COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 23, 42-66 (1983)

Over the past several years, the University of Maryland and Virginia Polytechnic Institute
and State University have been collaborating on the development of a transportable image
processing software system, written in RATFOR (RATional FORtran). This paper documents
the “kernel” of the system, which interfaces to the given operating system and provides
standardized operating system services to the image processing programs, The programs
themselves will be documented in a subsequent paper.

Editor

An Operating System Interface for Transportable
Image Processing Software

Scott KRUSEMARK AND R. M. HARALICK

Spatial Data Analysis Lab, Virginia Polvtechnic Institute and State University,
Blacksburg, Virginia 24061

Received March 17, 1982

The key to portability is the use of a kernel of routines that interface to the operating system
of an individual machine. The kernel provides the sophisticated but standard operating system
services required by image processing software. It makes the operating system of each
computer appear identical and, when carefully designed, does not pose a difficult implementa-
tion problem. Above this interface, all applications programs can be machine independent,
written in a structured language, such as RATFOR, without sacrificing power or ease of use on
any machine. The details of such an interface design are given. This interface, called the kernel,
has been implemented on the IBM 370,/VM and the VAX 11/780.

I. INTRODUCTION

1.1 General Comments

In any large portable, structured software package, the applications programming
code must be isolated from any code performing local operating system services.
Defining the boundary between the operating system services and user code permits
all operating system services to be supplied through a standard interface. It is the
purpose of this paper to define such an interface for image processing software.

The operating system service routines (hereafter referred to as OS routines) are
defined as a standard machine independent interface that the user can access. These
routines bring the host operating system out to a standard interface. The OS routines
are defined simply enough that they are straightforward to implement. They perform
many services that are usually set up by the FORTRAN compiler, but tend to be
handled differently by different compilers. Many of the OS routines are concerned
with input/output. It is assumed that the image processing software is written in
RATFOR.

1.2 Internal Structure

The OS routines are actually made up of two internal levels of code. The outer
layer is used mostly for error checking and the manipulation of the file descriptors.
This level is mostly machine independent. There will be occasions when these

42
0734-189X /83 $3.00

Copyright © 1983 by Academic Press. Inc
All rights of repreduction in any form reserved.

TRANSPORTABLE IMAGE PROCESSING SOFTWARE 43

routines will have to be modified from installation to installation but it is hoped that
these will be rare and minor. This layer of code is what the user sees; it is defined as
the installation interface.

The inner layer is the code that is truly machine-dependent. These routines are
called with as many arguments as could possibly be needed. The particular imple-
mentation then uses only those that are needed. For example, the IBM 370 does not
use a logical unit number for file access, but it does use the file name. So on the
IBM, the logical unit number is ignored and only the file name is used. The PDP-15,
on the other hand, uses a logical unit number once the file is open. So on the
PDP-15, the open uses the logical unit number and filename and the read /write uses
only the logical unit number. This level of code may be highly variable in function
and is invisible to the user. The discussion here about the OS routines refers only to
the outer layer or installation interface part of the OS routines.

1.3 Errors and Status Return

Each OS routine is an INTEGER FUNCTION subprogram whose returned
values is an integer event variable (IEV) indicating success or failure. The value for
success is zero. This indicates that everything went as expected. A negative value
stands for an index to an error condition. If the value is negative, then the calling
routine will want to exit, passing the error status all the way back to the command
string interpreter level which can then communicate an error message to the user.
Positive values do not represent errors. They are used to indicate nonerror status
conditions.

The OS function calls are abnormal in the sense that they may redefine or change
the values for some of the arguments. In other words, they allow information to be
passed back through the argument list. An example is OSRDS which passes the
record length back to the calling program.

1.4 File Descriptor

All the input/output related OS routines are passed a file descriptor (FD). The
file descriptor is an array containing, in a system dependent format, all the
information that is needed for communication between I,/0 routines. For example,
the open and read routines need to communicate such information as the file name
and logical unit number between themselves. The file descriptor holds this informa-
tion.

Information held in the file descriptor must not be directly accessed by the user
because its content and format may change from one installation to another. Access
routines (OSINFD, OSGTNM, OSGLUN, etc.) are provided for retrieving the
information from the file descriptor. In typical use, OSINFD is passed an uninitial-
ized file descriptor and a user supplied free format file name (or device description).
The OSINFD parses the file name and puts it into the file descriptor and initializes
the file descriptor to a known state. The file descriptor is then passed to one of the
file open routines (OSOPNR or OSOPNS) which then actually opens the file. Then
the file is read, using OSRDS or OSRDR, one record at a time. Finally the file is
closed, using the OSCLOS routine. The file descriptor, as it is passed in argument
lists, gets updated with the current status of the file. The free format file name does
not have to be kept separately since the routine OSGTNM can be used to retrieve
the file name from the file descriptor whenever necessary.

44 KRUSEMARK AND HARALICK

Since the file descriptor is installation dependent, the local file name format can
be used for image files or any other file one wishes the system to handle with no
trouble. The file name conventions are set up to look like the ones the system uses.
This reduces learning time for a new system.

The OS file passwords are allowed and are only designed to protect a user from
unintentionally destroying something he might want to save. The passwords have a
place in the file descriptor (put there by OSPINF) and are eventually stored in the
file itself. The amount of safety added by the password facility is very limited since
standard access routines such as editors and user written code can get at them very
easily.

2, THE OS ROUTINES

In this section, software specifications for the OS routines are given. To make the
description easier to follow, symbolic names will be used for certain numeric values.
These symbolic names are given in two forms. The first is an upper case string which
1s, in all cases (except where noted), a variable in the argument list of a routine or
the routine name itself. The other use of symbolic names is for token replacement
definitions. These all begin with a period (.) to distinguish them. They are mnemon-
ics for the programmer and are used here for the same reason. An example is the use
of .OLD instead of 1 to indicate that an old file is to be opened. The RATFOR
preprocessor translates .OLD into a 1 so that the output is FORTRAN compatible.
(This is a use of the token DEFINE statement in RATFOR.) This token DEFINE
can also be used to implement a CHARACTER statement in user code even if the
particular FORTRAN does not have it.

The sections are organized as follows. The file descriptor manipulation routines
are first described. Then the random and sequential I/0 are described. Next,
miscellaneous 1/0 involving parameter transfer and the renaming of a file are
covered. Then, general features such as IEV manipulation and character manipula-
tion are covered, and finally, program control is described. Each routine has a letter
or several letters after the call arguments. These indicate what category of transpor-
tability the routines are in.

