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Abstract—A peak noise removal method based on local gray tone statistics from the facet model is
introduced. Each pixelin an image is statistically tested to determine whether it belongs to the same gray tone
intensity surface as its neighborhood pixels. If its gray tone is outside the 95 per cent confidence interval
estimated [rom the neighborhood gray tones, it is judged as peak noise and its value is replaced by an average

of the gray tone values of the neighborhood pixels.

In order to estimate the local gray tone statistics, an

assumption is made that the neighborhood region is described by a linear or quadratic facet surface model.
It is also shown that this method can be successfully applied to scan line noise removal by using a one-

dimensional (horizontal or vertical) neighborhood.

I. INTRODUCTION

Noise cleaning is one of the basic problems in image
processing. There have been many papers on noise
cleaning or smoothing of image data (see Rosenfeld
and Yak™). One of the difficulties in this problem is
that we need different algorithms or methods for
different kinds of noise. A box type smoothing or a
nearest neighborhood type smoothing removes Gauss-
ian noise, however it sometimes diffuses noise around
the neighborhood if it is applied to peak noise or scan
line noise without care. Median filtering'® can remove
this kind of noise considerably better, but it also tends
to smooth out or blur fine structures in an image and
to cause image degradation.

This paper discusses a method for detecting and
removing peak noise based on the local gray tone
statistics of the neighborhood region. Peak noise,
which is usually added to image data in the imaging
process or digitizing process, is considered to be a pixel
whose gray tone differs sufficiently from the neigh-
borhood pixels. Scan line noise, which happens fre-
quently in the remotely sensed scanned image, can also
be considered to be peak noise if it is examined through
a one dimensional window perpendicular to the scan
line direction.

In order to detect peak noise, each pixel is statisti-
cally tested to determine whether its gray tone belongs
to the same population as the neighborhood pixels. If it
is out of the range of the 95 per cent confidence interval
estimated from the gray tones in the neighborhood, it
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is judged as peak noise and its value is replaced by an
estimated value.

Since peak noise depends on the spatial distribution
of the gray tones in the neighborhood, it is important
to take it into consideration when we judge peak noise.
If simple mean and variance of gray tones are used as
local gray tone statistics, we lose information of the
higher order spatial characteristics of the gray tone
distribution. In order to obtain the spatially dependent
gray tone statistics, we use a facet model which fits a
simple polynomial surface to the gray tone intensities
in a region.®* Section IT introduces the basic idea of a
facet model and peak noise and Section III describes
the peak noise and scan line noise removal algorithm.
In Section IV results applied to artificial images and
real images are presented.

II. PEAK NOISE AND IMAGE MODEL

Peak noise is defined as a pixel whose gray tone
intensity significantly differs from those of the neigh-
borhood pixels. In order to measure the difference
between a pixel and its neighbors, we need to estimate
local gray tone statistics in the neighborhood and
afterward compare those statistics with the current
pixel gray tone. We should note here that peak noise is
judged not from the univariate marginal distribution
of the gray tone intensities in the neighborhood but on
their spatial distribution. Figure 1 illustrates an exam-
ple of spatial distribution dependency of peak noise.
In Fig. | (a)and (b), the central pixel has the same gray
tone “5”, and the neighborhood is composed of four
values {1, 2, 3, 4]. However, the peakedness of gray
tone intensity is different between them. It is difficult to
judge that the center pixel in Fig. 1(b) is peak noise,
whereas it is more likely in Fig. 1(a). This indicates that
the gray tone spatial statistics are important.

A facet model assumes a simple gray tone surface
within the neighborhood. Let (r,, ¢,) be a pixel in an
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Fig. 1. Spatial distribution dependency of peak noise.

image and N be a set of neighborhood pixels, which
does not contain the center pixel (r,, ¢.). Note that the
use of the deleted neighborhood makes this facet
approach different from that used in Haralick'® or
Haralick and Watson."*) Let n be the number of pixels
in the neighborhood N. By choosing this neigh-
borhood, we may estimate the difference between the
observed value of the center pixel’s, (v, ¢.), gray tone
intensity and the value estimated from the neighboring
pixels. According to the facet model, the gray tones in
N are fitted to a polynomial function. A degree-one
polynomial would be appropriate to illustrate the idea.
The “slope facet model” is described by a linear

equation
fr.e)=ur+vc+w+qlr.c) (1)

where r is the row variable, ¢ is the column variable, u, v
and w are the slope plane coefficients and g(r, ¢) is
random stationary noise. We assume that

E[q(r, )] =0,
Vig(r, c)] = s>

The least square procedure determines an estimate of
u, vand w called i, ¥ and w, respectively by minimizing

2

S.= Y [dr+dc+w—f(r )]

(r.c)eN

3)

Without loss of generality we choose the center pixel
as the origin of the relative coordinate system for each
neighborhood N. Also, for simplicity, we choose the
symmetric rectangular region as the neighborhood.
This means

5 r=

(r.c)eN

Y c=0.

