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1. Introduction 

Image analysis algorithms are composed of dif- 
ferent sub-algorithms often applied in sequence. 
Determination of the performance of a total image 
analysis algorithm is possible if the performance of 
each of the sub-algorithm constituents is given. 
The problem, however, is that for most published 
algorithms, there is no performance characteriza- 
tion which has been established in the research 
literature. This is an awful state of affairs for the 
engineers whose job it is to design and build image 
analysis or machine vision systems. 

This suggests that there has been a cultural defi- 
ciency in the image analysis/machine vision com- 
munity: image analysis and processing algorithms 
have been published more on the merit of an ex- 
perimental or theoretical demonstration suggesting 
that some task can be done, rather than on an 
engineering basis. Such a situation was tolerated 
because the interesting question was whether it was 
possible at all to accomplish an image analysis 
task. Performance was a secondary issue. 

Now, however, a major interesting question is 
how to quickly design image analysis systems 
which work efficiently and which meet require- 
ments. To do this requires an engineering basis 
which describes precisely what is the task to be 
done, how this task can be done, what is the error 
criterion, and what is the performance of the al- 
gorithm under various kinds of random degrada- 
tions of the input data. To accomplish this for 

adaptive algorithms requires being able to do a 
closed loop engineering analysis. To perform a 
closed loop engineering analysis requires being 
able to first do an open loop engineering analysis. 

The purpose of this discussion is to raise our sen- 
sitivity to these issues so that our field can more 
rapidly transfer the research technology to a fac- 
tory floor technology. To initiate this dialogue, we 
will first expand on the meaning of performance 
characterization in general, then discuss the ex- 
perimental protocol under which an algorithm per- 
formance can be characterized, and finally 
specialize the discussion to the area of thinning 
algorithms as a case in point. 

2. Performance characterization 

What does performance characterization mean 
for an algorithm which might be used in an image 
analysis or machine vision system? The algorithm 
is designed to accomplish a specific task. If the in- 
put data is perfect and has no noise and no random 
variation, the output produced by the algorithm 
ought also to be perfect. Otherwise, there is some- 
thing wrong with the algorithm. So measuring how 
well an algorithm does on perfect input data is not 
interesting. Performance characterization has to 
do with establishing the correspondence of the 
random variations and imperfections which the 
algorithm produces on the output data caused by 
the random variations and the imperfections on 
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the input data. This means that to do performance 
characterization, we must first specify a model for 
the ideal world in which only perfect data exist. 
Then we must give a random perturbation model 
which specifies how the imperfect perturbed data 
arises from the perfect data. Finally, we need a 
criterion function which quantitatively measures 
the difference between the ideal output arising 
from the perfect ideal input and the calculated out- 
put arising from the corresponding randomly per- 
turbed input. 

Now we are faced with an immediate problem 
relative to the criterion function. It is typically the 
case that an algorithm changes the data unit. For 
example, an edge-linking process changes the data 
from the unit of pixel to the unit of a group of pix- 
els. An arc segmentation/extraction process ap- 
plied to the groups of pixeis produced by an edge 
linking process produces fitted curve segments. 
This data unit change means that the representa- 
tion used for the random variation of the output 
data set may have to be entirely different than the 
representation used for the random variation of 
the input data set. In our edge-linking/arc extrac- 
tion example, the input data might be described by 
the false alarm/misdetection characteristics pro- 
duced by the preceding edge operation, as well as 
the standard deviation in the position and orienta- 
tion of the correctly detected edge pixels. The ran- 
dom variation in the output data from the 
extraction process, on the other hand, must be 
described in terms of fitting errors (random varia- 
tion in the fitted coefficients) and segmentation er- 
rors. Hence, the criterion function may change 
from stage to stage in the analysis process. 

