
Machine Vision and Applications (1988) 1:23--40 Machine Vision and
Applications
�9 1988 Springer-Verlag New York Inc.

Pipeline Architectures for Morphologic Image Analysis
Lynn Abbott
Department of Electrical and Computer Engineering and The Coordinated Science Laboratory, The University
of Illinois at Urbana-Champaign, Urbana, IL 61801 USA

Robert M. Haralick and Xinhua Zhuang*
Department of Electrical Engineering, University of Washington, Seattle, WA 98195 USA

Abstract: The concepts of mathematical morphology pro-
vide some very powerful tools with which low-level im-
age analysis can be performed. Low-level analysis, by its
very nature, involves repeated computations over large,
regular data structures. Parallelism appears to be a nec-
essary attribute of a hardware system which can effi-
ciently perform such image-analysis tasks, and there is a
variety of forms that this parallelism can take. This paper
gives a tutorial description of the basic morphological
transformations and demonstrates how the basic morpho-
logical transformations can be implemented in the pipe-
line processing form of parallelism. Correspondingly,
plausible designs for pipeline architectures are devel-
oped.

Key Words: image analysis, morphology, pipeline archi-
tectures, parallel processing, programmable delay mem-
ories

1. Introduction

Low-level image analysis involves large, regular
data structures and often requires very fast rates of
computation. Many different computer architec-
tures have been proposed or built over the past de-
cade for such image-processing tasks. In exploiting
parallelism, pipeline architectures can sometimes
offer advantages over arrays of individual process-
ing elements.

Mathematical morphology is the study of shape.
The tools of morphology can be used to realize in-
herent advantages of speed and flexibility for many
image-processing applications (Gerristen and Ver-
beek 1984; Sternberg 1985). These "image alge-

* Permanent affiliation is with the Zheijung Computing Tech-
nique Institute, Hangzhou, People's Republic of China.

bra" tools are well matched to a pipeline architec-
ture.

This paper presents a quick overview of the mor-
phological approach to image analysis, and demon-
strates how it relates to pipeline processing. Then,
we present an overview of the concepts of mathe-
matical morphology. Some existing architectures
for implementing the morphologic operations are
briefly described. Finally, some pipeline architec-
tures for image morphological operat ions are
sketched.

2. Background and Definitions

Images are often represented as two-dimensional
arrays of brightness values, known as pixels. Such
an array can be quite large; an image from the
LANDSAT satellite can contain 4000 x 4000 8-bit
pixels from each of several spectral bands (Reeves
1984). More common applications may involve vid-
eo image of 256 x 256 pixels.

A logical or binary image is one in which each
pixel consists of a single bit. By multilevel thresh-
olding, any gray-level image can be converted to a
registered stack of binary images (Preston 1983).
These black-and-white images are transformed by
logical rather than arithmetic operations. After pro-
cessing, the resulting set of binary images can be
converted back to gray-level format by arithmetic
summations.

In a digital image, each pixel can be thought of as
a cell. A set of nearby cells, known as a neighbor-
hood, can be used to define transformation func-
tions which map the given cell into a new one,
which is part of a new, transformed image. Appli-
cation of a set of such transforms to each pixel in an
original image can result in a completely new image.

Cellular operations based on a 3 x 3 neighbor

24 Abbott et al.: Pipeline Architectures

hood can be very powerful (Gernsten and Verbeek
1984). In certain cases, a sequence of 3 x 3 window
operations can be equivalent to a single transforma-
tion using an arbitrary number of neighboring pixels
(Lougheed and McCubbrey 1980). This paper is
concerned with sequences of operations that may
involve pixels which may be close together, such as
those contained in a 3 x 3 neighborhood, or may
involve pixels which may be many rows and col-
umns apart. Operations using pixels which are spa-
tially spread apart have important computational
advantages in their ability to compose an operation
sequence having N operations which, in effect, cov-
ers a neighborhood as large as 2 N pixels.

A c e l l u l a r l o g i c c o m p u t e r operates on binary im-
ages. Preston (1983) presents a survey of such ma-
chines. A c e l l u l a r a r r a y c o m p u t e r usually refers to
a two-dimensional array of processing elements;
this is discussed further in section 4.1.

3. Overview of Mathematical Morphology

Morphology is the study of shape or form. Mathe-
matical morphology, or i m a g e a l g e b r a , is the study
of shape, using the tools of set theory. It is a branch
of image analysis that uses set-theoretic descrip-
tions of images and their transformations. This sci-
ence was introduced by Matheron (1975). Serra
(1982) presents these concepts in detail. A tutorial is
found in Haralick et al. (1987).

D i l a t i o n and e r o s i o n are the primary transforma-
tions of mathematical morphology. In loose terms,
these operations cause the swelling or shrinking of
areas when the structuring element has a disklike
shape. In the context of image analysis, the areas
are usually portions of two-dimensional images, al-
though the concepts of image algebra hold for arbi-
trary dimensionality.

We now present some definitions, based on an
image X and a structuring element B, where each is
contained in a two-dimensional Euclidean space,
E 2. The relations generalize to k dimensions. We
first consider binary morphological transforma-
tions, and then describe gray-scale transformations.

3.1 Binary Images
Dilation is defined as

Xb = {YlY = x + b, x ~ X},

then it can be shown that

X O B = U X b
b ~ B

X O B = N X _ b.
b E B

This means that a dilation of X by B can be de-
scribed as the union of translations of X by all
points b contained in the structuring element B. For
erosion, a similar description holds, except that the
result is an i n t e r s e c t i o n of translations by all points
- b , where b is contained in B.

Dilation and erosion both exhibit the property of
translation invariance:

Xb G B = (X G B)b

X G Bb = (X G B)b

Xb O B = (X O B)b

X @ B b = (X O B)-b

There exist chain rule relations for dilation and ero-
sion:

(B I ~) B 2) G B 3 = B1 @(B2GB3)

(B1O B2)@ B3 = B 1 0 (B 2 @ B 3)

This means that if

C = BI G Be e . . . O Bs,

then

x G c - (. . . ((X O B ~) ~ B ~] G . . . OBs)

X@ C = (. . . [(X@B1) @B2] G . . . @Bsi

Thus, if a structuring element can be broken down
to a chain of dilations of smaller structuring ele-
ments, the desired operation may be performed as a
strong of suboperations. This property lends itself
well to pipelining.

If each B i contains n points, then the dilation

X G B = {yly = x + b , x @ X , b EB} C = B 1 0 B2 0 . . . Bs

Similarly, erosion has the definition

XO B = {ylb ~ B, implies (y + b) E X}.

If Xb denotes the translation of X by the point b,

is called an n - p o i n t d e c o m p o s i t i o n of the structuring
element C (Zhuang et al. 1986). If the origin is con-
tained in each of these Bi, the decomposition is said
to be c a n o n i c a l . Any structuring element admitting
a canonical decomposition must contain the origin.

Abbott et al.: Pipeline Architectures 25

3.2 Gray-scale Morphology
We now generalize to gray-scale images, for which
each pixel is not restricted to one of two values, but
can contain any numerical value. The details of this
generalization, which comes about through the um-
bra homomorphism theorem, can be found in Har-
alick et al. (1987).