(r.cleN

Fig. 2. A 64 x 64 test image with Gaussian noise and peak
noise. (a) Test image. (b) Peak noise.

From now on, summation in equations indicates
summation in the neighborhood. Under this assump-
tion, i, &, w and residual error S, are given by

d=Yflrarnyr=u+Yq or/yr, @
P=2f0 ke =v+Tqlnce/T el (5)
W=Yfrcfn  =w+Yq c)n (6)
Se =Y [fl o) = fr, )12,
=20 )= —u? + T2 — (5 )2
+Y = (W —wln (7)

where f (r, ¢) is the estimate of the gray tone at pixel
(r, c) by
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Fig. 3. The result of peak noise removal. (a) Output after two

iterations of peak noise removal with a 3 x 3 window. (b)

Absolute value of the differences between the original and the
noise removed image.

fr, ) =ddr + bc + w. (8)

Note that #, ¢ w and S, reflect the linear spatial
distribution of gray tones in the neighborhood.

1II. PEAK NOISE REMOVAL

1. Estimation of difference
The difference between the true gray tone and the
estimated gray tone at the center pixel is given by
e(o, 0)=w—w—gq(0,0)
=34 c)n—q(o o) )

where 7 is the number of pixels in the neighborhood.
Suppose that the center pixel is not peak noise, ie. it
belongs to the same population as the rest of the
neighborhood. Then, from equation (7), ¢(o, 0) is

Fig. 4. lComparison of the output images after smoothing,
enhancing and thresholding for (a) the peak noise removed
image, (b) the original image.

normal because ¢ (r, ¢) is normal in N and at (o, 0).
Using the fact that

E[(% - w]] =0,
E[(w—w)] =s*/n,
we may obtain
Efe(0,0)] = E[(% — w) — g(0,0)] =0,
Vle(o, 0)] = E[{(¢ — ) — 40, 0)}?]
= E[( — w)2] = 2E[q(0, 0) (4 — w)
+ Efq(0, 0]
= (1 + 1/n)s?%,

since E [q (o, 0) (W — w)] = 0 because g (o, o) is not
included in the calculation of s? and is independent of
noise in the neighborhood N. It follows that if the
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) ) ) Fig. 6. The result of peak noise removal of the image in Fig. 5
Fig. 5. A 235 x 235 real image with peak noise. (after two iterations witha 3 x 3 window)

) Fig. 9. The result of scan line noise removal of the image
Fig. 8. A 256 x 128 diatom image with scan line noise. in Fig. 8 with a 7 x 1 window.



Peak noise removal by a facet model 27

Fig. 7. The results of median filtering of the image in Fig.

Fig. 10. The result of median filtering of the image in Fig.
8 with a 3 x 1 window.

center pixel belongs to the same population as the
neighborhood, e(o, 0)is normally distributed with zero
mean and (1 + 1/n)s? variance, ie.,

L _J0.0-/0.0) i
JO+ 1/n)s?
follows normal distribution N (0; 1).
Since s2 is the unknown noise variance, its estimate,
S,, is estimated from the neighborhood pixels. From
equation (7), we easily obtain

E[S.] = ns* — 3s* = (n — 3)s° (11)

This means that ¥V, = §,/(n— 3) is an unbiased
estimate of s2. Therefore, by replacing s* in equation
(10) by V,, we find that

A0 -fo.0 (12)

Ja+1mv,

follows the t-distribution with (n — 3) degrees of
freedom.

Fig. 11. The result of scan line noise removal based on a
simple thresholding operation.
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(2) Test of hypothesis T (0, 0) = f (0, 0)
Previous discussion leads to the fact that peak noise
can be detected by testing the hypothesis

H,:{(0, 0) = f(o0, 0)

If H, is accepted, i.e. the observed gray tone intensity
[ (o, 0) most likely belongs to the same population as
the neighborhood pixels, then f (o, 0) is declared not to
be peak noise. If H, is rejected, then f(o, 0) is most
likely peak noise. Hypothesis H,, is tested by using the
t-statistic of equation (12). If we take 95 percentiles, the
test is given by

(13)

H, is accepted: t < t (n — 3, 0.05)

H, is rejected: t > 1 (n — 3, 0.05) (14)

where t(n—3, 0.05) is 95 percentiles of the ¢-
distribution with (n — 3) degrees of freedom. Notice

that the 95 per cent confidence interval of the center
gray tone is given by

J(o,0)— (1 + 1/m)V, t(n — 3;0.05) < f(o, 0)

<flo,0) + (1 + 1/n)V, t(n — 3; 0.05).
(15)

If H, is rejected, f(o, 0) is judged as peak noise and
replaced by the estimated value f(o, o).