Consider the case for segmentation errors. The 
representation of the segmentation errors must be 
natural and suitable for the input of the next pro- 
cess in high-level vision which might be a model- 
matching process, for example. What should this 
representation be to make it possible to character- 
ize the identification accuracy of the model mat- 
ching as a function of the input segmentation 
errors and fitting errors? Questions like these, have 
typically not been addressed in the research litera- 
ture. Until they are, analyzing the performance 
of an image analysis algorithm will be in the dark 
ages of an expensive experimental trial-and-error 

process. And if the performance of the different 
pieces of a total algorithm cannot be used to deter- 
mine the performance of the total algorithm, then 
there cannot be an engineering design methodology 
for machine vision systems. 

This problem is complicated by the fact that 
there are many instances of algorithms which com- 
pute the same sort of information but in forms 
which are actually non-equivalent. For example, 
there are arc extraction algorithms which operate 
directly on the original image along with an in- 
termediate vector file obtained in a previous step 
and which output fitted curve segments. There are 
other arc extraction algorithms which operate on 
groups of pixels and which output arc parameters 
such as center, radius, and endpoints in addition to 
the width of the original arc. 

What we need is the machine vision analog of a 
system's engineering methodology. This method- 
ology can be encapsulated in a protocol which has 
a modeling component, an experimental compo- 
nent, and a data analysis component. The next sec- 
tion describes in greater detail these components of 
an image analysis engineering protocol. 

3. Protocol 

The modeling component of the protocol con- 
sists of a description of the world of ideal images, 
a description of a random perturbation model by 
which non-ideal images arise, and a specification 
of the criterion function by which the difference 
between the ideal output and the computed output 
arising from the imperfect input can be quantified. 
The experimental component describes the experi- 
ments performed under which the data relative to 
the performance characterization can be gathered. 
The analysis component describes what analysis 
must be done on the experimentally observed data 
to determine the performance characterization. 

3. !. hnage generation 

This part of the protocol describes how, in ac- 
cordance with the specified model, a suitably ran- 
dom, independent, and representative set of 
images from the population of ideals is to be 
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acquired or generated to constitute the sampled set 
of images. This aquisition can be done by taking 
real images under the specified conditions or by 
generating synthetic images. If the population in- 
cludes, for example, a range of sizes of the object 
of interest or if the object of interest can appear in 
a variety of situations, or if the object shape can 
have a range of variations, then the sampling 
mechanism must assure that a reasonable number 
of images are sampled with the object appearing in 
sizes, orientations, and shape variations through- 
out its permissible range. Similarly, if the object to 
be recognized or measured can appear in a variety 
of different lighting conditions which create a 
similar variety in shadowing, then the sampling 
must assure that images are acquired with the light- 
ing and shadowing varying throughout its per- 
missible range. 

Some of the variables used in the image genera- 
tion process are ones whose values will be 
estimated by the image analysis algorithm. We 
denote these variables by zl,.. . ,  zK. Other of these 
variables are nuisance variables. Their values pro- 
vide for variation. The performance characteriza- 
tion is averaged over their values. We denote these 
variables by wl,..., WM. Other variables specify the 
state of the controlled random perturbation and 
noise against which the performance is to be char- 
acterized. We denote these variables by yl, . . . ,yj.  
The generation of the images in the population can 
then be described by N = J + K + M  variables. If 
these Nvariables having te do with kind of lighting, 
light position, object position, object orientation, 
permissable object shape variations, undesired ob- 
ject occlusion, environmental clutter, distortion, 
noise etc., have respective range sets R~,...,RN, 
then the sampling design must assure that images 
are selected from the domain R~ x R2 x ... :. Rjv in 
a representative way. Since the number ot images 
sampled is likely to be a relatively small fraction of 
the number of possibilities in RI x R2 ×""  x RN, 
the experimental design may have to make judicious 
use of a Latin square layout. 