I f X now represents the gray-scale image, we re-
fer to the value of the pixel at row r and column c by
X (r , c) . Similarly, the value of the pixel at row i and
columnj of the structuring element B is B(i , j) . Then
the gray-scale dilation and erosion can be computed
by

(X G B)(r,c) =

(X 0 B)(r,c) =

max {X(r - i, c - j) + B(i,j)}
(i , j) ~ B

(r, c) -- (i , J) ~ X

min {X(r + i, c + j) - B(i,j)}
(i , j) ~ B

All of the relationships presented for the binary
case are preserved here in a form in which intersec-
tion is replaced by max and union is replaced by
min.

3.3 Synopsis
Why ;are these operations useful? First, morphology
is especially useful because its operations relate di-
rectly to shape (Haralick et al. 1987). By shrinking
and swelling objects in some algorithmic fashion,
we make transformations that can result in the de-
tection of edges, corners, and other salient features
of an object. Next, using the chaining property of
morphological operations and decomposed struc-
turing elements, pipelined architectures can per-
form these transformations very efficiently.

4. Existing Architectures

In an attempt to overcome the Von Neumann bot-
tleneck inherent in conventional computer architec-
tures, various forms of parallelism have been ex-
plored. This parallelism is especially important in
image processing, in which very large, regular data
structures are used to represent images.

Because of these large amounts of data, both ar-

ray p r o c e s s o r s and p i p e l i n e p r o c e s s o r s have been
proposed for image processing. Here we refer to a
general array processing architecture which can
have either SIMD (Single Instruction-stream, Mul-
tiple Data-stream) or MIMD (Multiple Instruction-
stream, Multiple Data-stream) characteristics. This
is often a two-dimensional array of identical, pro-
cessing elements (PEs) which achieve s p a t i a l p a r -

a l l e l i s m . A pipeline computer achieves parallelism

by pushing the data through a "manufacturing as-
sembly line" where each processor continually per-
forms a particular operation on the data stream as
the data stream passes through it, very much as a
worker on the manufacturing assembly line does a
particular assembly operation.

4.1 Array Processors
Examples of array processors that have been built
are the Illiac IV, containing an 8 x 8 array of pro-
cessing elements, and the MPP, containing 16,384
PEs in a 128 x 128 matrix (Reeves 1984), the CLIP
processors, DAPP, GAPP, and the AISI machine
with 1024 processors. In these designs, each PE is
identical to all others in the system. A central con-
trol unit broadcasts instructions and data to all of
the PEs. Reviews of these architectures and others
can be found in Yalamanchili et al. (1985), Kruse
(1983), Sternberg (1981), and Rice and Jamieson
(1985).

Ex t remely high compu ta t ion rates can be
achieved by the array machines, but only after im-
age data has been loaded into the array. Sternberg
(1985) has contended that array machines spend sig-
nificant amounts of time simply in loading and un-
loading image data. In other words, input and out-
put of image data can present a serious drawback to
these designs.

Typically, each PE in an array architecture will
contain just 1 pixel, and can communicate with its
nearest neighbors. This facilitates cellular neighbor-
hood operations. But even the largest of the array
processors can contain only a subset of a typical
image. This requires that an image must be parti-
tioned into several segments that are processed sep-
arately. This, unfortunately, causes undesirable ef-
fects at the borders of the segments, which must
eventually be compensated for in the final transfor-
mations. It is argued that these border drawbacks,
and the input/output (I/O) overhead, significantly
reduce the effectiveness of the array architecture.

4.2 Pipelined Processors
These problems can be remedied to some extent in
a pipeline architecture. Image data is presented in
raster-scan format, as from a TV camera, into a
pipeline of processing stages. In general, each stage
in a pipeline can perform a limited number of func-
tions; a control unit configures each stage before
processing can begin. After configuration, a stage
performs the same operations on each input, and
passes the result to the next stage. The advantages
of this approach are that the image data need not be
put into a special format, and that only simple in-
terconnections are required (Reeves 1984). Once

26 Abbott et al.: Pipeline Architectures

the pipeline is filled, very high throughput is
achieved.

Some examples of pipeline architectures are the
TAS (Klein and Serra 1973), the Cytocomputer
(Lougheed and McCubbrey 1980), the MVI Genesis
4000 (Sternberg 1985), and the MITE (Kimmel et al.
1985). Each is now discussed briefly. The Tex-
ture Analyser System (TAS) performed binary mor-
phological operations in a pipeline of three stages.
Originally a single hexagonal structuring element
was supported, but later versions could perform
more general logical operations.

The Cytocomputer was developed at the Envi-
ronmental Research Institute of Michigan, and has
been used for biomedical image processing (Stern-
berg 1983). The Cytocomputer consists of a serial
pipeline, in which each stage performs a single
transformation of an entire image. Eighty-eight
identical stages perform logical morphological op-
erations, and 25 other stages follow for numerical
processing. Each logical stage is fully table driven.
Each logical stage can perform 3 • 3 neighborhood
operations. In the numerical stages, operations are
performed on gray-scale images.

The MVI Genesis 4000 (Sternberg 1985) provides
several stages that are not all identical to perform
arithmetic, geometric, and statistical operations.
Image data passes through this pipeline at 10
Mbytes/s. Its image memory planes consist of sev-
eral 512 x 512 buffers.

The arithmetic group can perform additions, mul-
tiplications, and so on, and can logically compare
an image to another image or to a constant. The
statistical group can count the occurrences of pixels
at specified intensities or in specified windows, and
can locate all pixels in a given stage. The geometric
group performs morphological transformations, one
or more in a single stage. Each stage can chain
structuring elements that consist of two points
each, where one of these points is the origin and the
other is an arbitrary point in the image plane.

The MITE is an advanced architecture that has
the possibility of multiple pipelines whose intercon-
nectivity can be reconfigured.

5. Pipelined Architectures for Binary Images

We first consider the case of logical images. Section
6 will cover numerical images. Consider again the
characterization for dilation and erosion:

X E) B = U X b
b C B

X O B = N X b
b ~ B

To implement these operations using a pipeline ar-
chitecture, first consider the case of a two-point
structuring element. We then generalize these re-
sults to n-point elements, and consider a computer
pipeline composed of such stages.

5.1 Practical Considerations
S.l.1 The image window. Any practical image

must be limited to some finite number of elements.
This suggests some constraints that may be em-
ployed in the design of a processor architecture. If
we assume an N x M rectangular image, having N
lines and M pixels per line, we see that it is possible
first to perform morphological operations assuming
an infinite image plane, and then produce the final
result by a windowing operation. Alternatively, this
windowing operation can be performed concur-
rently with a morphological operation. With either
method, this is equivalent to multiplying individual
pixels by 1 within the N x M window, and by 0
outside, after performing the morphological opera-
tions. For a binary image, this is equivalent to
ANDing by a rectangular window consisting of l 's
upon a background of 0's.

