there is a term for the feature error, a term for the
relational error, a term for the feature attributes error, and a term for the relational
- strength error. Equation (23) clearly shows that there is an optimum size for the
mapping h, between the null mapping (a mapping with no correspondences) and
' a mapping that would match everything (including all spurious data).

6. Iterative-deepening-A* matching

A match can be found by using the relational matching cost defined in section
5.2, and the well known branch-and-bound tree search technique. In the standard
branch and bound approach during search there are many incomplete paths con-
tending for further consideration. The one with the least cost is extended one level,
creating as many new incomplete paths as there are branches. This procedure is
repeated until the tree is exhausted.
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The branch and bound search can be improved greatly if the path to be
extended is selected such that an estimate of the total cost using that sub-path is
minimal. This search technique is usually known as 4*. An important and well
known result is that if the estimate of the total cost is always less than the actual
cost, the path found by A" is optimal. The time complexity of the 4™ search, is
in general, an exponential function of the error of the estimate. If the error is
constant, then the time complexity is constant. If the error is a linear function of
the depth of the search (i.e. constant relative error), then the time complexity is
exponential. The advantage of 4" over brute-force search, which also has exponen-
tial time complexity, is that the base of the exponent in the 4™ case is significantly
smaller if the estimate is accurate. The drawback of the 4™ algorithm is the same as
that of breadth-first search, namely its memory requirement. The algorithm must
maintain a list of all contending paths. In each cycle, the number of contending paths
is increased by b — 1, where b is the branching factor of the node being extended.
Thus, the space complexity of A* is O(b“), where d is the solution depth level.

Korf [15] presented a new search algorithm, called iterative-deepening-4*
(ID A*) that gets around the memory problem of 4™ without sacrificing optimality
or time complexity. The algorithm consists of a sequence of depth-first searches.
ID A" starts with an initial threshold value equal to the estimate total cost
for the root of the tree. In each iteration, the algorithm is a pure depth-first
search, cutting off any branch that has an estimated total cost larger than the
current threshold value. If a solution is expanded, the algorithm is finished. Other-
wise, a new threshold value is set to the minimum estimated cost that exceeded
the previous threshold, and another depth-first search is begun from scratch.

As in the case of 4%, if the estimated total cost is an underestimate of the real
total cost, ID 4" finds the optimal solution. The advantage of ID 4™ over 4™ is that
since each iteration of the algorithm is a depth-first search, the memory complexity
is O(d), instead of being exponential. The number of nodes opened by ID A* is
asymptotically the number of nodes opened by A", provided that the tree grows
exponentially. In practice, ID 4" runs faster than 4", since its overhead per node
is less than the overhead for 4.

6.1. RELATIONAL MATCHING COST UNDERESTIMATE

The ID A" algorithm requires an underestimate of the relational matching
cost of an observation mapping that is an extemsion of the current partial
mapping. In this section we formally define the extension of a partial mapping
and use this concept to find a lower bound of the relational matching cost.

DEFINITION 6.1

Given two one-to-one mappings 4 and m, such that Dom(m) C Dom(#), and
m(l) = h(l) for all / € Dom(m), we say that the function 4 is an extension of the
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function m, and that the function m is a restriction of the function h. The order of
the extension 4 with respect to m is the difference between the cardinalities of the
sets Dom(4) and Dom(m).

To find a lower bound of the relational matching cost of an extension of a
partial mapping, we start by noticing that a partial mapping partitions the sets
of features into disjoint sets. Figure 7 gives a diagram of the sets L and U showing
the partitions induced by a partial match m.

Fig. 7. Partition of the sets of features induced by a partial match.

Let m: L — U be a partial mapping assigning some labels to some units.
The mapping m partitions the sets of features L and U into the sets of used features
in the match and the sets of residual features; i.e., those not used in the match.

DEFINITION 6.2

The set of used labels, L"(m), is the subset of labels in L that have been
assigned a unit in U"(m) by the mapping m : L“(m) = Dom(m).

DEFINITION 6.3

The set of used units, U"(m), is the subset of units in U such that there
is some label in L” that have been assigned a unit in U through the mapping
m : U"(m) = Range(m).