1. SNT—Nontransportable, but simple changes are required for the code of
one machine to work on another machine.

2. TV—Transportable versions exist.

3. NT—Non-transportable and not easy to implement (usually).

4. NT-E—Non-transportable, but are extensions and thus are not really
necessary.

5. MSWV —Transportable versions exist that work on MOST systems.
6. T—Fully transportable.

2.1 File Descriptor Manipulation

2.1.1 Initialize File Descriptor
IEV = OSINFD(FF, FD) (SNT)

This routine takes a free format one-dimensional array (FF) of the local file name
or null string (defaults to device terminal) and formats it into the system defined

TRANSPORTABLE IMAGE PROCESSING SOFTWARE 45

format file descriptor (FD). The free format one-dimensional array is not fixed or
limited in length but must be terminated with an .EOS character. The routine
OSINFD parses the name and puts it into an internal standard format for faster
processing by the other routines. It also initializes the other constants in the file
descriptor. This routine only initializes the file descriptor with the defaults (except
the file name). The other routines, OSPINF, OSCASE, etc., put the information
needed to utilize the file descriptor into the file descriptor. By the defaults chosen,
the need to call these other routines is minimal for sequential file I/O of variable
length records, or of terminal or printer, etc., devices that have clearly defined
characteristics. Since the terminal is the most common device, if the null string is
passed to OSINFD (a string with the character .EOS alone), the resulting file
descriptor is interpreted to be a terminal. For other devices, such as a printer, one
should use OSPINF and indicate the correct device. Anything other than the null
string is interpreted as a file name, although some systems may override this.

2.1.2 Get File Name from File Descriptor
IEV = OSGTNM(FD, FF) (T)

This routine performs the reverse of putting a file name into a file descriptor. The
OSGTNM returns a free format file name/device into an array of length
FILENAMELENGTH, which can be used for direct output, etc. The characters in
FF are the standard Al format characters for both OSGTNM and OSINFD. Note
that to be put back into OSINFD, an .EOS character must be added as the last
character, which is reserved for this use. This routine and OSINFD should move an
illegal file name (if such is possible on the particular machine) in such a way that it
can be retrieved. An error value should be generated for OSGTNM, not by
OSINFD where the name is illegal.

2.1.3 Get Information from File Descriptor

IEV = OSGINF(FD, OPT, VAL) (TV)
This routine gets information out of the file descriptor. The values returned by

VAL are described with token replacements where applicable. The OPT argument is

shown in parentheses at the end. The information available is also shown in Table 1.
This available information is

1. Device in file descriptor. (DEVICE)

2. TYPE file open: .OUTPUT, NEW, .OLD, .NOTOPEN, and .INPUT are
returned in VAL. ((FILETYPE)

3. Whether file has a .FIXED or .VARIABLE format. (., FIXVAR)
4. Number of records if file is a random file. (NREC)

5. Length of each record if .FIXED, or the maximum record length if
.VARIABLE format. (LREC)

6. Mode of file: INTMODE, .REALMODE, etc. (MODE)
7. Logical unit number for a terminal /printer write. (.LUN)

8. Case indicator for the file which tells whether the file is forced .UPPER
case or left MIXED case. (.CASE)

46 KRUSEMARK AND HARALICK

TABLE 1
OSGINF Options and Returned Values

Meaning Option Possible values

Device in FD .DEVICE .DEVDISK, .DEVTERM,
.DEVDISPLAY, .DEVTAPE,
.DEVPRINT,. ..

Type file open FILETYPE .OUTPUT, .INPUT, NEW,
.OLD, NOTOPEN

Fixed or variable FIXVAR FIXED, VARIABLE

Number of records .NREC Number of records

Length of records .LREC Length of records

Mode of file .MODE INTMODE, .REALMODE,
.CHARMODE,...

Logical unit .LUN FORTRAN logical unit number

Force case .CASE .UPPER, .MIXED

Printer forms control .FORMS .OVERPRINT, .TOPPAGE, NORMAL

Terminal Echo .ECHO .ECHO, .NOECHO

File unique number .UNIQUE A unique number for each file descriptor

9. Forms in which control values are available for normal, overprint, and top
of page: .NORMAL, .OVERPRINT, and .TOPOFPAGE control constants.
(.FORMS)

10. On echoable input, ECHO and .NOECHO can be obtained. (ECHO)

11. Because one file descriptor is hard to distinguish from another, by the use
of the unique number obtainable from the file descriptor, two different file descrip-
tors can be easily distinguished. This number is unique for each call to one of the
open routines (OSOPNR or OSOPNS). (UNIQUE)

The mnemonics and actual values are given in the Appendix.

The LUN is used for terminal /printer only. Such a logical unit number may be
used in formated FORTRAN writes to terminal /printer.

Note that only output devices (i.e., not including files) are legal to write to with a
FORTRAN WRITE statement.

The definition of the OS routines has been extended to allow FORTRAN
sequential writes to output-only devices. (Terminals are considered to be two
separate devices: one input and one output.) The FORTRAN writes must be used
with care as they may interfere with some operating system memory allocation
methods. The writes are allowed mostly as debugging tools and for outputting to the
terminal,

2.2 Put Information into File Descriptor
IEV = OSPINF(FD, OPT, VAL) (NT)

This routine is used to set up or change values in the file descriptor. The values to
be set (VAL) are described with token replacements where applicable. The OPT

TRANSPORTABLE IMAGE PROCESSING SOFTWARE 47

argument is the item to change and is shown in parentheses at the end of each of the
following descriptions.

1. Device if the original string to OSINFD was the null string. If not set and
was the null string, the device defaults to the terminal. (DEVICE)

2. Number of records if file is to be a random file. (Must be a file name in FD.)
(.NREC)

3. Mode of the file: .INTMODE, .REALMODE, etc. This defaults to
INTMODE for files and .CHARMODE for all devices. This should be set after
DEVICE if FF string to OSINFD is null. Good programming always sets this to a
known value rather than relying on the default, however. (MODE)

4. The password on a password-protected file must be set. It is a positive
integer. To default is to not have a password. (PASSWORD)

5. Logical record length. This must be set on random files before a NEW open
type in units of the MODE of the file. For sequential files, this only has meaning for
files that are of the .SYSMODE data type mode. (.LREC)

The interaction of the .MODE and .LREC and the actual record length (read and
write) is as follows: the length of the record depends on the length and the mode.
For example, if the mode is INTMODE, then the length of each element is1,s0a
length of 10 is 10 words long. If using the IBM 370/VM or VAX 11/780 in the
mode double precision (DBLPRECMODE), the length of each element is two
words and the record of 10 takes 20 words. On the PDP-15 it takes 30 words, since
each double precision element takes three words. Thus the actual length of a record
in words is dependent on the MODE and LREC.

If the mode is .CHARMODE, then each element is in an Al format in a
CHARACTER variable. This is what happens to a single character when it is read
in an Al format read. The storage format is one character and blanks to fill to
one word (either left or right justified). This should be the same format as a
CHARACTER variable in a data statement

CHARACTER VAR
DATA VAR /‘A’/

where CHARACTER is a RATFOR token that may, possibly, redefine it.

The other modes are INTMODE (INTEGER), .REALMODE (REAL),
JHINTMODE (HALF INTEGER), .DINTMODE (DOUBLE INTEGER),
'DBLPRECMODE (DOUBLE PRECISION REAL), .PCHARACTER (PACKED
CHARACTER), and .SYSMODE (SYSTEM FORMAT).

Of the two kinds of files, one is what could be called a KERNEL file. This is a file
that the kernel implements and it has any information in it necessary for fast
operation and ease of use. (A package of image processing programs that make use
of the kernel will be described in a subsequent paper.) The other kind of file is one
that the local system maintains. It includes files that come from the editor, the
FORTRAN compiler, or whatever other files may exist. The two kinds of files are
not usually interchangeable.

48 KRUSEMARK AND HARALICK

The local system files on many computer systems can be particularly difficult, so a
mode called .SYSMODE is available. This mode allows files in local system format
to be read (written) into (from) a program. Once in a program, they can be written
onto (read in from) a kernel file. The modes available to a kernel file are all of the
above (except .SYSMODE).