Example: Here is an image window of dimen-
sions 3 x 5, where a one is represented as " O " and
a zero as " O . " The origin is represented as "r" ."
Conceptually, the zeros extend to infinity in all di-
rections.

Consider now an image which has nonzero pixels
only within a rectangular window. We wish to shift
the image, and display the result within the original
window.

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 r-" �9 �9 �9 �9 0 0 0
0 �9 �9 �9 �9 �9 0 0 O
0 �9 �9 �9 �9 �9 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

An Image Window: W
Example: Here is an instance of translation, us-

ing a rectangular display with N = M = 5. Notice
that as pixels are moved out of the image window,
they are simply forgotten.

a = {(0,1),(1,0),(I, 1),(1,2),(1,3),(2, t),(3,1),(4,1)}

0 0 0 0 0
0 �9 �9 0 0
0 �9 0 O 0
0 0 0 0 0
O �9 O l O t 0

A

0 0 0 �9 0
0 0 0 �9 �9
O 0 0 �9 0
0 O 0 �9 0
0 0 0 �9 0

A(o,2)

Abbott et al.: Pipeline Architectures 27

5.1.2 Raster-format image data. For a pipeline
architecture, it is convenient to present image data
in raster format. We now formalize this concept.

We define a function R:E 2 ~ E' which maps an
N • M image to raster format. For an image A,
R[A] represents a one-dimensional array of pixel
value in row-major form. R[A](t) refers to a partic-
ular pixel: by incrementing t from 0 to N M - 1 we
are given, in order, the image pixels of A beginning
in the upper left-hand corner of A and proceeding
left to right, top to bottom. R[A] is defined to be
zero for all other values of t. R[A](rM + c) is the
value of the image pixel in the r th row and c th col-
u m n of A, for O <~ r <~ N - l a n d 0 ~ < c ~ < M - 1.

We need to refer to a "delayed" raster image.
This is represented as R[A](t - "r), where "r is the
amount of delay. If the pixels of R[A] are input one
at a time into any kind of device that behaves like a
shift register, we can refer to the input of the shift
register as R[A](t). Then R[A](t - ,r) refers to the
output of the shift register. The final version of a
shifted image is just an appropriately delayed out-
put of the shift register, which may then be masked
to zero out those pixels which would have wrapped
around onto another line.

For a raster image R[A](u), we also define its
duration to be the instances in time for which 0 ~< u
<~ N M = 1. Notice that the argument u may repre-
sent a delayed image, where u = t - "r.

Example: Now consider the raster-format data
for the previous image, A, as shown below. The
first row is R[A](t), the input image data for A. The
next row is R[A](t - 2), which is the original de-
layed by two time units. The third is the mask
R[M](t) with which we AND the second row to pre-
vent wraparound. The fourth line is the image win-
dow R[W](t). Finally, the last line is the translated
image R[A(o,2)](t), which corresponds to A(0,2). This
is formed by ANDing lines 2, 3, and 4.

Because this translation operation can be per-
formed easily by delaying and masking raster-
format image data, this yields a strategy for imple-
menting pipeline morphological operations.

5.2 Two-Point Canonical Structuring Element

We consider first dilation, and then erosion. An ar-

chitecture is then presented that can perform these
operations, using raster-scan image data. Binary N
x M images are assumed throughout.

5.2.1 Theory--dilation. Proposit ion 1: Dilation
of an image by a structuring element consisting of
just the origin and a point (r,0) below it, where r is
positive, can be realized by delaying the raster input
by rM time delays, and ORing that with the input.
The resulting output must be windowed by the du-
ration of the nondelayed input image.

Proof: If we delay R[A](t) by R M time units, we
have R[A](t - rM), which corresponds to a version
of the original image that has been shifted down by
r pixels. This is because a delay of the entire image
by an integral number of raster lines r results in the
entire image being shifted down by r pixels. If we
OR R[A](t) with R[A](t - rM), a dilation is formed.
We must AND this with R[W] to produce the final,
windowed result.

This is the simplest case, because no wraparound
problems arise. A similar case follows.

Proposition 2: Dilation by a structuring element
consisting of just the origin and a point above it (r,0)
where r is negative, can be realized by delaying the
raster input by (Irl)M time units, and ORing that
with the nondelayed input. The output must be win-
dowed by the duration of the delayed image.

Proof: As we saw before, a shift of the entire
image by an integral number Irl of raster lines results
in the image just being shifted down by]rl pixels. If
we OR R[A](t) with R[W](t - Ir]M), a dilation is
formed. We must AND this with R[W](t - [riM),
which corresponds to the duration of R[A](t -
IrlM), to produce the desired result.

This was an example of a noncausal operation,
since the image window needed to be delayed. Re-
call that for raster input, an image is presented one
pixel at a time. In general, we refer to a noncausal
operation as one in which some pixel of the original
raster image must be logically combined with an
image pixel that has not yet been presented in the
raster data. For example, when the pixel R[A](q) is
received, it needs to be combined with R[A](tl +
n), where n is positive. This pixel has not yet been
received. Our solution to this dilemma is simply to
delay the input image, and to define this delayed

R[A](t)
R[A](t - 2)
R[M](t)
R[WI(t)
R[A(o,2)](t)

t ~

oeoooleeOeoloeOOOlOOOOOlOeOOOl
OOOlOOeOOleOOeOlOOOeOlOOOOOlOO
ooeeelooeeelooeeelooeeelooeeel
oooooloooooloooooloooooloooooloooo

oooooloooooloooooloooooloooool

28 Abbott et al.: Pipeline Architectures

Example:

0 O 0 0 0
�9 �9 �9 O 0
0 �9 0 0 0
0 �9 0 0 0
0 �9 0 0 0

A

0
0

0
0

0

0 0 0
0 0 0
0 0 0
0 0 �9
0 0 0

A

0 �9 0 0
�9 0 �9 0
�9 �9 �9 �9

O 0 0 O
0 0 O 0

A �9 {(0,0),(I,0)}

O O O
O O O
�9 �9 O
�9 �9 O
O O O

0
0
0
O
0

0 0 0
0 0 0
�9 �9 0
0 0 0
0 0 0

Ao,o)

0 0 0 0 �9
0 0 �9 0 �9
0 0 0 �9 �9
0 0 �9 0 �9
O 0 0 O 0

A @ {(0,0),(-2,0)}

0 0 0
0 �9 0
0 0 0
0 0 0
0 0 0

A(_ 2,0)

0
0
0

image as the primary image. A delayed image win-
dow R[A](t - n) accompanies this image.

The window must be delayed since the original
input effectively corresponds (in the noncausal
case) to the translated image, Ar,c, for which rM +
C ~< 0. If we were to window by the duration of the
original input, we would essentially be using W(r,c)
as our image window. By delaying R[W] by trM +
c I time units, we effectively recover W(0,0).

Similarly, a causal operation is one in which all
logical operations with some input pixel of the orig-
inal image involve only pixels which have already
been presented in the raster data. The original im-
age remains the primary image and W(o.0), without
any delay, is used as the image window. These ear-
lier pixels could be stored in a shift register for this
operation, and would correspond to a shifted image
A(r,c), for which rM + c >~ O.