As a special case, if we choose a one-dimensional
neighborhood window we may get a test of hypothesis
for scan line noise. In the one-dimensional case, the
slope facet model is reduced to

fEY=wr+v+q(r). (16)

Utilizing the fact that ¥, = S, /(n — 2) is an unbiased
estimate of 5%, we find that
_ J) ()

t ——
v +1mV,

(17)

follows the t-distribution with (n — 2) degrees of
freedom, By testing the hypothesis
H,:f(0) = f(0)
we can detect scan line noise.
For example, consider the one-dimensional case in
Fig.1(a)and (b), where N = (— 2, — 1,1,2),n = 4 and

flo) =5.InFig. 1(a),f (= 2) = Lf(~ 1) =2,f(1) = 3
and f(2) = 4, therefore, we obtain

for)y=wr+4
=(X O/ Xr+ (X fryn) =0.Tr + 2.5
and
S.=Y[fr)—f"]? =01

from equation (16), and

12,5 — 5.01
o+ 1/4) % 0.1/2

=

=10.0 > £ (2:0.05) = 2.92,

Therefore, the hypothesis H, is rejected and f(o) is
Judged as peak noise (its value is replaced by f(0) =
2.5).

Similarly, in Fig. I(b) we get

firy=—03r+25
and
S,= 410
Since

t =156 <t(2:005) =292,

the hypothesis H, is accepted and f (o) is considered to
be in the same population of the neighborhood. This
result corresponds with the intuitive interpretation of
peak noise mentioned in Section II.

IV. RESULTS

Figure 2(a) shows a test image with Gaussian noise
and peak noise. The image is a 64 x 64 checker board
with 16 x 16 checks and each gray tone intensity is 100
or 200. Peak noise randomly chosen from a uniform
distribution, is added to approximately 200 randomly
chosen pixels (5 per cent of the whole image) [see Fig,
2(b)]. The mean standard deviation of the Guassian
noise is set to 0 and 20, respectively. Figure 3(a)
illustrates an output after two iterations of peak noise
removal witha 3 x 3 window based on the slope facet
model. Figure 3(b) illustrates the difference between
the images in Fig. 2(a) and Fig, 3(a). This shows the
replaced pixels.

In Fig. 3(b), besides peak noise, some pixels which
are not peak noise are detected as peak noise (the type I
error). This is because we use the 95 percentiles, and if
we use higher percentiles, say 99, this type I error will
decrease. However, in this case, the type II error (pixels
which are peak noise but which are not detected as
peak noise) will increase. The object of this method is
to remove peak noise, so we must avoid the type 11
error.

In order to clarify the noise removal effect, in Fig.
4(a) we show an output after the smoothing, enhancing
and thresholding of the peak noise removed image in
Fig. 3(a). Figure 4(b) shows an output after the
smoothing, enhancing and thresholding of the original
image without noise removal. These two outputs show
that peak noise is removed effectively. Here we use 3 x
3 box averaging for smoothing the image and Roberts
gradient for edge enhancing the image.

Figure 5 shows a 235 x 235 image with peak noise.
Peak noise is randomly chosen from a uniform
distribution for 5 percent of the pixels. The noise value
for these pixels is also randomly chosen from a uniform
distribution. An output after two iterations of peak
noise removal with a 3 x 3 window is shown in Fig. 6.
Figure 7 illustrates an output after two iterations of
median filtering witha 3 x 3 window. The output from
the median filter shows more image degradation, while
the output from the peak noise removal algorithm
keeps the fine structures in the image while successfully
removing the peak noise.
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Figure 8 illustrates an image of a one-celled animal
called a diatom. It has scan line noise. Figure 9 shows
an output after peak noise removal with a 7 x 1
window based on the slope facet model. The output
indicates that this method is also effective for scan line
noise removal, Figure 10 illustrates the output after
median filtering witha 5 x 1 window. It shows consider-
able image degradation. A 7 x 1 window would have
more degradation. Figure 11 shows an output after
scan line noise removal based on a simple thresholding
operation. Here, each pixel value is compared with the
difference between the previous line and the following
line. If the difference between them exceeds the
threshold, the value is judged as scan line noise and
replaced by the average of the previous and the follow-
ing value. If the difference between the previous and the
following value exceeds another threshold, the above
comparison is not performed and the current pixel
value is kept. In this scheme, it is difficult to select two
absolute threshold values for the whole image and
because of that difficulty, the output has some de-
tection errors while the fine structure of the image is
preserved fairly well.

Y. CONCLUSION

We have discussed a method of removing peak noise
by utilizing the facet model with the deleted neigh-
borhood. In this method, peak noise is statistically
detected by the use of a r-test, The facet can be a flat
facet, slope facet or higher order facet. We illustrated
the technique using the slope facet. We showed how
the technique performs better than median filtering in
that median filtering has a higher image degradation.
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