
1

The N-tuple Subspace Classifier: Extensions and Survey

Robert M. Haralick (Life Fellow IEEE) and Ahmet Cem Yuksel
Graduate Center, City University of New York

This paper is written in recognition of W. W. Bledsoe, who
with Browning, introduced the N-tuple subspace classifier in
1959. This 1959 paper was the first paper to introduce subspace
classifiers and the sum rule to combine the outputs of the
classifiers.

A mathematical notation is given to easily express in a
precise and unambiguous way everything going on in the N-
tuple subspace classifier. Extensions of the N-tuple method are
discussed using a generalized product expression and we relate
the generalization to graphical models. We discuss the sum rule,
the product rule and the plurality voting rule for combining the
scores of the subspace classifiers.

We selected a representative sample of papers that the 1959 N-
tuple subspace classifier inspired. Some of the papers introduced
specialized improvements. Many of the papers showed the value
of the N-tuple subspace classifier in all kinds of applications
and compared the results of one or more varieties of the N-
tuple subspace classifier with other state of the art classifiers.
Their experiments showed that the N-tuple subspace classifier
was competitive with the state of the art classifiers and often
had a higher accuracy. Finally we highlight some papers that
describe experiments of the N-tuple subspace classifier executing
in a quantum computer.

I. INTRODUCTION

This paper is a tribute to Woodrow Wilson Bledsoe (1921-
1995). He worked in a variety of areas including automatic
theorem proving, character recognition, face recognition, arti-
ficial intelligence and much more. He was very active in the
Artificial Intelligence community and served on the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI) board
of trustees from 1978-1983. In 1983 he was elected president
of the American Association For Artificial Intelligence. A
memorial to him was written by Michael Ballantyne, Robert
Boyer, and Larry Hines [1]. This memorial was made into a
resolution passed by the faculty at the University of Texas,
Austin.

Here we concentrate only on the N-tuple subspace classifier
introduced by Bledsoe and Browning in 1959 [2] and many
of the papers that this 1959 paper inspired in the following
61 years. Their paper stands out for two reasons: it is the
first and main paper, as far as we know, to introduce the idea
of subspace classifiers and the way of combining subspace
classifiers using the sum rule.

The N-tuple subspace classifier was originally designed
for the recognition of hand-written characters. It is now just
over 60 years from 1959 and we might ask, why is this
relevant today? We have a variety of subspace classifiers,
random forests, neural networks, deep learning and many more
methods available, too many more to survey or even mention
in a paper devoted to what now may be termed an ancient
method. The N-tuple method and its extensions is appropriate
for problems even with 1000 dimensions and 100 classes for

which it or its extensions may be the most economical on-line
classification method that trades off computational complexity
with fast memory, the cost of which has become cheaper and
cheaper over the last decades.

In 1960 the cost of a megabyte of DIMM memory was
around 5 � 106 dollars per megabyte. This motivated re-
searchers to find N-tuple memory reduction strategies such
as Ullmann [3]. In 2020, the cost of a megabyte of DIMM
memory is about $.0035. It is this fact that makes the N-
tuple classifier, which can be memory intensive, appropriate
for training sets having well over 107 tuples and for classifying
streaming big data at rates of over 50MB per second with
electronics packaged in a relatively small volume.

There are multiple names by which the N-tuple classifier
and its variants have been called. For example, there are RAM
based neural networks [4] [5], single layer lookup perceptions
[6] and weightless neural networks [7].

We discusss how the N-tuple subspace classifier works,
motivate why it works and describe some extensions to make it
more powerful. The Bledsoe and Browning subspace classifier
easily fits into the decomposition mode of how a complex
problem can be solved exactly or approximately in Computer
Science. Most commonly there are the recursive decompo-
sitions, data decompositions, functional decompositions or
search space decompositions. The Bledsoe and Browning
subspace classifier is mostly in the mode of functional de-
composition and the classification problem can often be solved
nearly optimally.

The idea is that the problem is broken into pieces. The
pieces are designed so that the dependencies are maximized
within each of the pieces and the different pieces are nearly
independent of each other. Each piece is solved optimally or
nearly optimally. Then they are threaded together to form a
solution.

II. NOTATION

In this section we will detail our notational conventions that
will facilitate our discussion of the inner workings of the N-
tuple method. Our notation will be the standard set builder
notation. tx P M | P pxq ¡ αu specifies a subset of M
consisting of those elements having probability P pxq greater
than α. xx1, . . . , xZ | xz PMy means a sequence of Z tuples
each one being a member of M. Since it is a sequence, some
elements from M may not be present in the sequence and
some tuples of the sequence may occur more than once.