In a typical implementation the kernel file is simply a local system file with an
extra record at the beginning. This extra record has information such as the
password, whether the file is random or sequential, and, if random, the number of
records and the record lengths. This information can be maintained easily by the OS
routines so reliance on the operating system is minimal, thus improving transporta-
bility of the OS routines.

Terminals have a special need: two kinds of 1/0. Logical 1/0 is the standard 1,/0
where any special characters, such as character delete, are processed, and where
carriage control is handled by the system. The reads and writes are line oriented. The
second kind is physical I1/0, which is usually character by character. A read is a
character count read (read until one gets n characters). Character deletes and
carriage returns are just another character. The kernel implements this by assigning
.CHARMODE and .PCHARACTER to logical I/O and the other mode to physical
I/0.

The primary difference between physical 1,/0 and logical 1,/0 is that physical 1,/0
is data byte oriented (no parity checking or changing), and logical 1/0 is character
line oriented (entire lines of data).

Physical output does not set parity on the byte to be transmitted. The byte is 8
bits (256 possible values). The routine OSWTS sends a stream of characters. There
should be no automatic carriage return/line feed at any time. This operation is used
to put out a line to a terminal.

Logical output, on the other hand, is line oriented. The last character in the call to
OSWTS determines the kind of action. If it is a . ALTEOL character, then nothing is
added and this character is not transmitted. The forms control (line feed, etc.) on the
next 1/0 operation to this device is suppressed. If the last character is not
-ALTEOL, then a carriage return/line feed is added following the characters in the
buffer.

Note that what is described above is the FORTRAN convention for carriage
control. The carriage return is the last character on a write. The carriage control
character is sent on the next I/O operation, either a read or a write. For single
spacing this is a line feed character. On a .ALTEOL, both the carriage return and
the carriage control character (for the next I/O operation) are suppressed.

Physical input also does not change parity. Physical input can be echo suppressed
or not (this is the only mode for which this is true). The OSRDS reads a stream of
characters (bytes) from the input buffer of the system exactly as it was transmitted
from the terminal. Any user type ahead can be purged with OSFLSH.

Logical input must be terminated by a carriage return sent from the terminal.
Logical input is line oriented and a line on the terminal terminates with a carriage
return. Case folding (lower case converted to upper case) may be accomplished by
the OSCASE parameter CASE.

Note that logical 1/0 and physical 1/0 can be interspersed. These two types of
I/0 may be used in any order and the system must be able to keep the order correct.
However, the process of switching from one mode to another purges the input buffer

TRANSPORTABLE IMAGE PROCESSING SOFTWARE 49

of any type-ahead characters. The routine OSPINF sets the mode. All output must
be output before any read is satisfied so that (1) the echo is in correct place, and (2)
the user sees the whole output line even if he has already responded to it with his
answer in the correct place.

2.2.1 Generate Unique File Name
IEV = OSGFNM(FF1, FF2) (SNT)

This routine takes a six character alphabetic string and creates a unique (repeat-
able) file name from it. The name should be such that the user can more or less read
the name back from the file name generated. This routine is a method for (1)
generating temporary file names, and (2) getting system dependent names of fixed
data files into the system. The array FF2 is FILENAMELENGTH long and is
acceptable to OSINFD. The array FF1 must be left justified if any character is a
blank. A blank is assumed to be a terminator (i.e., end of string). Both FF1 and FF2
are Al format character strings.

To generate the temporary file name, for example, this routine is first called with
some string of characters, the name is made into a file descriptor (OSINFD), and
then the existence of that file is checked (OSSTAT); if OSSTAT indicates that the
file name is not there, then a temporary file name has been created. If OSSTAT
indicates that it does exist, then a new string is passed to OSGFNM and the process
starts over.

2.2.2 DEBUG: Display Contents of File Descriptor
CAL OSNAME(FD) (SNT)

This routine dumps out the file descriptor to the terminal. Since the file descriptor
is system dependent and the data is usually not stored in character format, this
routine prints it out in readable format. This routine outputs all the information in
the file descriptor, including the system dependent portion. Note that user modifica-
tion or access into the file descriptor is a violation of the concept behind the OS
routines and is an illegal programming practice.

2.3 Random File 1/0

2.3.1 Random File Open
IEV = OSOPNR(FD, TYPE) (NT)
This routine performs one of two types of random file open for a file with file

descriptor FD. The TYPE argument can take the two values of .OLD and .NEW. If
TYPE is

1. .OLD: OSOPNR goes out and checks if a file exists by the correct name; if it
does, OSOPNR opens it.

2. .NEW: OSOPNR opens an output file for data to be written to. On the call
to close, this file is closed and it replaces any file existing with the same name.

Number of records, fixed file format, and logical record length must have been
previously specified for NEW files (see OSPINF). For .OLD files, these values are

50 KRUSEMARK AND HARALICK

returned (see OSGINF); however, the mode of the file must have been set before the
call to OSOPNR so that the sizes can be correctly computed (see OSPINF).

2.3.2 Random File Read
IEV = OSRDR(FD, REC, BUF, COUNT, WAIT) (NT)

This routine does the random read. The record number to be read is REC which is
checked to determine if it is positive and less than or equal to the NREC argument
in OSPINF. The COUNT is the number of elements to be read into buffer BUF. If
COUNT is longer than one record, it will read multiple records. (If any of these
records are outside the file, an error results.) If COUNT Is less than a full record,
only COUNT elements are returned. The rest are thrown away (see MODE in
OSPINF for the length of each element). A check is made to determine if this file
descriptor has been opened as a random file.

The parameter WAIT is used to enable the use of double buffering if the facility is
available and if the programmer wants to go to the trouble. Normally, this
parameter is set to a value of .WAIT but can be set to NOWAIT for immediate
return to user code after starting the read request (see OSWAIT for more).

2.3.3 Random File Write
IEV = OSWTR(FD, REC, BUF, COUNT, WAIT) (NT)

This routine does the random write. The record to be written is REC. The WAIT
is the same as above. If COUNT is greater than one record in length (see OSPINF
for record length), multiple records are written. If COUNT is not a multiple of the
record length, the partial record contents are unpredictable.

2.3.4 Random File Multi-Buffering Wait
IEV = OSWAIT(FD, WAIT) (TV)

This routine checks to see if the input/output is completed for the file with file
descriptor FD. If the argument WAIT is .WAIT, then the routine returns, after /0
is completed, from the file with file descriptor FD. If the argument WAIT is
NOWAIT, then the routine checks for I/0 completed from the file for which file
descriptor is FD. It returns immediately even if 1/0 is not completed. The IEV
values can be .OK when I/0 is finished, NOTDONEIEV when 1/0 has not yet
finished, or any other value which indicates the appropriate error.

This routine with the .NOWAIT option on the read /write can be used to
advantage for overlapping I/0 and computing. The programmer, however, is
responsible for checking that the I,/0 has in fact been completed before attempting
to use the data (read) or reuse the space (write).