3.2. Random perturbation and noise 

Specification of random perturbation and noise 
is not easy because the more complex the data unit, 

the more complex the specification of the random 
perturbation and noise. Each specification of ran- 
domness has two potential components. One com- 
ponent is a small perturbation component which 
affects all data units. It is often reasonable to 
model this by an additive Gaussian noise process 
on the ideal values of the data units. This can be 
considered to be the small variation of the ideal 
data values combined with observation or 
measurement noise. The other component is a 
large perturbation component which affects only a 
small fraction of the data units. For simple data 
units it is reasonable to model this by replacing its 
value by a value having nothing to do with its true 
value. Large perturbation noise on more complex 
data units can be modeled by fractionating the unit 
into pieces and giving values to most of the pieces 
which would follow from the values the parent 
data unit had and giving values to the remaining 
pieces which have nothing to do with the values the 
original data unit had. 

This kind of large random perturbation affect- 
ing a small fraction of units is replacement noise. 
It can be considered to be due to random occlu- 
sion, linking, grouping, or segmenting errors. 
Algorithms which work near perfectly on small 
amounts of random perturbation on all data units, 
often fall apart with large random perturbation on 
a small fraction of the data units. Much of the per- 
formance characterization of a complete algorithm 
will be specified in terms of how much of this 
replacement kind of random perturbation the 
algorithm can tolerate and still give reasonable 
results. Algorithms which have good performance 
even with large random perturbation on a small 
fraction of data units can be said to be robust. 

3.3. Per Oormance character ization 

Some of the variables used in the image genera- 
tion are those whose values are to be estimated by 
the machine vision algorithm. Object kind, loca- 
tion, and orientation are prime examples. The 
values of such variables do not make the recogni- 
tion and estimation much easier or harder, 
although they may have some minor effect. For ex- 
ample, an estimate of the surface normal of a 
planar object viewed at a high slant angle will tend 
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to have higher variance than an estimate produced 
by the planar object viewed at a near normal angle. 
The performance characterization of an image 
analysis algorithm is not with respect to this set of 
variables. From the point of view of what is to be 
calculated, this set of variables is crucial. From the 
point of view of performance characterization, the 
values for the variables in this set as well as the 
values in the nuisance set are the ones over which 
the performance is averaged. 

Another set of variables characterize the extent 
of random perturbations which distort the ideal in- 
put data to produce the imperfect input data. 
These variables represent variations which degrade 
the information in the image, thereby increasing 
the uncertainty of the estimates produced by the 
algorithm. Such variables may characterize object 
contrast, noise, extent of occlusion, complexity of 
background clutter, and a multitude of other fac- 
tors which instead of being modeled explicitly are 
modeled implicitly by the inclusion of random 
shape perturbations applied to the set of ideal 
model shapes. 

Finally, there may be other variables governing 
parameter constants that must be set in the image 
analysis algorithm. The values of these variables 
may to a large or small extent change the perfor- 
mance of the algorithm. 

The variables governing the extent of random 
perturbations and the variables which are the 
algorithm parameter constants constitute the set of 
variables in terms of which the performance char- 
acterization must be measured. Suppose there are 
I algorithm parameters xl, ..., xl, which can be set, 
J different variables Yl, ... ,YJ governing extent of 
random perturbations, and K different measure- 
ments £,, ..., £x to be made on each image. There 
will be a difference between the true ideal values 
z~, . . . ,z~ of the measured quantities and the 
measured values zl, ...,zK themselves. The error 
criterion, e(zl, . . . ,  zK, z.i,..., ~.K), must state how the 
comparison between the ideal values and the 
measured values will be evaluated. Its value will be 
a function of the I algorithm parameters and the J 
random perturbation parameters. 