DEFINITION 6.4

The set of residual labels, L' (m), is the subset of labels in L that have not
been assigned a unit in U by the mapping m : L'(m) = L — L"*(m).
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DEFINITION 6.5

The set of residual units, U" (m), is the subset of units in U such that no label
in L has been assigned to them by the mapping m : U’ (m) = U — U"(m).

Let m; be an extension of order j of m. Then, the feature error for the
mapping m;, Eg(m;), is given by

Eg(mj) = #L'(m;) + #U" (m;) — 2#Dom(m;) = E;(m) — 2j, (24)
and the feature error cost is given by
Cy(m;) = InV2noy + 3 ||Ep(m) — 2 — 7, (25)

Figure 8 shows a plot of the feature error cost versus the feature error. The
feature error cost is quadratic on the feature error E(h) = #L + #U — 2#H.
As the order of the extension j increases, the feature error decreases, and the
cost moves on a parabola towards the left. The maximum possible order of an

extension of m is given by J = min{#L"(m),#U"(m)}. Hence,

Ey(m)) > Ey(my) = E/(m) —2J (26)

Cm)

U

H : .
E£ (m) Ef (h)

Fig. 8. Feature Error Cost. The feature error cost is quadratic on the feature

error Eg(h) = #L+ #U — 2#H. As the order of the mapping increases, the

feature error decreases and the feature error cost moves on the parabola towards
the left.

codn
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and a lower bound of the feature error cost for the extensions of m is given by

Cy(my)  if uy < Eg(my) < Ef(m),

Cy(m) otherwise,

as it is illustrated in fig. 9.

CuA
CU<m)
Underestimate
Ef (m)-J Ef(m) E£ (h)
CUA
CU”“)
Underestimate
H L =
Ef (m)-J Ef (m) Ef (h)
CUA
Cm) = Underestimate
U
Ef(m)—-J Ef (m) Ef (h)

Fig. 9. Feature Error Cost Underestimate. (a) py < Ey(m;) < Ef(m). (b) Ef(m;) < py < Eg(m).
(©) Ef(my) < Eg(m) < py.
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Similarly, a partial mapping m partitions the sets of relational tuples into
disjoint subsets. Figure 10 shows a diagram of the sets S and R, and the partition
induced on them by the partial match m.

Fig. 10. Partition of the sets of relational tuples of features induced
by a partial match.

DEFINITION 6.6

The set of used relational tuples of labels, R*(m), is the subset of relational
tuples of labels in R such that all the labels in their feature vectors have been
associated with a corresponding unit in U through the mapping m.

DEFINITION 6.7

The set of i-partially free relational tuples of labels, R”(m), is the subset
of relational tuples of labels in S such that all but i > 0 of the labels in their
feature vectors have been associated with a corresponding unit in U through the

mapping m.
DEFINITION 6.8

The set of used relational tuples of units, S*(m), is the subset of relational
tuples of units in S such that all the units in their feature vectors have been

associated with a corresponding label in L through the mapping m.

DEFINITION 6.9

The set of i-partially free relational tuples of units, S¥(m), is the subset of rela-
tional tuples of units in S such that all but i > 0 of the units in their feature vectors
have been associated with a corresponding label in L through the mapping m.
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DEFINITION 6.10
A partially free relational tuple of labels r € R?(m) and a partially free rela-
tional tuple of units s € S?(m) are compatible if they agree on the features that have

been already matched.

The relational error for the mapping m;, E,(m;), is given by
E,(mj) = #(R—m;"' 0 S) + #(S—m;oR), (28)
and the relational cost is given by
Cs(my) = 311 E(m)) — m|[5, +1In V20, (29)

Figure 11 shows a plot of the relational error cost versus the relational
error. The relational error cost is quadratic on the relational error, E,(h) =
#(R—h"'08)+ #(S—ho R). As the order of extension j increases, the cardinal
of the domain of m; increases and some partially free relational tuples become used
and the cardinal of the sets (R — m_1 o S) and (S — m; o R) cannot increase. Hence,
as j increases, the relational error E ,(m;) decreases, and the relational error cost Cg
moves on a parabola towards the left:

(m)
CS

L : >
<+— Er(m) Er (h)