2.3.5 Random File Growing
IEV = OSGROW(FD, NREC) (TV)
On some systems, random files are stored completely differently than sequential

files in that the random files must be opened to a fixed size and never altered. This
creates a problem if the user wants to make a file larger. The OSGROW provides a

TRANSPORTABLE IMAGE PROCESSING SOFTWARE 51

facility to get around this problem. On most systems, all that OSGROW does is
increase the last record that can be written by bumping the value in the file
descriptor. On some systems, however, the file is copied with the new larger size, so
user algorithms that grow a file may result in excessive /O time.

Note that OSGROW can only change the number of records. To be able to
change anything else, such as logical record length, a full copy of the file must be
made by the user. The OSGROW can only increase the number of records. If the
user wants to shrink a file, it must be made by user copy.

2.3.6 File/Device Close (Random and Sequential)
IEV = OSCLOS(FD, TYPE) (NT)

All file operations and most other device operations need to be closed. There is
one close routine to simplify the closing. The file descriptor contains all the needed
information.

The arguments are simple: the file descriptor represents the file to close and TYPE
indicates what to do with that file. There are only two options, keeping the file or
getting rid of it, represented by the symbolic names .KEEP and .DELETE, respec-
tively (possible values for the argument TYPE).

The observable result of opening an output file is that if a another file exists with
the same name, it is destroyed at the time of file close. If two files, one .INPUT
(.OLD) and the other .OUTPUT (NEW), are opened at the same time, after both
are closed .KEEP, only one file exists; that is, the OUTPUT ((NEW) one. The order
of the close must make no difference. If the DELETE option is used, the file that is
being closed is deleted. This means that a preexisting file will exist after a close
DELETE on an .OUTPUT or .NEW file.

2.4 Logical Sequential 1/0

2.4.1 Sequential Open
IEV = OSOPNS(FD, TYPE) (NT)

This routine does the sequential 1/0 open which is much more complex than
random 1/0. The operating characteristics of random files are straightforward, but
sequential /0 may include sequential files, terminals, printers, card readers, mag-
netic tape, and other sequential devices.

Random files are stored on the disk in a format that is maintained by the OS
routines. The same is true of sequential files. However, to initially get these files in
the system the files must have been in a “local operating system” format. This
format is a pure data format because there is no extraneous information in them.
These are accessible only as .SYSMODE mode files (see OSPINF).

The OSOPNS has two types of opens depending on the argument TYPE.

1. INPUT—A file already exists that can be read from (input is to program).
2. .OUTPUT—Create a file composed of records to be written to this file.
Note that for sequential files a file opened as an input file cannot be written to

and vise versa. If the reverse operation is wanted, the file must be closed and
reopened.

52 KRUSEMARK AND HARALICK

All terminals, printers, etc., must also be opened and used correctly. Opening a
printer for input is an error.

2.4.2 Logical Sequential Read
IEV = OSRDS(FD, BUF, LEN, BUFSIZ) (NT)

This routine does the sequential read operation. The data goes into the array
BUF. The BUF has the length BUFSIZ. Data which takes more than is allocated in
BUF produces an IEV error. The actual length of data is returned in LEN.

On a terminal which has no easy way of defining end of file, the END-OF-FILE is
simulated by a control D character. It should be the first character in a line.

On random files, a fixed mode for the file is the only practical method, but
sequential files use variable size record format so the mode can change with every
record. The use of changing modes is allowed by the use of the routine OSPINF but
care must be taken that the record sizes are within the limits.

Terminals represent a special case as far as operating systems are concerned. They
have two modes: byte and character. Byte mode means 8-bit data, no parity check,
and no interpretation of data. Terminals using character mode check parity and
certain characters (usually control characters) which are intercepted by the operating
system. These characters delete a line, delete a character, and abort a program,
among other things.

Terminals using .BYTEMODE (or .INTMODE, .REALMODE, etc.) operate
differently than .CHARMODE terminals. In this mode, the normal operating
system functions are skipped and the characters in output buffers are output
directly, while on input nothing happens to them. The user is responsible for all
parity and line control operations such as carriage return/line feed. Input is read
BUFSIZ characters, no matter what they are. The user is fully responsible for any
side effects such as parity bits. This mode, however, is very useful for graphics
operations. The mode is set by OSPINF. Those systems which do not allow this
mode of operation should return an error from OSPINF when attempting to set
binary modes on a terminal.

2.4.3 Logical Sequential Write
IEV = OSWTS(FD, BUF, LEN) (NT)

This routine does the sequential writes. It is defined for sequential files, terminal,
printer, punch, and other output devices. The data is in BUF with length LEN.

This routine has two options for terminal character writes. One is where BUF(LEN)
is ALTEOL,; this results in the suppression of the carriage return /line feed normally
added. Trailing spaces are not suppressed. The other option is where BUF(LEN) is
not .ALTEOL, in which case a carriage return/line feed is added. Carriage control is
controlled by OSFORM which sets up forms control. Only terminals and printers
are affected, though. Thus the first character in BUF is actual data rather than
carriage control as is the practice in FORTRAN.

The modes for binary operations for the terminal act in a manner similar to the
terminal binary reads. Parity is not checked or set, and special characters that are
normally processed or suppressed are passed through unaltered. This is useful for
graphics operations where the eight bits are used as an address on a screen and thus
can take any value.

TRANSPORTABLE IMAGE PROCESSING SOFTWARE 53

2.4.4 Upper / Lower Case Set/Clear
IEV = OSCASE(FD, CASE) (TV)

This routine changes the flag on case operations of the read or write. The
argument CASE can have two values: .UPPER and .MIXED. A value of .UPPER
forces all alphabetic characters to be upper case on the read. A value of MIXED
leaves the characters alone. Upper case is very useful for command line input. Mixed
case is useful for descriptions that go into files, etc.

2.4.5 Set/Clear Echo/Noecho on Terminal
IEV = OSECHO(FD, ECHO) (NT-E)

This routine allows the user to enable or suppress terminal echo. The argument
ECHO can have two values: .ECHO and .NOECHO. A value of .ECHO allows the
user to see what was typed. A value of NOECHO suppresses echo on the terminal.
This operation is very useful for graphics terminal operation.

2.4.6 Set Printer Format Specifications
IEV = OSFORM(FD, CC) (TV)

This routine sets the carriage control character for the next write. The argument
CC has values of .OVERPRINT, TOPPAGE, and .NORMAL (for single space
operation). This routine has no effect on any device except a printer, but can be used
to control output that is also directable to the terminal or files.

2.5 Physical Sequential 1/0

2.5.1 Set Parameters For Tape
IEV = OSTAPE(FD, OPER, CNT) (NT-E)

This routine controls the tape operations. The argument OPER is the operation to
be performed; .REWIND, .WRITEENDOFFILE, .WRITEENDOFTAPE, .BACK-
SPACEFILE, etc., are the values. The argument CNT is for operations such as set
logical record length where CNT is this number. Tape operations are defined to be
such that a call to OSWTS or OSRDS writes or reads a physical block of the tape.
The user is responsible for separating the logical records.

2.5.2 Flush Type-Ahead Input
IEV = OSFLSH(FD) (NT-E)

This routine is useful in those cases where a physical read from the terminal is
done. In such situations, the information has a specific format so any characters the
user might have typed ahead will cause this format to be upset. A call to OSFLSH
clears the type-ahead buffers before the physical read is requested. This routine only
has an effect on terminal input. A type-ahead buffer is where the user can type
ahead characters that are not read until the read is issued. This type-ahead is usually
only implemented on FULL-DUPLEX systems and not always then. For example,
the IBM 370,/VM, when used with ASCII terminals, generates an interrupt if any
characters are typed before the read is issued. This is an example of a machine with
no type-ahead buffer.