An algorithm can have two different dimensions 
to the error criterion. To explain these dimensions, 
consider algorithms which estimate some parameter 

such as position and orientation of an object. One 
dimension the error criterion can have is reliability. 
An estimate can be said to be reliable if the algo- 
rithm is operating on data that meets certain 
requirements and if the difference between the 
estimated quantity and the true but known value is 
below a user specified tolerance. An algorithm can 
estimate whether the results it produces are reliable 
by making a decision on estimated quantities 
which relate to input data noise variance, output 
data covariance, and structural stability of calcula- 
tion. Output quantity covariance can be estimated 
by estimating the input data noise variance and 
propagating the error introduced by the noise 
variance into the calculation of the estimated 
quantity. Hence the algorithm itself can provide an 
indication of whether the estimates it produces 
have an uncertainty below a given value. High 
uncertainties would occur if the algorithm can 
determine that the assumptions about the environ- 
ment producing the data or the assumptions re- 
quired by the method are not being met by the data 
on which it is operating or if the random perturba- 
tion in the quantities estimated is too high to make 
the estimates useful. 

Characterizing this dimension can be done by 
two means. The first is by the probability that the 
algorithm claims reliability as a function of al- 
gorithm parameters and parameters describing in- 
put data random perturbations. The second is by 
misdetection false alarm operating curves. A mis- 
detection occurs when the algorithm indicates it 
has produced a reliable enough result when in fact 
it has not produced a reliable enough result. A 
false alarm occurs when the algorithm indicates 
that it has not produced a reliable enough result 
when in fact it has produced a reliable enough 
result. A misdetection false alarm rate operating 
curve results for each different noise and random 
perturbation specification. The curve itself can be 
obtained by varying the algorithm tuning con- 
stants, one of which is the threshold by which the 
algorithm determines whether it claims the estimate 
it produces is reliable or not. 

The second dimension of the error criterion 
would be related to the difference between the true 
value of the quantity of interest and the estimated 
value. This criterion would be evaluated only for 
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those cases where the algorithm indicates that it 
produces a reliable enough result. 

Each estimated quantity zk is a function of the 
values of the algorithm constants Xl, . . . ,xt and the 
random perturbation induced on the image by the 
values of the variables y~, . . . ,yj  and each zk is a 
function only of the algorithm constants x~,...,x~. 
The expected value E of e(zl,..., zr, z l , . . . ,  zr)  is, 
therefore, a function of x~,. . . ,x~ and y~ , . . . , y j .  

Performance characterization of the estimated 
quantity then amounts to expressing in graph, 
table or analytic form E[e(z l , . . . ,  zr, Zl, ..-, zr)] as a 
function of x~, ...,xi and y~, . . . ,yj .  

3.4. Experiments  

In a complete design, the values for the algo- 
rithm constants x~,..., xt and the values governing 
the random perturbations Yl, ... ,YJ will be selected 
in a systematic and regular way. The values for 
Zl, ..., z r  and the values for the nuisance variables 
wl, ..., wM will be sampled from a uniform distribu- 
tion over the range of their permissible values. 

The values for zi, . . . , z r  uniquely specify an 
ideal image. The values for y~, . . . ,yj  specify the 
extent to which random perturbations and noise 
are randomly introduced into the ideal image 
and/or object(s) in the ideal image. In this manner, 
each noisy trial image is generated. The values for 
x~, . . . ,Xl  specify how to set the parameter con- 
stants required by the algorithm. The algorithm is 
then run over the trial image producing estimated 
values £,1, . . . ,zr  for zl, . . . , z r .  Applying the error 
criterion then produces the values e(z~, . . . , zr ,  
zl, . . . ,zr). The data produced by each trial then 
consists of a record 

xl, ... ,Xb Yl, ... ,Y j, e(zl, . . . ,  Zr, z.i, . . . ,  z.r). 

The data analysis plan describes how the set of 
records produced by the experimental trials will be 
processed or analyzed to compactly express the 
performance characterization. For example, an 
equivalence relation on the range space for 
y~, . . . ,yj  may be defined and an hypothesis may 
be specified stating that all combinations of values 
of y~, . . . ,yj  in the same equivalence class have the 
same expected error. The data analysis plan would 

specify the equivalence relation and give the 
statistical procedure by which the hypothesis could 
be tested. Performing such tests are important 
because they can reduce the number of variable 
combinations which have to be used to express the 
performance characterization. For example, the 
hypothesis that all other variables being equal, 
whenever y j_ l / y j  has a ratio of k, then the ex- 
pected performance is identical. In this case, the 
performance characterization can be compactly 
given in terms of k and Yl , . . . ,YJ -2 .  