Notice that Propositions I and 2 involve vertical
shifts only, and that no wraparound problems are
present. Now we consider horizontal shifts, for
which wraparound pixels must be masked.

Proposition 3: Dilation by a structuring element
consisting of just the origin and a point to the right
of it (0,c), where c is positive, can be realized by
delaying the raster input by c time units, masking
that, �9 that with the input, and windowing by
the duration of the input image. The masking oper-
ation required here is to prevent wraparound; the
first c pixels in each delayed raster are set to 0.

Proof." A simple delay of the input by c, for 0 ~<
c <~ M, results in a wraparound, so that some pixels
which were on line k become elements of line k + 1.
If for each line these c pixels are set to 0, a trans-
lated, masked image results. If this is � 9 with the
input, and windowed (ANDed) by R[W](t), the re-
quired morphological dilation is performed.

Proposition 4: Dilation by a structuring element
consisting of just the origin and a point (0,c) directly
to the left of it (c is negative) can be realized by
delaying the raster input by]c I. The output is
formed if we now OR this delayed input with a
masked version of the (nonshifted) input, and AND
this with an image window delayed by jc] time units.
The mask must set to 0 the last Icl pixels in each
(nondelayed) raster line.

Proof." This is another example of a noncausal
operation. The delayed image is the primary image.
Relative to the primary image R[A](t - Icl), the
nondelayed input R[A](t) represents a negative de-
lay of the image. If we constrain c to be in the range
0 < Icl < M, there results a wraparound, so that
some pixels which were on line k become elements
of line k - 1. If these Icl pixels are masked to 0, a
left-shifted, windowed image results. If this is � 9
with the delayed input, and ANDed with a delayed
image window R[W](t - tcl), the required morpho-
logical dilation is performed.

Now that we have examined several special
cases, it is time to examine the general case.

0 0 0 0 0 0 0 �9 �9 0
0 0 0 �9 0 0 0 �9 �9 �9
0 0 0 0 0 0 0 0 �9 0
0 0 0 0 0 0 0 0 0 O
0 0 0 0 O O O 0 �9 0

A A(o,2)

0 0 �9 �9 0
0 0 �9 �9 �9
0 0 0 0 0
0 0 0 �9 0
O 0 0 �9 O

A G {(0,0),(0,2)}

Abbott et al.: Pipeline Architectures 29

Proposition 5: Dilation by a structuring element
consisting of just the origin and an arbitrary point
(r,c) in the image plane can be realized by delaying
the raster input by IMr + cl time units. (Note that r
and c can be independently positive, negative, or
zero.) If the sum Mr + c is positive or zero (the
causal case), the output can be formed by ORing a
delayed, masked version of the input with the non-
delayed input, and then windowing by the duration
of the original input. If the sum (Mr + c) is negative
(the noncausal case), the shifted image will become
the primary image. If we OR this delayed image
with a masked version of the (nonshifted) input, and
AND this with the duration of the delayed input, the
final result is produced.

Proof: Note first that A(r,c) = (A(r,0))~0,c), from the
definition of translation of an image. Thus an arbi-
trary translation can be decomposed to two inde-
pendent translations, one horizontal and the other
vertical. To achieve the vertical translation A(r,O),
the input image can be delayed by [rM[, an integral
multiple of M. This requires no masking except by
the image window. Similarly, the horizontal trans-
lation can be accomplished by a delay of [c], with
appropriate masking, when we constrain c to be in
the range 0 ~< [c[~< M - 1.

1. When c ~> 0 and r ~> 0, the sum of the delays is
IrM + C I as in the proposition. The image win-
dow R[W](t) is not delayed.

2. W h e n c ~ < 0 a n d r ~ < 0 , o r c < 0 a n d R ~ < 0 , the
sum of the delays is still lrM + c f as before. But
the image window must be delayed as R[W](t -
IrM + cl) because, as we saw before, the image
window needed to be delayed when r or c were
independently less than zero.

3. When c ~< 0 and r > 0, we have two opposing
terms. The rM-term requires that the image be

0 0 0 0 0 ! 0 0 0 0 0
0 0 0 0 0 0 �9 0 0 0
0 0 0 �9 0 0 0 0 0 0
0 0 �9 0 0 0 �9 O 0 0
0 �9 0 0 0 O 0 O 0 0

A A~o, 3~

O 0 0 0 0
O �9 0 0 �9
0 0 0 �9 0
O 0 0 0 0

' 0 0 0 0 0

A @ {(0,0),(0,- 3)}

.

delayed by IrMI before combining with the input
image, and that the image window R[WI(t) not be
delayed. The c-term would independently cause
a delay of Icl before logically combining the two,
but it would cause the image window to be de-
layed also, becoming R[W](t - Icl). Since the
rM-term dominates, these opposing effects can
be combined so that a total delay of IrM + c I is
used with an image window of R[W](t).
When c I> and r < 0, the same types of opposing
effects are seen, but with the signs reversed. The
rM-term again dominates, and the total image
delay required is IrM + cl. Since rM is negative,
the entire term rM + c is negative, and the se-
quence is noncausal. This requires that the
shifted image window R[W])t - IrM + c]) be
used.

5.2.2 Theory---erosion. Because erosion is the
morphological dual to dilation, many of the con-
cepts derived above are applicable here. The differ-
ences are that the AND operation is used between
shifted copies of the image instead of OR, and the
relative shifts are reversed in direction from those
for dilation. We proceed directly to the general
case.

Proposition 6: Erosion by a structuring element
consisting of just the origin and an arbitrary point
(r, c) in the image plane can be realized by delaying
the raster input by IMr + c I time units. Again, note
that r and c can be positive, negative, or zero. If the
sum (Mr + c) is positive (here the noncausal case),
the output can be formed by ANDing a masked ver-
sion of the input with the delayed input, and then
windowing by the duration of the delayed input. If
the sum (Mr + c) is negative or zero (the causal
case), we now AND the nondelayed input with a
masked version of the shifted input and then win-
dow by W.

Proof." For erosion, the shifts are in the - r and
- c directions. As in the case of dilation, the arbi-
trary translation can be decomposed into two inde-
pendent translations. The arguments of Proposition
5 hold here, by which the two image shifts are rec-
onciled to require only IrM + cl delays. The image
window is determined by the sign of rM + c. When
the sum is negative zero, R[W](t) is used, and when
the sum is positive, R[W](t - IrM + c[) is used.
After masking for wraparound and ANDing with
the appropriate image window, the final output is
seen. The wraparound mask must set to zero the Icl
pixels that would otherwise carry over to another
image line.

5.2.3 Masking. Up to this point, we have often

30 Abbott et al.: Pipeline Architectures

Example:

0 0 0 0 0
0 �9 �9 0 0
�9 �9 �9 0 0
�9 �9 �9 0 0
0 0 e 0 0

A

0
0
0
0
0

0 �9 �9
�9 e e
e �9 e
0 0 e
0 0 0

A (- 1,1)

0 0 0 0 0
0 �9 �9 0 0
0 �9 e 0 0
0 O 0 0 0
0 O 0 0 0

A �9 {(O,O),(1,- 1)}

0
0
0
0
0

mentioned the masking operation that sets to zero
those pixels that have wrapped around to another
image row because of image delays. It is time to
consider this more closely.