Fig. 11. Relational Error Cost. The relational error cost is quadratic on the

relational error E,(h) = #(R — h™' 0 S) + #(S — ho R). As the order of the

mapping increases, the relational error decreases and the relational error cost
moves on a parabola towards the left.
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Let ¢;(m) be the minimum between the number of relational tuples of labels
i-partially free that have compatibles, and the number of relational tuples of units
i-partially free that have compatibles through the mapping m. That is, ¢;(m) is the
maximum number of partially free relational tuples that could be correctly
matched by extending the mapping m with i correspondences. Then, the relational
error of the mapping m;, E,(mj), is bounded by

E,(m; ) =2 ci(m) = E™"(m, j). (31)

i<j

Thus, using eqs. (30) and (31) the relational error cost of an extended map is
bounded by

In(v2no,) + 3 [|E™(m, j) = mlls,, i p, < E™™(m, j) < E,(m),
Cs(m;) > 4 In(v/2n0,) if E™™(m, j) < p, < E,(m), (32)
Cg(m) otherwise

as it is illustrated in fig. 12.

Inequalities (27) and (32) provide an easy to compute underestimate of the
total cost of a partial match. This lower bound of the total cost can be used to
quickly guide an ID 4" algorithm to the correct mapping reducing dramatically
the number of nodes to be opened during the search. The complete matching

algorithm using ID A" is given in fig. 13.

7. Model parameters estimation

In order to estimate the model parameters, we use the PREMIO system [4].
PREMIO is a CAD-based computer vision system that employs CAD models of
3D objects and knowledge of surface reflectance properties, light sources, sensors
characteristics, and the performance of feature detectors to estimate the prob-
ability of features being detected in various views of the object.

The model

PREMIQ’s prediction module predicts which 2D features should be detect-
able for a given configuration of light and sensor and a given image processing
sequence. Each of the detectable 2D features correspond to their originating 3D
feature, and have associated attribute values.

Given a set of n predictions for a set of n sensor and lighting configurations
corresponding to a view aspect' of the object, PREMIO approximates the

' A view aspect is defined as a set of views with similar properties. In this paper, an aspect corresponds
to a set of views that have the same visible faces.
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C
Cs<m>
Underestimate
Ermin(h)  Ex(m) Er (h)
Cs‘
Cs(m’
Underestimate
Ermin(h) Ex(m) Exr (h)
Cs“
C(m) = Underestimate
S
Exrmin (h) Erxr (m) Ex (h)

Fig. 12. Relational Error Cost Underestimate. (a) p, < E,(m) —23;5;¢;(m) < E,(m). (b)
E,(m) — 22;5,‘ ci(m) < p, < E,(m). (c) E,(m) — 22:’5]’ ci(m) < E,(m) < p,.

detectability of a 2D feature by the frequency rate of its appearance. Two 2D features
appearing in two different images are considered to be the same feature if they have a
common 3D originating feature. The set of labels L is formed by those 2D features
that have high enough probability of being detected (above threshold ¢), as a whole
or in pieces for the given set of sensors and light sources. Furthermore, each feature in
L has associated attributes which are given by the mean and the standard deviation of
the attribute values of the feature for the n predictions.

Similarly, PREMIO’s prediction module predicts which relationships
among features would be detected and their strength, for a given configuration
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Step O0: Initialization.
Set Threshold Th = EC(root).
Set € to the desired matching cost.

If g‘h > €
egin
e model and the image do not match.

Go to step 4.

End jif.
Unt‘ill tfle solution is found or the tree is exhausted, do :

Begin
tep 1: Start Depth First.
Form a stack Qf o IIi)'a.rtia.l matches, and let Py be the initial partial match.
= hi

Set MinPrune ghest value.
Step 2: Iterate over current paths.
Until @p is empty, do

Begin
7§ := FIRST(Qp), m := partial mapping associated with P
Cm := relational cost of m
Step 2.1: Test if P can be extended.
If the path P can be extended,
Begin
Step 2.1.1: Select a label to extend the path.
Look for two tuples, one from R and one from § whose components
are not all matched, that are compatible. Two relational tuples are
comlpatible if they have the same number of features and they agree on
the features that have been already matched. The relational tup%es that
are partially matched should be checked before than those that are not.
Step 2.1.2 Extend the path
For each u € U™, do
Begin
hy := path m extended with the pair (I, u).
P! := path associated with the mapping h;.
Ch, := relational cost of h;.
Eé(hl) := underestimate of the cost of the extensions of ;.
Step 2.1.2.1 Compare to the upper bound.