Once all equivalence tests are complete, the data 
analysis plan would specify the kinds of graphs or 
tables employed to present the experimental data. 
It might specify the form of a simple regression 
equation by which the expected error, the prob- 
ability of claimed reliability, the probability of 
misdetection, the probability of false alarm, and 
the computational complexity or execution time 
can be expressed in terms of the independent 
variables x~ , . . . , x l ,  y~ , . . . , y j .  As well it would 
specify how the coefficients of the regression equa- 
tion could be calculated from the observed data. 

Finally, if the image analysis algorithm must 
meet certain performance requirements, the data 
analysis plan must state how the hypothesis that 
the algorithm meets the specified requirement will 
be tested. The plan must be supported by a 
theoretically developed statistical analysis which 
shows that an experiment carried out according to 
the experimental design and analyzed according to 
the data analysis plan will produce a statistical test 
itself having a given accuracy. That is, since the en- 
tire population of images is only sampled, the 
sampling variation will introduce a random fluc- 
tuation in the test results. For some fraction of ex- 
periments carried out according to the protocol, 
the hypothesis to be tested will be accepted but the 
algorithm, in fact, if it were tried on the complete 
population of image variations, would not meet 
the specified requirements; and for some fraction 
of experiments carried out according to the pro- 
tocol, the hypothesis to be tested will be rejected 
but if the algorithm were tried on the complete 
population of image variation, it would meet the 
specified requirements. The specified size of these 
errors of false acceptance and missed acceptance 
will dictate the number of images to be in the 
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sample for the test. This relation between sample 
size and false acceptance rate and missed accep- 
tance rate of  the test for the hypothesis must be 
determined on the basis of statistical theory. One 
would certainly expect that the sample size would 
be large enough so that the uncertainty caused by 
the sampling would be below 20%. 

For example, suppose the error rate of a quanti- 
ty estimated by an image analysis algorithm is 
defined to be the fraction of time that the estimate 
is further than eo from the true value. If this error 
rate is to be less than 1/1,000, then in order to be 
about 85% sure that the performance meets speci- 
fication, 10,000 tests will have to be run. If the 
image analysis algorithm performs incorrectly 9 or 
fewer times, then we can assert that with 85% prob- 
ability, the image analysis algorithm meets specifi- 
cation (Haralick, 1989). 

4. Thinning 

In this section we take up a case in point: thin- 
ning. There are a large number of papers which 
have been published in this area. Each improves on 
the other in some fashion, but a mathematically 
precise statement of what is really being calculated 
is not made in any of them. 

To illustrate this, we will sketch out one kind 
of ideal shape model, one kind of a random per- 
turbation model, and one experimental protocol 
which concretely describes how one kind of per- 
formance characterization can be done. The con- 
ceptual model part of the protocol describes the 
ideal shapes which are to be thinned. Then it 
describes a random perturbation model which 
specifies the noise and distortions these shapes 
undergo in observation, and finally it gives a state- 
ment of the error criterion which evaluates the dif- 
ference between the computed answer and the ideal 
answer. 

4. I. The ideal shape world 

The ideal world of shapes to be thinned is the 
world of ribbons. An ideal ribbon is constructed 
from a simple bounded curvature arc which is the 
spine, specifying the center of  the ribbon and a 

cross-section function giving the ribbon's width 
at each point of the spine. Simple means that the 
arc does not cross itself. In addition, all arcs 
have bounded curvature. At any point of the arc, 
the width of the ribbon is the length of the line 
segment defined by the intersection of  the ribbon 
with a line perpendicular to the arc at the given 
arc point. The cross-section function has bounded 
first derivatives to keep the width from changing 
too fast. The width itself is also bounded from 
both sides, to prevent too narrow or too wide 
ribbons. Additionally, there is a relation between 
the maximum allowed curvature (minimum local 
radius) of the arc and the maximum allowed width 
of the ribbon, in order to prevent a case in which 
the combination of sharp curvature and large 
width at that point cause the ribbon to overlap 
itself. 