We define (r,c) to be the amount by which an
image is to be translated. For dilation, this is a point
in the structuring element; for erosion, this is the

negation of a point in the structuring element. We
have seen that IrM + c I is the amount of delay
needed from the original image data. We have also
seen that the sum (rM + e) can represent two in-
dependent shifts, one vertical and one horizontal.
Because of this fact, it is c that determines the
wraparound mask.

If c >t 0, mask off (set to zero) the first c pixels of
each image row, relative to the primary image, of
the nonprimary image. If c < 0, mask of the last Ic[
pixels of each image row, relative to the primary
image of the nonprimary image.

An example was given earlier for c = 2. Later, in
section 5.3.3, an example will be given for both c >
0 and c < 0.

5.2.4 Implementation. A conceptual realization
of the operations described above is shown in Fig-
ure 1. In all cases, the circuit performs logical op-
erations on the input raster stream, and on a de-
layed version of it. The input pixels are presented
one at a time in raster-scan format. A set of delay
elements permits the choice of the appropriate input
delay. This delay varies with the structuring ele-

R[A](t)

Input Pixals
~- NM-1 Delay Elements

- I M + 4)

Output

- I tl ~176176176 -,:.o.,oo Select

Input Sync Control Unit

Output Sync

i ,
r C

Figure 1. This illustrates a conceptual pipeline architecture for performing morphological operations.

Abbott et al.: Pipeline Architectures 31

ment, and is always IrM + c I. A multiplexer selects
this delay. The first delay element is needed be-
cause of practical considerations. Clock signals are
not shown in the figure.

A control unit provides the appropriate mask and
window signals, based on (r,c) and on an input sync
signal which indicates the start of a new image. An
output sync signal is provided to specify the start of
the output image. This is necessary for the window
function because the output image may be delayed
relative to the input.

Only one of the masks will operate for a given
(r,c); the other will be set to 1. One of the masks is
for the causal case, and one is for the noncausal
case. Using knowledge of M, r, and c, the control
units can produce the appropriate mask signal to
prevent wraparound. The output image windows
ensure that only the proper portion of the (rela-
tively) delayed image is used in forming the output.

Of significance is the fact that this arrangement
can be made to accept high-speed image data, even
faster than the video rate acquisition speed. Binary
data could be taken from a video camera, for exam-
ple. One image frame can be followed immediately
by another, and this circuit will perform the same
transformation on both images. Because of this fea-
ture, this circuit can be used as a stage in a pipeline
to perform chained morphological operations.

A problem is that the number of delay elements
and the complexity of the multiplexer can become
prohibitive. For example, a worst-case, 2-point
structuring element is {(0, 0), (N - 1, M - 1)}. This
would require NM elements in the delay line. If N
= M = 4000, we would need 16,000,000 delay el-
ements. Actually+ for some applications, this may
be possible with today's technology. This may be
compared to the Cytocomputer, which utilizes 2M
+ 3 delay elements per logical pipeline stage.

But a very real problem becomes evident if the
complexity of the multiplexer is considered. The
solution is to utilize a programmable tapped-delay
memory, as shown in Figure 2. The control unit
must set the amount of delay. In practice, this may
be implemented with a random-access read/write
memory, commonly known as a RAM. This mem-
ory unit can be viewed as a circular buffer. Input
pixels are written into sequential memory locations,
beginning again at the start of the memory after the
end is reached. Appropriately delayed pixels are
read from the memory at the same rate as new pix-
els are written.

With a sufficiently fast memory, the output pix-
els can be read before being overwritten by new
input pixels. If the RAM has only one I/O port, it
must be capable of operating at twice the rate of the
data flow through it. This is because " read" and

Input Pixels -D

Input Sync

Control [=!
}
{

Programmable
TaDped--delay
Memory

.~utput

I Erosion '

Control Unit I

r c

Select

Out l zu t Svnc

Figure 2. This illustrates the block diagram for a pipeline architecture with a programmable delay memory.

32 Abbott et al.: Pipeline Architectures

"wri te" operations are both required for each input
pixel. Also, a dual-port RAM could be used to ad-
vantage here. For either case, the memory must
contain at least N M - 1 memory cells, where each
cell corresponds to an individual delay element.

All of this analysis has assumed the very worst
case structuring element. If certain constraints are
made on the structuring element, the circuit may be
made simpler. For example, if we make the con-
straint Irl ~< q < N - 1, then a worst case structur-
ing element is {(0, 0), (q, M - 1}, and at most M(q
+ 1) memory cells are needed. Similarly, the con-
straint Icl <~ s < M - 1 may be added. In that case
a worst-case structuring element is {(0, 0), (q, c)},
and the RAM is required to have only qs - 1 mem-
ory cells.

5.3 n-point Canonical Structuring Element
While the dilation of a chain of 2-point structuring
elements can be equivalent to a large rather com-
plex composite structuring element, some structur-
ing elements cannot be decomposed into a chain of
2-point sets. For these applications, more points are
needed in the decomposed structuring elements.
For example, it can be shown that a chain of 3-point
elements can be found which is equivalent to an
arbitrary convex element. Here we consider the
more general case of n-point, canonical structuring
elements, in which each structuring element is com-
posed of the origin and exactly n - I other points.
We present first the theory, and then an implemen-
tation.

5.3.1 Theory--dilation. The theory here is a
generalization of that for 2-point sets. We first look
at the strictly causal case, then the strictly non-
causal case, and finally the general case.

Proposition 7: Consider a structuring element
composed of n points, where one of the points is the
origin and the renaming points are arbitrary. Denote
this set of points by {(ri, ci)lO <~ i <- n - 1}. If for
each point (rk, ck) the sum (Mr k + ck) is positive or
zero (causal), then we can take n - 1 delays of the
input raster image, mask off the pixels that would
wrap around to new image lines, OR all of these
with the original image, and window by the duration
of the input to produce the dilation.

Proof." An image can be effectively shifted within
an image window by delaying and masking for
wraparound. As we saw in Proposition 5, when the
sum (Mrk + ck) is positive or zero for a point (rk,
ck), we can form a union of the image with a shifted
version of itself by delaying the raster input, mask-
ing that for wraparound, ORing with the nonde-
layed input, and windowing by R[W](t). When there

are n - 1 points outside the origin, and each rep-
resents a causal delay, we can form the dilation of
the image by this element by independently per-
forming the appropriate delays, masks, and ORs for
each point.

Proposition 8: Consider again a structuring ele-
ment composed of n points, where one of the points
is the origin. For every point (rk, ck), if the sum (Mrk
+ ck) is negative (noncausal), then we can again
take n - 1 delays of the input image. The point (rp,
cp), for which the sum IMr~ + c~l is maximum over
all k determines the greatest delay needed, and this
corresponding image becomes the primary image.
All other delays are measured with respect to this
image. For all other delayed images, and for the
original image, wraparound masks must be applied;
the resulting pixels are ORed with this primary im-
age; and the delayed image window R[W](t - IMrp
+ Cpl) is applied to derive the dilation.