Each feature variable is associated with a unique index. If
there are N feature variables, then the index set I associated
with the N feature variables is given by I � t1, . . . , Nu. In
general, an index set is an ordered set of natural numbers. For

2

example an index set can be J � t5, 7, 8, 10u. Each index in
an index set serves as an index to the features associated with
them.

The feature whose index is j takes its values from the range
set Lj . Measurement space, designated as M, is the set of all
possible measurements; M � "iPILi All of the sets we use
and define are finite sets. For any set A, |A| is the number
of elements in the set A. We define an Indexed List Relation
as a list of tuples all from the same subspace of measurement
space. The index set keeps track of which components of a
tuple correspond to which features.

Definition 1: Let feature j take its value from range set Lj .
Let I be the index set for all features. Then U is a Subspace
of Measurement space M if and only if for some J � I ,
U � "jPJLj .
For the N-tuple world, subspaces are axis parallel subspaces
and the projections to the subspaces are orthogonal projections.

Definition 2: An Indexed List Relation pJ,Rq is a pair
whose first component, J , is an index set and whose second
component R � xx1, x2, . . . xZy is a sequence of tuples where
xz is a tuple having |J | components and xz P "jPJLj .

For example if J � t1, 4, 5, 8, 9u, then xz �
pxz1, xz2, . . . , xz5q is a tuple having 5 components. The first
component is associated with index 1 and takes a value from
range set L1, the second component is associated with index
4 and takes a value from range set L4 and so on.

The last notation we need is for projection. An indexed list
relation (I,R) may be projected to a subspace defined by the
set J , J � I . We denote the projection operator onto the
subspace indexed by J by πJ .

Definition 3: Let pI,Rq be an indexed list relation. and J �
I . Then the Projection from the subspace indexed by I to the
subspace indexed by J � tj1, j2, . . . , j|J|u is defined by.

πJpI,Rq � pJ, Sq

where px1, . . . x|J|q P S if and only for some tuple
py1, . . . , y|I|q P R x1 � yj1 , x2 � yj2 , . . . , x|J| � yj|J|

.
For example if I � t1, 4, 5, 8, 9u and J � t4, 9u and a tuple

px1, x2, x3, x4, x5q P R then the tuple py1, y2q P S, where
y1 � x4 and y2 � x9. We use the standard notation that
r1,M s � t1, . . . ,Mu.

III. BLEDSOE AND BROWNING’S N-TUPLE SUBSPACE
CLASSIFIER

First we explain what we mean by a subspace classifier.
Definition 4: A Subspace Classifier is one that projects the

measurement tuple to multiple subspaces where each projected
tuple is processed. Then the processed projected tuples are
combined in a way to form an assigned classification for the
measurement space tuple.

Bledsoe and Browning worked with characters. Their char-
acters were the digits 0 through 9 and the letters A through
Z, a total of 36 classes. Each character was positioned in
a 15 row and 10 column binary image, thereby making a
150-dimensional measurement tuple. They normalized their
characters by doing small translations and rotations of the

Fig. 1. Shows an example 9 row by 10 column retina in which the character
is located. Each pair of cells shown in the same color are selected by one of
the mutually exclusive sized 2 index sets.

original character to put it in the upper left hand corner of
the retina.

Bledsoe and Browning did not use elaborate features cal-
culated from the observed measurement tuples. In their initial
experiments, their measurement tuples were 150 dimensions.
They selected at random 75 subspaces, each 2-dimensional.
Since they worked with a binary image they picked out 75 mu-
tually exclusive pairs of pixel positions, each pair of positions
having a pair of binary values based on what the pattern on the
retina was. Each pair of binary numbers addresses a memory
of 4 addresses. There were 75 such 4 address memories for
each class. The word size of the memory they used was 36
bits. So they used one bit for each of the 36 character classes.
Each character class had its own 75 4 address memories. The
total memory they had was 75 � 4 � 36 � 10, 800 bits for
their initial experiments. The value of each two feature pair
was used to form an address. Note that whether the feature
values are numeric or symbolic the N-tuple method would
work and it works identically the same regardless of the 1�1
function from the numeric or symbolic tuples to the addresses.