54 KRUSEMARK AND HARALICK

2.6 Miscellaneous 1/0

2.6.1 Parameter Transfer
IEV = OSSEND(BUF, LEN) (TV)

IEV = OSRECV(BUF, LEN, BUFSIZ) (TV)

To send and receive data between overlays, two routines are used: OSSEND and
OSRECYV. The operation to send (OSSEND) may be implemented as many times as
is necessary. The send operation is terminated by sending a record of zero length.
The receive operation (OSRECV) is terminated upon return of .EQFIEV (end-of-file).
The data is in the array BUF which is BUFSIZ INTEGER words long. The number
of INTEGER words used is returned in LEN.

The send and receive operation is much like a push-down stack. The last thing
sent is the first thing received, while the first thing sent is the last to be received.
Thus, the send code for multiple sends will be in reverse order of the receive code.

Send and receive can be implemented using the random file 1,/0 primitives. They
are then fully transportable. At installations which have the capability for passing
messages, this facility could be used to pass short message data. For large amounts
of data, the random file primitives could be used.

2.6.2 Rename a File
IEV = OSRENM(FDI, FDO, TYPE) (TV)

This routine changes the name of a file. Both files must be closed on a rename.
The first argument FDI is the file as it exists before renaming, and FDO is the file
after renaming. If the argument TYPE is .DELETE and a previous file already exists
by the name specified in FDO, then that previously existing file is deleted. If the
argument is .KEEP, OSRENM generates an error and no names are changed. If
there is no file by the name in FDO, then the value of the argument TYPE is of no
consequence.

2.7 General Features

2.7.1 Integer Event Variable Manipulation

IEV = OSSIEV(IEV, MNERR, PMSG) (SNT)
IEV = OSGIEV(IEV) (T)
IEV = OSERRI(IEV) (T)

There is a save area where the integer event variable (IEV) is retained after being
set by OSSIEV. The IEV set by the call to OSSIEV is always saved in the save area.
The OSGIEV is used to retrieve the value. When an IEV is passed to OSSIEV it can
have one of three ranges of values: positive, zero, or negative. Positive and zero
values indicate success. Negative values are error conditions. The argument MNERR
is used to indicate that this particular error is the main error of the routine. It has
two values: .MAINERROR and .OK. Via OSERRI, the error message (PMSG)
associated with the call to OSSIEV can be conditionally output to the terminal, The
options for the value to be passed to OSERRI that affect the operation of OSSIEV

TRANSPORTABLE IMAGE PROCESSING SOFTWARE 55

are

1. .OK—output all messages and return IEV value.

2. .SUPPRESS—Suppress all messages but return IEV value.

3. .MAINERROR—Suppress all messages and return IEV as .OK value for all
errors except main error to OSSIEV.

4. SEEOK—Output messages and return IEV as .OK value.

5. x—Ignore IEV for value of x (where x is a negative number) but output all
other messages. Return IEV value.

The use of .MAINERROR is as follows: if the .MAINERROR option of
OSERRI is chosen, then all messages and IEV are suppressed in a call to OSSIEV
except when argument MNERR is the . MAINERROR token. This combination
allows creation of test routines that want to ignore certain conditions. Caution
should be exercised in the use of this mode. Note that the IEV value is always
retrievable from the save area by OSGIEV and is never suppressed. Inside the OS
routines each routine has only one main error, usually the most common are, such as
end of file on a read.

The IEV value returned by OSERRI is the previous setting of the value being set.
This allows levels of code to anticipate an error.

One other feature of OSERRI is its ability to turn routine tracing on and off.

1. . TRACE—Turn tracing on using OSPUSH /OSPOP.
2. NOTRACE—tracing off.

This routine and OSPUSH, OSPOP, and OSNAME assume that there is a standard
terminal output to which error messages, etc., are output.

2.7.2 Routine Name Push and Pop
CALL OSPUSH(PSTRNG) (SNT)

CALL OSPOP (SNT)

This pair of routines can be used inside or outside the kernel. Its action is to show
an entry into and exit from a kernel routine. The PSTRNG is a character routine
name in quotes with a period terminator. This routine’s output is turned on and off
by calls to OSERRI. The routine OSPUSH should be the first executable statement
in any OS routine and OSPOP should be the last executable statement before the
return.

2.7.3 Get System Information
IEV = OSINFO(OPT, VAL) (SNT)
This routine returns information on the system. The following information is
available:
1. The system name: six Al characters. (SYSNAM)

2. The smallest unit (in bits) in which I /0 is measured. The IBM 370 /CMS,
for example, uses the BYTE as the smallest unit. Many FORTRANSs, however, use
the word or double word for file storage. (NUMBITSIO)

56 KRUSEMARK AND HARALICK

3. The smallest number of units in which 1/0 is done. If the shortest record
allowed, for example, is 10 INTEGERs and 1/0 is presented in INTEGER
increments, then 10 is returned. (NUMMINUNITSIO)

4. The optimum disk block size. ((OPTDISK)
5. The largest possible value that OSALOC will definitely accept. (MEMMAX)

6. If the argument is a mode such as INTMODE or .REALMODE, then the
VALUE returned is the number of bits for that particular mode.

Only for the machine name is the VALUE an array; for the rest, it is an INTEGER.

2.7.4 Time Measurement
IEV = OSTIME(TIME, FUNC) (NT-E)

This routine measures CPU execution time or wall time. Most systems only keep a
rough value of CPU execution time but it is usually fairly accurate for user purposes.
To make the operation the same for all systems, the value of time is returned in
seconds in a real variable. The value of FUNC determines what to do. The
FUNC = 1 returns wall clock time, FUNC = 2 sets the timer to zero. The FUNC =
3 gets the value of CPU time since the last time the timer was set to zero. The timer
should always be set to zero before use. Note that except for the data buffers, the
value of TIME (in OSTIME and OSDLY) is the only real variable in the OS
routines. Attempting to measure small time increments late in the day can result in
loss of precision due to the floating point numbers.

2.7.5 Date

IEV = OSDATE(DATE) (NT-E)
This routine returns the current date from the system. The date is a six
CHARACTER variable in the form MMDDY'Y where MM is the month, zero filled

(01 to 12), DD is the day of the month, also zero filled (01 to 31), and YY are the
last two digits of the year.

2.7.6 Time Delay
IEV = OSDLY(TIME) (NT-E)

This routine causes a delay of TIME seconds. It returns the CPU back to other
time sharing users. This function differs from a loop checking wall clock time in that
the program does not get charged for execution on those systems that charge for
CPU time. (TIME is a REAL variable.)