Proof." As we saw in Proposition 5, when the sum
(Mrk + c~) is negative for a point (rk, Ck), we can
form a union of the image with a shifted version of
itself by delaying the raster input, masking the orig-
inal image for wraparound, ORing these together,
and windowing by a shifted image window. The fi-
nal union will be output in raster-scan format, but
will be delayed relative to the original input. If there
are n - 1 points outside the origin, and for each of
them (Mrk + ck) is negative, then the problem is a
similar one. If we find the point (rp, cp) for which
the sum IMr~ + c~l (overall k) is maximum, then we
have determined the maximum delay, (Mrp + Cp).
Since this is a negative integer, this represents a
negative (noncausal) delay of the original raster in-
put. We form this noncausal delay by naming this
shifted version the primary image, and measuring
all delays relative to it. If all of the other delays are
taken and masked for wraparound, we can OR the
resulting shifted images with this primary image,
and then window with R[W](t - IMrp + Cpl) to form
the desired dilation.

Now we proceed to the general case. Up to now,
every structuring element has required only causal
delays or only noncausal delays--never both. If
both are permitted, a complication arises, since we
need to accommodate delays in opposite directions,
relative to some primary image. This will require
the addition of extra delay elements.

Proposition 9: For an arbitrary, canonical, n-
point structuring element, an entire image can be
shifted into a long-shift register. The output of that
will be the primary image, and will enter a second,
long-shift register. By obtaining delays relative to
this primary image from the two shift registers, we
are able to form the dilation. Masks must be applied

A b b o t t e t al.: P ipe l ine A r c h i t e c t u r e s 33

to the outputs of the two shift registers; this is then
ORed with the primary image, and an image win-
dow must be applied. This window is the duration
of the output of the first shift register.

Proof." By entering the entire image into a long-
shift register, and by centering the image window
on the output of this register, we can form relative
delays in both directions from the primary image. If
noncausal points are present, then the correspond-
ingly delayed images are available from the first
shift register. Likewise, delayed images corre-
sponding to causal points are available from the sec-
ond long-shift register. Combining the results of
Propositions 7 and 8, we see that the desired dila-
tion is formed as described above.

5.3.2 Theory--Erosion. We proceed directly to
the general case.

Proposition 10: For a structuring element con-
taining the origin and n - 1 arbitrary points, we can
form the erosion of an image by shifting the entire
image into a long-shift register. The output of that is
the primary image, and it enters a second long-shift
register. We obtain delays relative to this primary
image from the two shift registers. Suitable masking
must be applied to prevent wraparound, and these
results are ANDed with the primary image. Finally,
an image window is applied to produce the desired
erosion.

Proof." Recall that erosion differs from dilation
only in that intersections replace unions, and that
shifts are reversed in direction. Then, using the re-
suits derived so far, we have Proposition 10.

5.3.3 Implementation. Note that the 3-point
structuring element

{(0, 0), (N - 1, M - 1), (- [N - II, - [M - 1])0}

0 0 O 0 0 0 0 O �9 0
0 �9 �9 �9 0 0 0 �9 �9 �9
0 �9 0 0 0 0 0 0 �9 0
0 �9 0 O 0 0 0 0 �9 0
0 0 0 0 0 0 0 0 0 0

A A(o,~)

0 O 0 0 0 0
0 0 �9 0 0 �9
0 �9 �9 �9 0 0
0 0 �9 0 0 0
0 0 �9 0 0 0

A(1,1)

�9 0 �9 0
�9 �9 �9 �9
�9 �9 �9 �9

0 0 �9 0
0 �9 0 0

A �9 {(0,0),(1,1),(0,2)}

is the worst case, in terms of the total number of
delay elements required. This requires 2 N M - 1
delay elements. (In practice, this would be a very
unusual structuring element.) For any n > 2, a hard-
ware implementation must accommodate this as its
worst case if completely arbitrary structuring ele-
ments are permitted.

Figure 3 shows a conceptual realization for a gen-
eral, 3-point canonical structuring element. For
clarity, multiplexers are shown. Note that nearly
twice the number of delay elements are needed
from previous implementations. Also, a multiplexer
is needed for each point outside the origin for each
delay line. This is because for a truly general struc-
turing element, all n - 1 points outside the origin
may represent either entirely causal or entirely non-
causal delays, and a multiplexer is needed for each
point. The complexity of the control unit is similarly
increased.

Figure 4 shows the more realistic implementa-
tion, where programmable tapped-delay memories
replace the delay lines and multiplexers. In prac-
tice, several simple RAMs may be used, as were
used in Figure 2.

The implementation for an n-point structuring el-
ement is a generalization of this one. The 2 n delay
lines are still needed, requiring a total of N M - 1
memory cells in each RAM. Note that if constraints
are placed on Irkl and Ic~l, the sizes of the memories
can be accordingly reduced.

Example: Here we perform the dilation of a 4 x
3 image with a worst-case structuring element, {(0,
0), (3, 2), (- 3 , -2)}.

Here is the same data in raster-scan form. Row 1
is the original image data, R[A](t). Row 2 is the
primary image, and is the output of the first long
shift register, R[A](r - 11). Row 3 is the output of
the second long shift register, R[A](t - 22). Row 4
is the mask R[M](t) that is ANDed with row 3 to
prevent wraparound. Row 5 is the mask for row 1.
Row 6 is the delayed image window, R[W](t - 11).
Row 7 is the final image. It is produced by this
operation:

5.4 The Pipeline

5.4.1 Discussion. We have now seen possible
implementations of two morphological operations,
dilation and erosion, using a shift-register approach
which can accommodate raster-scan input of image
data. Since our implementations both accept and
produce image data in raster-scan format, these im-
plementations are well suited for use as individual
stages in a pipeline. This pipeline is well suited for
morphological operations that employ chained

34 Abbott et al.: Pipeline Architectures

NM-1 Delay Elements D-
Input Pixels

1

Input Sync

�9 NM-1 Delay Elements D-

~/ ~ Multiplexor / / ~ Multiple~xo r /
t

To Multiplexors
1

_1
-i

Dilation
D D ou, u:

D ' se,ec,
I Output Sync Control Unit

{q} {ol}
Figure 3. This illustrates a conceptual pipeline architecture for a general three-point structuring element.

structuring elements, since each stage can imple- we set q = N - 1 and s = M - 1.) With these
ment the transformation by one structuring ele- constraints, a worst-case structuring element is
ment. An example of this is shown in Figure 5. An
analysis follows. {(0, 0), (q, a), (-q , -s)}

5.4.2 Analysis. We assume the use of general,
canonical, n-point structuring elements. We still as-
sume an N x M image window. Each stage in the
pipeline will introduce a delay in the raster-scan
image data. This delay is fixed. Suppose that the
limitations

ri<~ q < ~ N - 1

c i < ~ s < - M - 1

are imposed on each point in a structuring element.
(This still supports a general structuring element if

both in terms of amount of delay and the number of
storage elements required. Each of the two shift
registers in every pipeline stage should then contain
IqM + sl delay elements. Therefore the total delay
through a single stage is (IdaM + sl) + 1 time de-
lays because of the single delay element at the start
of each stage. With S stages, this implies that the
delay, from the first pixel entering the pipeline to
the last pixel leaving, is S[IqM + sl + 1] + N M -
1 time units. This is if a single image were run
through the pipeline.