If C(hl) S €
Begin
tep 2.1.2.1.1 Check if the goal has been achieved.
If d:u <e
Begin
P’ is a satisfactory match.

it .
Eﬁep '3.1.2.1.2 Add the path to the stack.
If EC(h1) < Th
Begin

- IRST(Qp) := P'.
i?i_nPruned := min{MinPruned, EC(h;)}

%n?ié:ﬂ if.

il.
Ste];:ﬁ1 3:u gdate Threshold

Eg d= M zliz runed

t
Step 4: Bnd of Algorithm
Announce failure.

Fig. 13. Matching algorithm.
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of light and camera and a given image processing sequence. Given the n predictions
we approximate the probability of a relation among a set of features being detected
by the frequency rate of its appearance. The set of relational tuples R is formed for
those relations among features in L that have high enough probability of holding
(above threshold 7g). As with feature attributes, the relationship strength values of
the tuples in R are represented by the mean and standard deviation of the relational
tuples for the » predictions.

The model M = (L, R, fy, gs) obtained in this way, is a probabilistic model of
the object for the given set of configurations of sensors and lights. Note that neither
all the features in L, nor all the relational tuples in R need to be present in a single
prediction. Neither do all the features of a particular prediction need to be in L.
The model M combines a group of predictions into a single model, which is a
sort of ‘“‘average” model. The differences between the model M and the individual
predictions that were used to build the model are summarized in the statistics Py,
Ps, PfU’ and Pgs.

The statistics

Once the model M is obtained, the individual predictions can be used to
generate samples for the four error distributions Py, Ps, Py, and P, . Let
I;,...,I, be a set of n predictions. Each prediction can be represented by a four
tuple I; = (U;, S;, fu,,&s,) Where U; is the set of units, S; is the set of relational
tuples of units, f; is the attribute mapping for the units in U;, and gg, is the
relationship strength mapping for the relational set S;. By construction we know

Fig. 14. (a) Cube3Cut. (b) Fork.
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Fig. 15. Cube3Cut and Fork Models (segments). The line drawings are a visualization of the
set of labels forming the models. The labels are drawn using their mean attribute values. The
numbers by the segment are the labels Ids., and indicate their relative detectability, with the

lower the number, the higher the detectability.

the true observation mapping for each of the predictions. Let 4; : H; — U;, with
H;C L be the true observation mapping for a prediction i. Then, we can
compute the quantities #L + #U; —2#H;, #(R— S;o h,-_l) + #(S; — Ro k),

p(fu, © hi, frm,)> and p(gs, © b, grip,) fori=1,...,n.

Fig. 16. Estimated Pose for Cube3Cut (Real Images). The figure shows the estimated wireframes

found after matching 11 segments, superimposed on the corresponding image.
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Now, the problem of finding the statistics Py, Pg, Py, and P, reduces to the
well-known problem of estimating the parameters of normal distributions given
sets of n samples. A detailed treatment of this topic can be found in statistics text-
books [16].

8. Experiments

In our experiments we used a CCD camera with focal length 4.8 mm and a
resolution of 1.25901 mm/pixel x 1.18758 mm/pixel. The light is a point source of
unpolarized light, of intensity 1 cd, located at a fixed position.

The set of features L is made up of 2D-segments, projections of the
3D-segments forming the objects. The feature attribute mapping f; assigns with
each label /, four attributes: its midpoint image coordinates, x,, and, yf,,, its
length, M, and its orientation o. Each label attribute value is given by a mean
and a standard deviation representing the variations of the attribute among the
different predictions used to obtain the model. The set of units U is the set of
2D-segments forming the image to be matched. The feature attribute mapping
fy associates to each unit u four attributes: its midpoint image coordinates, x,
and, y%, its length, \“, and its orientation «“. The set of relational tuples of
segments R and S are formed by three different types of relationships: junctions
of two segments, junctions of three segments, and triples of segments. A junction
of two/three segments is an ordered set of two/three lines which meet at a common
endpoint. The segments are ordered such that the angles between the segments
are less than 180 degrees when the lines are traced clockwise. A triple of

Fig. 17. Estimated Pose for Fork (Real Images). The figure shows the estimated wireframes found
after matching 10 segments, superimposed on the corresponding image.
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segments [12] is defined as an ordered set of three lines, two pairs of which meet
at a junction. The angles at the two junctions must both be less than 180 degrees
when the lines are traced clockwise, so the triple has a well defined ““inside”. For
this set of experiments, the relationship strength mappings gz and gg were not
used. Conceptually, this amounts to having constant relationship strength
mappings.