A scene of ribbons is a set of ribbons which d,~ 
not interfere too much with one another. Non- 
interference means that in any scene, the total of 
both the length and area of the ribbons is bounded. 
Furthermore ribbons either do not touch one 
another or if they do, they touch one another only 
in a constrained way: if they touch, they must cross 
one another and the crossing must be at not too 
shallow an angle. 

An ideal digital image is constructed from a scene 
of ribbons by tesellating the scene of ribbons into 
pixels. Each pixel is independently given a value of 
0 or 1 according to a stochastic mechanism in 
which the probability that the value of  a pixel is 1 
is the fraction of the area of the pixel occupied by 
the ribbon. 

4.2. The observed noisy perturbed shapes 

The observed digital image is obtained from the 
ideal digital image by changing the value of a rib- 
bon pixel with a probability depending on the 
distance the ribbon pixel center is from the ribbon 
boundary. This probability is a given monotonical- 
ly decreasing function of the distance the ribbon 
pixel is from the ribbon boundary. Thus, pixels 
well into the interior of a ribbon have little 
likelihood of changing value. Pixels near a ribbon 
boundary have larger probability of changing 
value. 



Volume 13, Number ! PATTERN RECOGNITION LETTERS (IAPR pages) January 1992 

4.3. Error criterion function 

Thinning can have a variety of purposes such as 
the estimation of the analytic expression for the 
spine of the ribbon or the identification of the pixels 
through which the spine passes. In this discussion 
we take the purpose of thinning to be the iden- 
tification of the pixels through which the spine 
passes. 

We define the error criterion function to be a 
given convex combination of the number of pixels 
identified by the thinning algorithm as being on the 
spine but which are really not on the spine with the 
number of pixels identified by the thinning algo- 
rithm as not being on the spine but which really are 
on the spine. 

4.4. Discussion 

It may be argued whether the outlined world of 
ideal ribbons is the most appropriate one, whether 
the purpose of thinning is most appropriately 
specified as the identification of the spine pixels, 
whether the random perturbation model is realistic, 
and if the criterion function is the most useful one. 
For the purpose of this discussion, these arguments 
are irrelevant: we are not trying to promote any of 
these choices; only to show that these are choices 
which must be made. 

In ~he thinning literature, [I-45], the ideal world 
of ribbons is not specified, the random perturba- 
tion model is not discussed, and the error criterion 
function is not given. And for this reason, what 
precise problem any thinning algorithm solves is 
not, in fact, precisely stated. For a precise state- 
ment would have the form: under the given ideal 
world, random perturbation model, and error 
criterion, the following algorithm, with smallest 
error, identifies the pixels on the spine. 

5. Conclusion 

This paper has discussed the problem of the lack 
of performance evaluation in image analysis 
algorithms. This situation is causing great dif- 
ficulties to researchers who are trying to build up 
on existing algorithms and to engineers who are 

designing operational systems. To remedy the 
situation, we suggested the establishment of a well- 
defined protocol for determining the performance 
characterization of an algorithm. Use of this kind 
of protocol will make using engineering system 
methodology possible as well as making possible 
well-founded comparisons between image analysis 
and machine vision algorithms that perform the 
same tasks. We elected a rather common and basic 
operation, namely thinning, as a first candidate to 
demonstrate the feasibility of our approach. With 
this case, a specific protocol model has been sug- 
gested for generating the test images, for the per- 
turbation model, and for the testing criterion. We 
hope that our discusstion will encourage a thorough 
and overdue dialogue in the field so that a com- 
plete engineering methodology for performance 
evaluation of image analysis algorithms can finally 
result. 
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