Abbott et al.: Pipeline Architectures 35

Input Pixels = ~

r I

Input Sync

_!
Programmable
Multiple--Output
Tapped--Delay
Memory

II

Programmable
Multiple--Output
Tapped--Delay
Memory

I Delayed Output Streams

Control

]
Delayed Output Streams Dilation

'

Select

Output Sync
Control Unit D.-

t
{r,} {c,}

Figure 4. This illustrates a pipeline architecture for a general three-point programmable delay memory.

The real benefit of the pipeline approach is seen
if a large number of images are put through the pipe-
line irL sequence or if a very long image (N >> M) is
shifted through the pipeline. In that case, an initial
de lay is seen, but after the pipeline is filled, a new,
transformed image appears every N M time units.

0 0 O 0 0 O
0 0 0 0 0 0
O �9 0 0 O 0
0 0 0 0 0 �9

A A(3,2)

�9 0 0
0 0 0
0 0 0
0 0 0

A(-3,-2)

O O O
O O O
O �9 �9
O O O

A �9 {(0,0),(- 3, - 2),(3,2)}

Better performance may be seen if the structur-
ing elements are constrained to contain either cau-
sal points only or noncausal points only. With this
added constraint, the delay through a single stage
can be made variable, and is IMrp + %1, where (rp,
cp) is the pixel causing the sum IMrk + ck[to be
maximum for that stage. Then the worst-case delay
through the pipeline is still S [[q M + sl + 1] + N M
- 1 time units as before, but on the average fewer
delays will be required.

6. Pipelined Architectures for Gray-Scale
Images

Here again are the definitions of gray-scale dilation
and erosion:

(X ~ B)(r,c) = max {X(r - i, c - j) + B(i j)}
(i , j 3 E B

(r, c) -- (i , j ') ~ X

(X@B)(r,c) = min {X(r + i, c + j) - BUd)}
(i j) u B

36 Abbott et al.: Pipeline Architectures

R[A](t)
R[A](t -
R[M](t
R[M](t)
R[M](t)
R[W](t)

[((row 2) OR (row 1 AND row 5) OR (row 4 AND row 3)) AND row 6]
t--->
1 : 1 1 0 0 0 0 0 0 0 1 1 0 0 0

11) 2: 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
- 22) 3: I I I 0 1 0 0 0 0 0 0 0 0 0 0 0

4: 0001000100010001
5: 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
6:00o000o00o00001000100010001oo000o000o0

I I I I
7: 000100o1o001o001

Raster-Format
Image
Data

Instead of the logical operations of union and inter-
section used in the binary case, the corresponding
gray-level operations are the arithmetic max and
min over numerical quantities. Unlike the binary
case, the operations involve direct interaction be-
tween the image and the structuring element, rather
than between the image and delayed versions of
itself.

We proceed directly to the noncausal case for
n-point, arbitrary structuring elements. We again
assume that image pixels are presented in raster-

scan format. But each pixel now requires b bits of
storage, where 2 b is the number of gray levels per-
mitted. Conceptually, a pipeline stage will consist
of a chain of b-bit registers, and practically as a
series of programmable tapped-delay memories,
which may be implemented with simple RAMs, as
we have seen. Each memory address must refer-
ence b bits.

We again use the function R : E 2 ~ E 1 which maps
an N x M image to raster format. R [A] represents a
one-dimensional array of pixels, each of which is a

S Stages

Image Datasyr b e _ _ ~ ~

Ceotra,
Control !~ Unit

Memory
Figure 5. This illustrates a pipeline architecture for performing chained morphological operations.

Abbott et al.: Pipeline Architectures 37

numerical value. R[A](t) refers to a particular pixel.
R[A](rM + c) is the value of the image pixel in the
r th row and c ta column of A.

As for the binary case, we use a pipeline to pro-
vide access to several image pixels simultaneously
so that several numerical operations can be per-
formed concurrently.

6.1 Gray-scale dilation
From the definition, we see that the additions of the
pixels of the structuring element B to several image
points are required. We assume that all of the pixels
of B are always available within a pipeline stage. It
remains to construct a pipeline that will continu-
ously provide access to all appropriate image pix-
els.

The (r, c) th output pixel cannot be produced until
all pixels A(r - i, c - j) of image A are present in
the pipeline, where (i, j) are in the indicated domain.
Translated to raster format, this means that all the
appropriate pixels R[A]([r - i]M + c - j) must be
present. This may be rewritten as R[A]([rM + c] -
[iM + j]), which demonstrates that the pixels of A
that must be available are the pixel R[A](rM + c)
along with a neighborhood that depends on the do-
main of B.

The values for i will range from a minimum value
imi n (which may be negative), to a maximum value
/max, and similarly for j. If Mi + j < 0 for any (i, j)
in B, noncausal accesses will be required.

Example: The origins for A and A G B are in the
upper left corners, and the origin for B is at the
center pixel. Since B is defined on a 3 x 3 domain,
a neighborhood of size not greater than 3 x 3 about
a point A(r, c) is involved in the calculation of (A G
B)(r, c).

6.2 Gray-scale erosion
From the definition, we see that the subtractions of
the pixels of B from several image pixels are re-

quired. As we saw for dilation, the (r, c) th output
pixel cannot be produced until all pixels A(r + i, c
+ j) of image A are present in the pipeline. Trans-
lated to raster format, this mean that all the appro-
priate pixels R[A]([r + i]M + c + j) must be
present. This can be rewritten as R[A]([rM + c] +
[iM + JT), where it becomes apparent, as for dila-
tion, that the pixel R[A](rM + c) must be present
along with a neighborhood that depends on B. The
neighborhood which must be present depends on (i,
j), but in inverse order as that for dilation. When iM
+ j > 0, noncausal accesses will be required.

Example: The origins here are as in the previous
example. Again, a neighborhood of size not greater
than 3 x 3 about A(r, c) is used to produce the
result.

6.3 Implementation
A useful pipeline implementation must make avail-
able all of the appropriate image pixels. Since these
image pixels, in general, are not all adjacent in ras-
ter form, a pipeline stage can consist of several pro-
grammable tapped-delay memories. Figure 6 illus-
trates such a circuit, which can perform gray-scale
dilation or erosion.

Input pixels are again presented one at a time in
raster-scan format. A chain of tapped-delay memo-
ries makes the appropriate image pixels available to
arithmetic units. These pixels represent a neighbor-
hood about some pixel (r, c) of the image. A quan-
tity inside a rectangle represents the number of unit
time delays caused by that element.