In order to compare the attributes of the labels in the set L and those of the
corresponding units in the set U, for a given observation mapping 4, the following
feature metric error was used:

Ep,(h) = p(fyoh, frlH) = pull,h(1)), (33)

leH

with

pu(l, h(l)) = \/pi(l, h(D) + py(L (D) + A (L (1)) + p2(1 (1)), (34)
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Fig. 18. Misdetection Probability for
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is plotted against the number of corre-
spondences sought.
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where

I, — x|
pe(lyu) = EB=m

Oy,

m

Vo = Vil
py([a u) = %—ﬂa

Ym
POy
p)\(la u) = L—]—|’
DY
jof = o
pa(la u) = Ta

(ol ), ol ), (W,ah), (l,0l)) are the attribute values of label /,
(Xl Yy A, @) are the attribute values of unit 4(/), and H is the domain of the
mapping h.
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Figure 14 shows images of Cube3Cut and Fork, two of the objects modeled
in PREMIO. In what follows we describe the results of a series of experiments with
probabilistic models of Cube3Cut and Fork combining over a hundred of predic-
tions for each. The predictions for Cube3Cut were generated with the object
located at the origin, the light fixed at (—3.0cm, —2.0cm, 60.0cm), and the
camera moving on a sphere of radius R =35.3857cm, with longitude
20° < @, < 70° and latitude 20° < 4, < 70°. The predictions for Fork were gener-
ated with the object located at the origin, the light fixed at (62.5c¢cm, —8.0cm,
6.0cm), and the camera moving on a sphere of radius R =46.1071cm, with
longitude 290° < &, < 340°, and latitude 30° < 6, < 90°. The minimum feature
detectability was set to 7r= 0.0, and the minimum relational detectability was
set to tg = 0.15 for both objects. Figure 15 shows line drawings of the model M
for Cube3Cut and Fork. The segments are shown with their mean attributes,
labeled in descending order of detectability. The parameters for the error distri-
butions are: uy = 9.6875, oy = 2.5042, ug = 10.4107, og = 3.3867 (junctions of
two segments), ur = 7.9375, og = 1.5024 (junctions of three segments), and
pr = 179107, og = 56226 (triples), and py, = 32.5366, oy, =8.9240 for
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Fig. 20. Matching Operating Curve for Cube3Cut
for C = 5 pixels. The plots shows the misdetection
probability versus the pose error probability, given
that a camera position was found, parameterized
by the number of correspondences sought, for an
accuracy criterion of C = 5 pixels.
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Cube3Cut and p, = 5.9773, oy = 2.0582, g = 7.4091, o = 1.7818 (junctions of
two segments), ur = 8.2803, op = 1.1278 (junctions of three segments), and
pr = 17.0530, og = 3.8706 (triples), and ps, = 27.7983, o, = 7.3375 for Fork.

8.1. PERFORMANCE EVALUATION

The obtained models were matched against artificial and real images, vary-
ing the number of correspondences sought, producing an observation mapping for
each experiment. The observation mappings found by the matching algorithm were
used to estimate the camera location with a robust iterative linearized least-squares
algorithm [10]. Figures 16 and 17 show estimated wireframes for 10 and 11 corre-
spondences superimposed on the corresponding real images for Cube3Cut and
Fork, respectively.