Their first results on typewriter fonts was near perfect
accuracy so they went on to do more difficult classification
problems, like reading block print characters or handwritten
cursive characters. As they went through the training set, the
value of each 2 feature pair would be converted an address
Its class tag would select one of the 36 memories. Each
memory would have 75 associated memories of 4 addresses
each. They would then work with the 75 memories associated
with the class tag of the tuple to be classified. Each of the
75 two feature pairs would form an address in its associated
memory. The addressed bit associated with the class tag and
the address of the feature pair would be set to 1 for each of the
4 address 75 memories. When a new character was scanned
and thresholded, they accessed the 75 4 address memories,
associated with each class and counted how many ones each
class had over its projected measurement tuples. The sum was
the score for that class. Then they classified the measurement
tuple with the character class that had the largest score.

3

A. The Mathematical Description

Now we will mathematically describe Bledsoe and Brown-
ing’s original N-tuple subspace method. The notation used here
was first given by Haralick [8].

Let the tuple size be N . This was 150 in the case of
Bledsoe and Browning, see Figure 1. The full index set I
is I � t1, . . . , Nu. We designate the range set for the ith

component of a measurement tuple to be Li, i P I . Each mea-
surement tuple x P "iPILi �M, the measurement space. We
designate the set C of K classes by C � r1,Ks and designate
the training set by txx1, . . . xZ | xz P My, xc1, . . . , cZ | cz P
r1,Ksyu. Let the M index sets specifying the subspaces be
J � tJ1, . . . , JMu. Bledsoe and Browning first worked with
J being a partition of I , with each cell of the partition being
approximately the same size. To construct a random partition,
they determined a random permutation i1, . . . , iN of 1, . . . , N .
For simplicity assume that V � N{M , V an integer. In this
case the size |Jm| of each Jm index set is V . Then they took
the first V elements of the permutation to form the set J1,
the next V elements of the permutation to form the second
set J2 and so on. the Bledsoe and Browning called each
index set Jm an N-tuple since it was indexing components
of the measurement tuples and the components they indexed
constituted a pattern.

Let the training set be txx1, . . . , xZy, xc1, . . . , cZyu Based
on the training set, tables are formed, one binary valued table
for each m P r1,M s and each class k P C: Tm : p"jPJm

Ljq "
C Ñ t0, 1u is defined by

Tmpu | kq �

$&
%

1 if for some z P r1, Zs, πJm
pxzq � u

and cz � k
0 otherwise

As the notation indicates, Tm pπJm
pxq | kq is given the

value 1 if the estimate of the class conditional probabil-
ity P̂mpπJm

pxq | kq ¡ 0. Otherwise, it takes the value
0. This could be generalized by assigning the value 1 if
P̂mpπJmpxq | kq ¡ α, for a pre-specified α. That was not
an option that Bledsoe and Browning tried. It was tried when
the bleaching threshold was introduced. But that is a topic we
will cover later.

To assign a new measurement tuple to a class, they used
the Tmk tables to define a score Sk for each class k.

Sk : MÑ R

The score function is defined by

Skpxq �
M̧

m�1

TmpπJm
pxq | kq (1)

The measurement tuple x P M is assigned to class k P C
if Skpxq ¡ Sjpxq, j P C � tku. Saying this another way,

k � argmaxjPCSjpxq

If the maximizing score is not unique, the assignment was
chosen with equal probability among the classes that maximize
the score.

Haralick [9], knowing about the Bledsoe and Browning
paper, described a table look-up classifier used for crop or
land use identification in Satellite imagery, that made a more
restrictive suggestion: Assign x to class c if Scpxq �M , where
Sc is calculated using the sum rule. If c is not unique assign
x to reserve decision.

It is interesting that Bledsoe and Browning chose
a way of combining the class k conditional scores,
TmpπJm

pxq | kq,m P r1,M s by a sum. It was not until
the mid 1990’s that exploration of ways of combining differ-
ent classifiers was undertaken. [10], [11]. Interesting enough
Kittler [12], more than three decades later, did a study that
experimentally showed that the Bledsoe and Browning sum
method as given in Equation (1) outperformed other combining
methods. Bledsoe and Browning anticipated the combination
of an ensemble of classifiers by the sum rule.

Many of the N-tuple papers use an engineering block dia-
gram to show the structure of the N-tuple subspace classifier.
One such a block diagram is shown in Figure 2.

Fig. 2. Shows one of the block diagrams that papers have used to represent
the N-tuple neural networks. This figure is adapted from [13] [14].