Separate storage registers are required for each
pixel of the structuring element. Since every ele-
ment of B may be involved simultaneously in a sin-
gle maximum or minimum operation, the number of
arithmetic units required is the same as the number
of pixels in B. Each arithmetic unit is capable of
both addition and subtraction.

3 3 5 6 7 0 2 0
3 .4 6 7 7 1 4 1
5 6 7 7 8 0 2 0
6 6 7 7 9 B
6 7 7 8 9

A

3 3 5 6 7 0 2 0

3 4 6 7 7 1 4 !
5 6 7 7 8 0 2 0

6 6 7 7 9 B
6 7 7 8 9

A

7 7 9 10 11
7 8 10 11 11
9 10 11 11 12

l0 l0 11 11 13
10 11 11 12 13

A @ B

- 1 - 1 1 2 3
- 1 0 2 3 3
1 2 3 3 4
2 2 3 3 5

2 3 3 4 5

A O B

38 Abbott et al.: Pipeline Architectures

Input Pixet$

Structuring H
Element |
St~ H ~

4-/--I

Input Svnc _i

-I

- / ~ ~ 1 7 6 1 7 6

7 r 7 d7 , ,

" " " rmxTmin LJ max/rain

"t'To Arithmetic Units, Delay Lines
I Output Sync

Control Unit
I

Figure 6. This illustrates the details of the pipeline architecture to perform dilation and erosion.

The wraparound problem that we first saw for
binary images is also present for gray-scale images.
Suitable masks may be applied, so that the min and
max operations are computed only over the indi-
cated domains. A control unit provides the appro-
priate mask and windowing signals, and specifies
the operation of the arithmetic units. The min/max
units also receive a select signal.

We now demonstrate how this circuit can per-
form a morphological operation. Figure 7 shows a
specific example. This circuit performs gray-level
dilation of an image X with the structuring B, which
is made of 4 pixels as shown.

The value passed through the circuit at point
P] is

B (- 1 , 1) + R [X] (t + dl - 1)

At P2, the value is

max{B(-l,1) + R [X] (t + d l - 3),

B(0,0) + R [X] (t - 2)}

A t P3:

max{B(-1,1) + R [X] (t + d l - 4),

B(0,0) + R [X] (t - 3),

B(1,-l) + R [X] (t - d2,-2)}

Finally, the output is

max{B(-1,1) + R [X] (t + d l - 4),

B(0,0) + R [X] (t - 3),

B(1,-1) + R [X] (t - d2 - 2),

B(1,0) + R [X] (t - d2 - d3 - l)}

which can be made to correspond to (X | B) (t - 3).
The appropriate delays d i are calculated as fol-

lows. Letting u -- t - 3, the output can be rewrit-
ten as

m a x { R [B] (- M + 1) + B [X] (u + all),

RIB](0) + R[X](u),

R [B] (M - 1) + R [X] (u - d2 + 1),

R [B] (M) + R [X] (. - d2 - d3 + 2)}

where the structuring element pixels have also been
represented in raster format. Then it remains to for-
mulate the following inequalities:

- M + 1 = -dl + 1

M - l = d : - I

M = d2 + d3 - 2

and solve for the values of dv

Abbott et al.: Pipeline Architectures

Input Pixels
/I "~ U

R[Xl (t) / / ~ B R[X](t-d~_ r~ R [X] (t-d2--d 3)

B (- 1 , 1) ~ ,

I
B(-1,1) + ,

R[X] (t+d 1-11

U 2
, r - 7

B(O,0) § 4" B11,-I) + ,~ 1,01 + R[X]~t-d2-d3-1) R[X] (t-l) I R IX] (t-d2-1)~r r ~ B(

 .rn n ,.. . t t

39

B 1 t
Figure 7. This illustrates the setup for the pipeline architecture to perform a dilation with a specific four-point structuring
element.

7. Conclusion

Both binary and gray-scale morphology are becom-
ing increasingly important. We have described a
pipeline approach to the general implementation of
chained erosions and dilations for both binary and
gray-scale images. The pipeline approach to low-
level image analysis can overcome some of the I/O
limitations inherent in architectures that utilize ar-
rays of separate processing elements. Several archi-
tectures were discussed, and some high-level anal-
ysis was given.

References

Gerristen FA, Verbeek PW (1984) Implementation of cel-
lular-logic operators using 3 * 3 convolution and table
lookup hardware. Computer Vision, Graphics, and
Image Processing 27:115-123

Haralick RM, Sternberg SR, Zhuang X (1987) Image anal-
ysis using mathematical morphology: Part 1. IEEE
Pattern Analysis and Machine Intelligence PAMI-9,
(4):532-550

Kimmel MJ, Jaffe RS, Manderville JR, Lavin MA (Nov
1985) MITE: Morphic image transform engine, an ar-
chitecture for reconfigurable pipelines of neighbor-
hood processes. IEEE Computer Society Workshop

for Pattern Analysis and Image Database Manage-
ment, Miami Beach, Florida:493-500

Klein JC, Serra J (Apr 1973) The texture analyser. Jour-
nal of Microscopy 95(2):34%356

Kruse B (1983) State-of-the-art systems for pictorial in-
formation processing, Fundamentals in Computer Vi-
sion, OD Faugeras (ED.), Cambridge University
Press, Cambridge, pp 425-442

Lougheed RM, McCubbrey DL (1980) The cytocom-
puter: A practical pipelined image processor. Proceed-
ings of the 7th Annual Symposium on Computer
Architecture:271-277

Matheron G (1975) Random sets and integral geometry.
John Wiley, New York

Preston K, Jr (Jan 1983) Cellular logic computers for pat-
tern recognition. Computer 16:36-47

Reeves AP (Jan 1984) Parallel computer architectures for
image processing. Computer Vision, Graphics, and
Image Processing 25:68-88

Rice TA, Jamieson LH (1985) Parallel processing for
computer vision, Integrated Technology for Parallel
Image Processing, S Levialdi (Ed.) Academic, Lon-
don, pp 57-78

Serra J (1982) Image analysis and mathematical morphol-
ogy. Academic Press, London

Sternberg SR (1981) Parallel architectures for image pro-
cessing, Real-Time/Parallel Computing, M Onoe, K

40 Abbott et al.: Pipeline Architectures

Preston, and A Rosenfeld (Eds.), Plenum Press, New
York, pp 347-359

Sternberg SR (1985) An overview of image algebra and
related architectures. In Integrated technology for par-
allel image processing. Academic Press, London, pp
7%100

Sternberg SR (1983) Biomedical image processing. Com-
puter, 16:23-34

Yalamanchili S, Palem KV, Davis LS, Welch AJ, Aggar-
wal JK (1985) Image processing architectures: A tax-
onomy and survey, Progress in Pattern Recognition 2
LN Kanal and A Rosenfeld (Eds.), Elsevier (North
Holland), Amsterdam, pp 1-37

Zhuang X, Haralick RM (1986) Morphological structuring
element decomposition. Computer Vision, Graphics,
and Image Processing 35:370-382