The pose estimation algorithm requires at least four correspondences between
2D points in the image and 3D points on the object. Thus, the correspondences
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Fig. 21. Matching Operating Curves for Cube3Cut
for C =3, C = 5and C = 7. The plots show the prob-
ability of misdetection versus the probability of pose
error, given that a camera position was found, para-
meterized by the number of correspondences sought,
for accuracy values of C=3, C=5 and C=17.
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found between labels (2D segments) and units (2D segments) had to be used to
determine correspondences between 2D points in the image and 3D points in the
object. Points in the image are determined by junctions of 2 and 3 segments. Points
in the object are vertices of the object. Thus, a 2D point determined by a junction
of units corresponds to a 3D point in the object if at least two of the units forming
the junction correspond to two labels that have associated 3D segments having the
3D point in common.

If the number of point correspondences found is less than or equal to three,
the pose estimation algorithm cannot determine the camera location, and the
experiment is referred to as a misdetection error. Figure 18 shows a plot of the
misdetection probability versus the number of correspondences sought, for the
artificial test images of Cube3Cut. In the beginning, as the number of correspon-
dences between labels and units increases, the number of junctions of 2 and 3
segments that are matched increases and the probability of misdetection, that is
the probability of finding three or less point correspondences, decreases. How-
ever, for n > 9, the matching algorithm fails, for some images, to find » or more
correspondences between labels and units, and therefore the probability of mis-
detection starts to increase again.
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If the number of point correspondences found is greater than or equal to
four, the pose estimation algorithm computes the camera location and orienta-
tion. The position error is defined as the average distance, measured in pixels,
between the vertices of the wireframe resulting of projecting the object with the
true camera position and the corresponding vertices of the wireframe obtained by
projecting the object with the estimated camera position:

Position Error — Z |[True Vertex — Computed Vertex||,
RS Number of Vertices '

If the position error of an image is larger than an accuracy criterion C, the obser-
vation mapping found is declared incorrect and the experiment is referred to as a
pose error. Figure 19 shows plots of the pose error conditional probability, given
that a camera position was found, versus the number of correspondences sought,
parameterized on the accuracy criterion C.
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As the number of correspondences between labels and units increases, the
number of junctions of 2 and 3 segments matched increases, and therefore we
can expect the pose estimation algorithm to be more accurate and the probability
of pose error to decrease.

The plots shown in figs. 18 and 19 are combined into a single plot, for
each value of C, by plotting the probability of misdetection versus the pose error
probability. The curves obtained in this way are traditionally called the “‘receiver
operating curves (ROC)” or simply the operating curves. Each point in a curve
corresponds to the number of correspondences sought during the matching,
and it has associated a probability of misdetection and a pose error prob-
ability.

The operating curve for the experiments performed and an accuracy value of
C = 5 pixels is shown in fig. 20. Let n be the number of correspondences sought.
For n =5, the probability of misdetection is high. If too few labels and units are
matched, few point correspondences are found, resulting in a high misdetection
rate. Furthermore, for those images where the camera position is found, the
pose error is high due to the small number of points used in the estimation. For
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Fig. 24. Matching Operating Curves for Fork. The
plots show the probability of misdetection versus
the probability of pose error, given that a camera
position was found, parameterized by the number
of correspondences sought, for accuracy values of
C=3,C=5and C=17.
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5<n <8, the number of point correspondences found increases, and both
probabilities decrease. For n =8 and n =9, there are always at least four point
correspondences found, and therefore the rate of misdetection is zero. The more
correspondences found, the more accurate the computed camera position is, and
the smaller the pose error conditional probability is. For n > 9, there are images
for which the matching routine cannot find n correspondences, and hence the mis-
detection rate increases. However, for those images where a set of correspondences
is found, the accuracy of the computed camera increases, since more point corre-
spondences are available, and therefore the pose error probability decreases. For
n > 14, the probability of misdetection increases, while the probability of pose
error remains approximately constant.

In general, we would like the system to have both low probability of mis-
detection, and probability of pose error, that is we would like the system to oper-
ate on the point of the operating curve that is the closest to the origin. For example,
for an accuracy of C = 5 pixels the optimal operating point is for n = 12. At this
point the probability of misdetection is equal to 0.013 and the probability of a pose
error larger than 5 pixels is 0.04. Figure 21 shows the operating curves for
Cube3Cut for the accuracy values C =3, C =5 and C =7 pixels.
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Fig. 25. ID A* Number of Iterations. The figure shows the average number of iterations during the

execution of the iterative-deepening-4* algorithm for Cube3Cut and Fork. The number of iterations

grows exponentially with the number of correspondences sought. The leveling off after n = 21 for

Cube3Cut and n = 15 for Fork is caused by forced termination of the matching program after
exceeding a given execution time limit of 2 minutes.
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The plots for the probability of misdetection, probability of pose error, and
the operating curves for Fork are given in figs. 22 to 24.