2.7.7 Bit and Character Manipulation

1IEV = OSGBTR(ARRAY, IDATA, SPOS, NBITS, FLAG) (MSWV)
IEV = OSPBTR(IDATA, ARRAY, SPOS, NBITS, FLAG) (MSWV)
IEV = OSUNPK(ARRAY, CDATA, SPOS, LEN, EOS) (MSWYV)
IEV = OSPACK(CDATA, ARRAY, SPOS, LEN, EOS) (MSWYV)

This set of four routines is for in-core data movement. The routines move
bit-strings and characters into and out of arrays. The ARRAY is the place on which

TRANSPORTABLE IMAGE PROCESSING SOFTWARE 37

addressing is based. The NBITS is the number of bits, including any possible sign
bit added for .SIGNED value of flag. The data in IDATA is an INTEGER variable.
The routine OSGBTR gets a bit-string from the array and puts it into IDATA. The
routine OSPBTR moves a bit-string from IDATA to ARRAY. The bit-string can
cross all word boundaries in ARRAY. The maximum number of bits is the number
of bits in an INTEGER. The argument FLAG has two values, .UNSIGNED or
SIGNED, indicating whether the sign is to be stored in the number so it can be
retrieved. This is done so that different representations of integers (sign magnitude,
twos complement, etc.) can be stored with only as many bits as necessary.

The routines OSUNPK and OSPACK get and put CDATA characters from and
to ARRAY. The SPOS is the character position. The number of characters to move
is LEN. The characters in CDATA are in Al format. Both OSPACK and OSUNPK
should be written such that the same array can be used for both input and output.

The origin of 1 has been chosen for compatibility because FORTRAN accesses
arrays as origin 1. In other words, FORTRAN arrays begin at 1, so this routine
indexes the same way.

2.7.8 CHARACTER Pack/Unpack for FORTRAN 77
IEV = OSUCHR(PSARRAY,CDATA, SPOS, LEN, EOS) (MSWV)

IEV = OSPCHR(CDATA, PSARRAY, SPOS, LEN, EOS) (MSWYV)

The FORTRAN 77 revision of FORTRAN generates a problem due to the
inherent conflict between FORTRAN 77 and FORTRAN 66. Array data types such
as integers, bytes, etc., are treated differently than FORTRAN 77 CHARACTER*n
data types. (This is not to be confused with the RATFOR string called
CHARACTER which is translated to become, in most cases, INTEGER.) These two
data types are not interchangeable and the noninterchangeability causes problems
for quoted strings in argument lists since they are by definition type FORTRAN
CHARACTER.

The two routines OSPCHR and OSUCHR perform the same functions as
OSPACK and OSUNPK. The PSARRAY argument is either a quoted string or a
quoted string passed from further up. The routine OSPCHR should generally not be
used unless the FORTRAN CHARACTER data type is absolutely needed. Any
installation using FORTRAN 66 should keep in mind that the code must use the
correct routine for quoted strings and array data types to maintain transportability.
In FORTRAN 77 installations, this will become obvious because use of the wrong
routine will usually generate a memory reference fault.

2.8 Program Control

2.8.1 Allocation and Check of Work Array
IEV = OSALOC(DIM) (TV)

This routine changes the size of the dynamic array WORK that was passed to the
user via OSMAIN. This array is intended to be the main user work area. The user
requests the number of integer words (DIM) needed and the routine OSALOC
checks to see if this is within bounds. If it is, a value of .OK is returned; otherwise, a
negative value is returned.

58 KRUSEMARK AND HARALICK

Depending on a site’s implementation of OSALOC, this routine may either check
this DIM against the size of a statically allocated array or change the bounds of the
user memory space. Different operating systems allow different options. This routine
should always generate a nonfatal error message using OSSIEV when the array is
used but not allocated. The value from OSINFO for MEMMAX can be used. It is
the maximum memory available. This should be used sparingly as it allocates all that
is available, and could be very costly.

2.8.2 Program Exchange
IEV = OSCHAN(PROGNM) (NT)

In many applications, there is too much code to fit in memory at one time so some
form of overlay must be implemented. The piece of code that is brought in is called
an overlay; other terms that can be used are segments, modules, chaining, and links.
The routine OSCHAN performs this function. A call to OSCHAN causes execution
to be passed to a new overlay. This is a one-way call. The program name (PROGNM)
is an Al format string of characters in the function call. The unpacked string must
be six characters long with trailing spaces to pad up to six characters if necessary.
Since this routine is never expected to return, any return is an error, indicating such
as an overlay not found, regardless of the function value returned. The program
name STOP is a special name that returns to the operating system level.

Since this is a one-way call, the user must set up any return needed. The user must
also explicitly save any data areas because upon “return” a new copy of the code is
overlayed into memory, and all previous data areas are destroyed.

All files and devices must be closed before the call to OSCHAN or unpredictable
results may occur.

If a FORTRAN STOP statement is executed, it is interpreted as a return to the
operating system (an abort exit). This use is discouraged. The OSCHAN should have
at least two places that it searches in the following order:

1. A user’s area where each user can test his own new overlays without
endangering the system’s overlays.

2. A system area which is available for access by all users and can be coded to
always go to the same place.

The user overlays should override the system’s overlays for ease of testing. More
search places, while desirable, are not necessary. This routine must have a comple-
ment operation on the operating system that can generate an overlay. This operation
should be available to all users to generate an overlay into their user area. To give an
example, suppose the system consisted of commands MKCHK, LABEL, COPY,
EXPAND, and STOP, and the user wanted to test a new version of LABEL. If there
is only one search place, then all users of LABEL would have to wait while it was in
the testing phase or the testing phase would have to be done at a time when no one
would use LABEL. In any system that is used often, testing is very important and
must occur in such a way as to not endanger or disable the current working version.
Also, new commands, such as COMPRS, can be developed by several users
independently and not generate any conflicts. Obviously only one of them can
become the official copy if it proves itself worthy.

TRANSPORTABLE IMAGE PROCESSING SOFTWARE 59

3. USER SUPPLIED CODE

3.1 User Entry Point
CALL OSMAIN(WORK) (SNT)

This routine is the user’s code entry, i.e., user code is entered by a call to
OSMAIN from an OS routine mainline. The argument WORK is the dynamic work
array that the user will access. This array (described further under OSALOC) can be
dynamically grown or shrunk depending on the needs of the program. This array can
be subdivided any way the user needs. If the user ever does a return from OSMAIN,
this is taken to be a return to system level.

The routine OSMAIN can be called twice. If the routine OSINTR is called and
chooses the .RESTART option, then OSMAIN is called twice. The user should code
for this occurrence and take appropriate abnormal action. One suggested method is
to use a DATA statement to detect the restart by checking if a particular variable
has been set. If it has, then restart has occurred and the routine (OSMAIN) should
take appropriate action. If it has not been set, then this is the first time through and
the normal action sequences should be executed. The variable should then be set (see
OSINTR).

There also exists a routine that calls OSMAIN that sets up interrupt processing,
the dynamic work array, and possibly some information on chaining. This routine is
the “mainline” of the system and is reused for each overlay and may be written in
assembly language.

3.2 User Initiated Interrupts
IEV = OSINTR(INTR) (TV)

This routine implements the function of regaining control after an interactive user
interrupt. Thus if a function that takes a long time to execute is started with the
wrong parameters, the user can interrupt processing. The OSINTR is called when an
interrupt has been encountered. The argument indicates what kind of interrupt has
occurred if more than one is possible. A return is always executed in OSINTR. The
IEV value is interpreted to indicate what process is to occur:

1. If the IEV value is .OK then execution continues where it was before the
interrupt. This is a continue-as-if-nothing-had-happened action; it is also called
dismissing the interrupt.