8.2. TREE SEARCH EFFICIENCY EVALUATION

In this section we will examine the efficiency of the ID 4* search algorithm
for matching, in terms of the number of iterations, the number of paths opened and
pruned, and the execution time.

Figure 25 shows plots of the average number of iterations during the execu-
tion of the algorithm for Cube3Cut and Fork. The number of iterations grows
exponentially with the number of correspondences sought, n. However, the rate
of growth is slow, for n below 17 and 10 for Cube3Cut and Fork, respectively.

Figure 26 shows plots of the average number of opened and pruned paths
for Cube3Cut and Fork. The number of opened paths grows exponentially with
the number of correspondences sought. However, the rate of growth is slow for
a number of correspondences less than 17 for Cube3Cut and 10 for Fork. Further-
more, the number of pruned paths also grows exponentially, at a slower rate.
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Fig. 26. ID 4" Number of Opened and Pruned Paths. The figure shows the average number of

opened and pruned paths in the tree during the execution of the iterative-deepening-4* algorithm

for Cube3Cut and Fork. The number of opened and pruned paths grows exponentially with the num-

ber of correspondences sought. However, the rate of growth is slow for a number of correspondences

less than 17 for Cube3Cut and 10 for Fork. The leveling off after n = 21 for Cube3Cut and n = 15 for

Fork is caused by forced termination of the matching program after exceeding a given execution time
limit of 2 minutes.
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Figure 27 shows the average percentage of pruned paths. The pruning ratio is
defined as the percentage of pruned paths relative to the total number of opened
paths. The pruning ratio for Cube3Cut is between 40% and 60% and for Fork
is approximately 50%.
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Fig. 27. ID A" Path Pruning Ratio. The figure shows that the average percent of opened paths that
are pruned by the iterative-deepening-A” algorithm is always between 40% and 60% for Cube3Cut
and it is approximately 50% for Fork.

The average execution time for the matching algorithm for Cube3Cut and
Fork is shown in fig. 28. The execution time grows exponentially with the number
of correspondences. The average CPU time is less than 1 second for a number of
correspondences sought under 7 for Cube3Cut and 6 for Fork.

9 Conclusion

In this paper we have posed the relational matching problem as a special
case of the pattern complex recognition problem. This probabilistic approach
allowed us to make explicit statements about how an image is formed from a
model, and hence to define a natural matching cost that can be used to find the
best observation mapping. Furthermore, we have showed how to find an under-
estimate of this cost. The relational matching cost and its underestimate are used
to guide an iterative-deepening-4* (ID A4") heuristic search procedure in finding
a set of correspondences between the model and the image.
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Fig. 28. ID A" CPU Time. The figure shows the average CPU time for the execution of the iterative-

deepening-A* algorithm for Cube3Cut and Fork. The time grows exponentially with the number of

correspondences sought. However, the rate of growth is slow with the time of execution being under

a second when the number of correspondences sought is less than 7 for Cube3Cut and 6 for Fork.

The leveling off after n = 21 for Cube3Cut and n = 15 for Fork is caused by forced termination of
the matching program after exceeding a given execution time limit of 2 minutes.

The matching algorithm was tested on real and simulated data. The
experiments with real images indicate that the system performs well in a real
environment. The simulated data was used to obtain the operating curves of the
algorithm that characterize its performance. The experiments showed that even
though the nature of the feature matching problem is exponential, the use of the
ID A" matching algorithm keeps the size of the problem under control, by opening
fewer nodes and pruning between 40% and 60% of them. Specifically, for
Cube3Cut and the optimal number of correspondences (n = 12), the number of
paths opened by the matching algorithm was, on the average, 202. Moreover,
116 of these paths were pruned (on the average). This should be compared with
the 27'% possible paths to be explored by an exhaustive search. Similar results
were obtained for Fork (optimal n = 9), with 668 paths opened (out of a possible

20%) and 387 pruned.
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