2. If the IEV has the value .RESTART, then the overlay is restarted by the
second call to OSMAIN.

3. If the value of IEV is .ABORT, then a return to the operating system is
made.

All other values are treated as . ABORT. No operation that could upset any 1,0,
etc., should be executed. This includes the use of any FORTRAN functions such as
ALOG or ** (exponentiation) because these call library routines that may have local
storage associated with them. The recommended user routine is to set a flag in a
labeled user common and then dismiss the interrupt (.OK).

60 KRUSEMARK AND HARALICK

#
P
H
#

&

#

#

#

##

#
+#

#oH H#H

3

4. EXAMPLE
exampl example of os routine use
include macal # system include file for all tokens

subroutine osmain(work)

character fdi(.FDLENGTH), fdo(. FDLENGTH)
integer osinfd, osrecv, ossend, ossiev, osgiev

integer ossize, osopnr, osaloc, osginf, osnrec

integer osrdr, oswtr, osclos, oschan

integer rec, nrec, lrec, mod
character tname(80)
integer work(.ARB)

data rstrt/ .OK / # initial value of rstrt

if(tstrt”™ = .OK) goto 9020 # restart is an error
rstrt = .OK + 1 # thus™= .0OK
if(.OK™ = oserri(.OK)) goto 9020 # set so all
messages are output

if(.OK™ = osrecv(tname, len, 80))

goto 9000
if (len = = 80) goto 9010
tname(len + 1) = .EOS

if(.OK™ = osinfd(tname, fdi)) goto 9000

if(.OK™ = osrecv(tname, len, 80))
goto 9000
if(len = = 80) goto 9010
tname(len + 1) = .EOS
if(.OK"™ = osinfd(tname, fdo)) goto 9000

set integer mode for
input file

if(.OK™ = ospinf(fdi, .MODE, .INTMODE }))
goto 9000

if(.OK™ = osopnr(fdi, .OLD))
goto 9000

set up output file

if(ok™ = osginf(fdi, .NREC, nrec)) goto 9000

TRANSPORTABLE IMAGE PROCESSING SOFTWARE

if(ok™ = osginf(fdi, .LREC, Irec)) goto 9000
if(.OK™ = ospinf(fdo, MODE, .INTMODE)) goto 9000
if(.OK™ = ospinf(fdo, .LREC, Irec)) goto 9000
if(.OK™ = ospinf(fdo, NREC, nrec)) goto 9000
#
if(.OK"™ = osaloc(Irec)) goto 9000

#
if(.OK™ = osopnr(fdo, .NEW)) goto 9000
#
do rec = 1, nrec
(
if(.OK™ = osrdr(fdi, rec, work, Irec, WAIT))
goto 9000
#H
do pnt-1, Irec
work(pnt) = mod(work(pnt), 10)
#
if(.OK™ = oswtr(fdo, rec, work, WAIT))
goto 9000
$
#
#
if(.OK"™ = osclos(fdi, .DELETE))
goto 9000
if(.OK™ = osclos(fdo, .KEEP))
goto 9000
#
#
if(.OK"™ = ossend(fdo, FDLENGTH))
goto 9000
if(.OK™ = ossend(fdi, FDLENGTH)})
goto 9000
if(.OK™ = ossend(0, 0)) # close send file
goto 9000
#
#
iev = oschan(‘addit’)
#
#
9000 continue
#
iev = osgiev(iev)
#
iev = ossiev(iev, ‘error in exampl-see error table.’)
iev = oschan(‘errorl’) # try calling error overlay
return # didn’t make it so fatal stop
#

9010 continue

61

62 KRUSEMARK AND HARALICK

#*
iev = ossiev(— 2020, ‘file name too large for eos.’)
iev = oschan(‘command’) # go get new command line
return

#
9020 continue

#
iev = ossiev(— 1030, ‘restart attempted but not coded for.”)
iev = oschan(‘command’) # go get new command line
return

e
end

4.1 Explanation of Example

The above example takes two records of file names which could have been written
by a call to OSSEND from the command interpreter. These are an input file and an
output file, respectively. These file names are then converted into the internal format
file descriptor.

The main operation creates an output file which has each value represent the
corresponding value of the input file modulo 10. The files are then closed and the
two file descriptors are passed to a overlay called “ADDIT.” Note that the file
descriptors, rather than the file names, are passed to make the next command easier.

Error conditions are taken care of, including the possibility that the user typed a
user interrupt in the middle of processing. This assumes that the routine OSINTR
consisted of setting the function value to .RESTART and returning. The routine
OSERRI is called to force all output from OSSIEV to appear. Normal processing
would do this in a cleaner way with complicated user routines but for the example
this shows the operation of the routines. The array WORK is used to hold the data
and it is checked for being as large as is needed by the call to OSALOC.

5. TRANSPORTABILITY REVISITED

The aim of the OS routines is to enhance transportability. From this point of view,
the OS routines can be broken down into six categories, although any one routine
could be rewritten to make it nontransportable in the interest of speed, space
requirements, or a particularly difficult machine. The categories, although seemingly
clear-cut, are not easily defined.

1. NT (nontransportable): the routines that are fully nontransportable are
OSPINF, OSOPNS, OSRDR, OSWTR, OSCLOS, OSOPNS, OSRDS, OSWTS, and
the most difficult of all OSCHAN.

2. NT-E (nontransportable—extensions): the routines that are extensions and
are nontransportable are OSFLSH, OSECHO, OSTAPE, OSTIME, and OSDATE.

3. MSWYV (most systems work versions): the routines that have inefficient
transportable versions that work on most machines are the character and bit
manipulation routines OSPBTR, OSGBTR, OSPACK, OSUNPK, OSUCHR, and
OSPCHR.

TRANSPORTABLE IMAGE PROCESSING SOFTWARE 63

4. SNT (simple nontransportable): the set of routines that are nearly transpor-
table:

(a) OSINFD—May have to partially parse a file name.

(b) OSGFNM—Generating a file name is system dependent.

(c) OSINFO—System dependent constants are easily “hard-wired” in.

(d) OSNAME /OSSIEV /OSPUSH /OSPOP—Need to be able to write to “er-
ror” output and cannot use the OS routines because these are also called from
within the OS routines.

5. T (transportable): the set of routines that are fully transportable are
OSGTNM, OSGIEV, and OSERRI.

6. TV (transportable versions): the following routines that have transportable
versions (or for which transportable versions can be written) but may be locally
implemented in nontransportable code to make them work faster or use less memory
are

(a) OSGINF—Getting information is transportable if information is in a fixed

place.

(b)y OSDLY—Call OSTIME in a loop (very poor on CPU time usage).

(¢) OSWAIT—Do not implement wait option.

(d) OSGROW—Copy file.

(e) OSRENM—Copy file, thus renaming it.

(fy OSCASE—Implement case folding (simple nontransportable) in OSRDS

and OSWTS. This routine simply sets the appropriate flag.

(g) OSSEND/OSRECV—Fixed file name (from OSGFNM); uses random

files.

(h) OSALOC—Implement work array as fixed size; put size in a common and

simply check it.

(i) OSINTR—Do not implement interrupts.

(j) OSFORM—The setup of forms control is transportable; it is the use in

OSWTS that is nontransportable.

The method preferable for implementation of the OS routines requires taking a
system similar to the one that the kernel is being implemented on and using it as a
basis for modifications.

APPENDIX: OS ROUTINE TOKENS

The mnemonics in this appendix are separated into several different INCLUDE
files. The constants described are shown under the INCLUDE file that they are in.
The INCLUDE files are named ERRORCODES, INFOCODES, FILECODES,
WORDSIZE, and GENCODES.

A.l1 ERRORCODES

This INCLUDE file contains the major error codes returned by the OS routines.

1. NOTFOUNDIEV—Whether a file is found (.OK) or not found.
2. .EOFIEV—End of file condition exists on input file during read.

3. ILLEGALFDIEV—Either an error exists in a noninitialized file descriptor
or the file descriptor has been written into in ways not programmed for.

64 KRUSEMARK AND HARALICK

4. NODEVIEV—File descriptor built with OSINFD with a null string as
input. This IEV returned from OSGINF.

5. JLLEGALPARAM—This value is returned where a parameter value to a
routine is wrong and that error is either obvious or very limited. The OSSIEV
message output is particular about what is the problem.

A.2 INFOCODES

This has the tokens used directly and for OSGINF and OSINFO routine calls.

1. .SYSNAM—Return system name as a six character Al format array (used
in OSINFO).

2. NUMBITSIO—The size of the basic I/0 unit in bits.

3. MINNUMUNITSFORIO—Minimum number of basic units that I1/0 is
done in.

4. .OPTDISK—Optimum disk block size (used in OSGINF).

5. MEMMAX—Memory maximum, largest value definitely ok in OSALOC
(used in OSINFO).

6. .DEVICE—Type of device specified in the file descriptor name (used in
OSGINF and OSPINF).

7. .FILETYPE—Type file is open such as INPUT or NOTOPEN, etc. (used
in OSGINF).

8. .NREC-—Number of records in file (random only) (used in OSGINF and
OSPINF).

9. .LREC—Number of elements in each record. Actual length is fixed and
maximum length in file is variable (used in OSGINF and OSPINF).

10. .MODE—Mode of file (see FILECODES) (used in OSGINF and OSPINF).
11. .CASE—The option to force upper case or not (used in OSGINF).
12. .FORM—The forms control information (used in OSGINF and OSFORM).

13. .ECHO—Whether input from echoable device is suppressed or not (used in
OSGINF and OSECHO).

14. UNIQUE—A unique number for each file (used in OSGINF),
15. MIXED—Mixed case (used in OSGINF and OSCASE).
16. .UPPER—Force input/output upper case (used in OSGINF and OSCASE).

17. .OVERPRINT—Forms control-overprint next write (used in OSGINF
and OSFORM).

18. NORMAL—Forms control-single line space (used in OSGINF and
OSFORM).

19. . TOPPAGE—Forms control-form feed (used in OSGINF and OSFORM).

20. NOECHO—There is no echo on terminal input (used in OSGINF and
OSECHO).

21. WAIT—Wait for I/0 to complete before return (used in OSWAIT,
OSRDR, and OSWTR).

TRANSPORTABLE IMAGE PROCESSING SOFTWARE 65

22. NOWAIT—Return immediately after starting I/0 request (used in
OSWAIT, OSRDR, and OSWTR).

A.3 FILECODES

This INCLUDE file has those pieces of information relating to opening and
maintaining a file descriptor.

1. .FDLENGTH—The length of the file descriptor array.

2. FILENAMELENGTH—The length of the free format string returned
from OSGTNM. The string is long enough to add .EOS to the last location and not
destroy the last character of the file name.

3. INPUT—Sequential file open as a read only file.
.OUTPUT—Sequential file opened as a write only output.
NEW-—Random file opened to be created.

.OLD—Random file opened and checked for existence.
NOTOPEN—File is not open.

.KEEP—To close a file such that it exists as a permanent file.
.DELETE—To get rid of a file; to erase it.

10. INTMODE—An integer in a INTEGER variable.

11. .REALMODE—Single precision floating point in a REAL variable.

12. .DINTMODE—Double integer mode (may be implemented as INTEGER)
in a DINTEGER variable.

13. HINTMODE—Half integer mode (may be implemented as INTEGER) in
a HINTEGER variable.

14. .DBLPRCMODE—Double precision mode (REAL*8) in a
DBLPRECISION variable.

15. .CHARMODE—Character mode Al format characters in a
CHARACTER variable.

16. . PCHARMODE—Character mode in packed format in a PCHARACTER
variable (but not accessable individually; must use OSPACK, OSUNPK).

17. .LOGMODE— Logical or Boolean mode in a LOGICAL variable.

18. .SYSMODE—System format input file mode in a PCHARACTER vari-
able.

19. .DEVERROR—Device or file name was in error when put into file
descriptor.

20. .DEVTERM—Terminal.

21. .DEVPRINT—Printer.

22. .DEVDISK —File name on disk.
23. .DEVTAPE—Magnetic tape.
24. .DEVDISPLAY — Video display.
25. .DEVREADER —Card reader.
26. .DEVPUNCH—Card punch.

oo oS L R

66 KRUSEMARK AND HARALICK

27. .EOL—End of line.
28. ALTEOL—Alternate end of line. (Leave cursor at end of line.)

A.4 WORDSIZE
This INCLUDE file has the information about word size and character set.

1. NUMBITPERWORD—Number of bits in an INTEGER word.
2. NUMCHARPERINT—Number of characters in an integer variable.

3. .NUMPCHARPERCHAR—Number of characters in a CHARACTER vari-
able when packed.

4. LARGEINTEGER—Largest integer on a system for practical purposes.
5. .LARGEREAL-—Largest real value on a system.

A.5 GENCODES
This INCLUDE file is sort of a catch-all. It defines many needed constants.

CHARACTER—Defines for each machine what a character variable is.
HINTEGER—Defines what a half integer is.

DINTEGER—Defines what a double integer is.

DBLPRC— Defines what a double precision variable is.
PCHARACTER —For allocating space only: packed character array defi-

ok R R e

nition.

6. PSCHARACTER—See OSUCHR and OSPCHR for explanation (similar
to PCHARACTER).

7. .EOS—End of string.
8. .EOF—End of file.

9. .ARB—This is used for arbitrary sized arrays, but only when the actual size
is not known.

10. .OK—All items are OK.

11. .WAIT—Wait for 1/0 to complete. (Put here because read/write is so
common.)

12. NOWAIT—Return immediately. User must call OSWAIT to check that
I/0 is finished.

REFERENCES

1. E. Guerrieri, Software/0.S. Interface Kernel User Munual, Preliminary Version, Technical Report,
IPL, Rensselaer Polytechnic Institute, March 1981.

2. R. G. Hamlet and R. M. Haralick, Transportable “ package” software, Software Pract. Exper. 10, 1980,
1009-1027.

3. R. G. Hamlet and A. Rosenfeld, Transportable Image-Processing Software, Proceedings, Nat. Comput.
Conf., Vol. 48, 267-272, AFIPS Press, June 1979.

4. S. Krusemark and R. M. Haralick, Achieving portability in image processing software packages, /EEE
Computer Society Pattern Recognition and Image Processing Conference, Las Vegas, Nevada, June
13-17, 1982,