Figure 3 shows another block diagram often shown with
the commercial implementation of the N-tuple method called
WiSARD (Wilkie, Stonham and Aleksander’s Recognition
Device) [15]. For each given class k, they use the term
discriminator to refer to the T1k, . . . , TMk tables and its
score function. The dashed line from the discriminator to
the top and bottom of the grid, represent the values in the
selected pixel locations corresponding to the M index sets
J1 . . . , JM . Axis d represents the 10 comparisons done among
the 10 discriminators and the S represents the class score for
each class. The digit discrimination is done by selecting the
discriminator output that has the largest score [16].

This is the argument than Bledsoe and Browning made as
to why the method has the possibility of working. Consider
the letter I.

The very shape of a character, such as the letter I,
forbids certain states pπJm

pxqq for certain pairs (for
certain Jm). The existence of these forbidden states
lies at the heart of our method, for without them
the logic would saturate (all the M projections from

4

measurements x of one character class would be the
same for a different character class) [2] page 227.

Fig. 3. Shows the block diagram often used by the commercial imple-
mentation of the N-tuple method called WiSARD (Wilkie, Stonham and
Aleksander’s Recognition Device) [15]. The recognition is for the digits 0
to 9 . Notice that 9 had the largest score and that 0 had the next largest
score. The normalized difference S9�S0

S9
may be used to determine if the

class having the next to highest score is too close to the highest score.

Because the translation and rotation of the character on the
photocell grid could vary. They normalized by translating and
rotating the character to the top left corner of the photocell
grid. It was not clear from the paper how they decided to
locate the center of the rotation.

During the course of their experiments, they worked with
typewriter fonts, handwritten block printed characters and
handwritten cursive script characters. With typewriter fonts the
identification accuracy was perfect. To make it challenging,
they purposely worked with hand written block printed and
handwritten cursive script.

The identification accuracy was not high with the handwrit-
ten cursive script characters, principally because the resolution
of their retina, which was constructed by an array of 15 rows
by 10 columns of photocells, was too coarse and the centering,
positioning and rotation of the written script was too varied.
However with the machine printed digits they did achieve
some success although it was not near perfect. Table I shows
two of Bledsoe and Browning’s results. Although the paper
does not explain the difference between the two results shown,
it is probably the case that they corresponded to two different
collections of index sets.

The Bledsoe and Browning results are shown in Table I,
using the original method having entries that were 0 or 1 in the
Tmk tables. Column 1 shows the accuracy without positioning
and rotation, column 2 for the case of positioning and no
rotating and column 3 for the case of positioning and rotating.
The results indicate that when both positioning and rotating
are done, the identification accuracy is highest: 89% to 90%.

TABLE I
SHOWS THREE RESULTS FOR HANDPRINTED BLOCK CHARACTERS FOR

THE DIFFERENT COMBINATIONS OF POSITIONING AND ROTATING .

Initial Positioned Positioned and Rotated
80 84 89
72 88 90

As well, they worked with different sizes of the J1, . . . , JM
index sets: |Jm| P t1, 2, 3, 5, 8u; different numbers of index
sets M P t30, 50, 75, 150, 128, 256, 512, 1024u and different
number of classes: |C| P t10, 36u.

Bledsoe and Browning tried a different related N-tuple
scheme that they called averaging, but it is actually more like
a correlation scheme. In this method for each class, all the
training sequence measurements are averaged producing for
class k a class mean tuple µk. Let the training sequence for
class k be xk1 , x

k
2 , . . . , x

k
Zk

¡, k � 1, . . . ,K. Then,

µk �
Zķ

z�1

xkz

When a new x comes to be assigned a class, the score

Sk �
1

N

Ņ

n�1

Tnpπtnupxq | kqπtnupµkq

is computed and the class associated with the highest score is
assigned to x.

They indicated that experiments which used non-exclusive
tupling had some small improvements, but that they thought
that the additional memory and longer computing time negated
their use. Remember that in 1959, memory was expensive.
Table II gives the results of some of their experiments which
varied the index set size and whether the index sets were
exclusive or nonexclusive, and whether the protocol was like
their initial method or had averaging or rotating.

TABLE II
SHOWS THE PERCENT IDENTIFICATION ACCURACY WITH HANDWRITTEN

BLOCK CHARACTERS FOR DIFFERENT SIZED INDEX SETS.

Index Set Size Exclusiveness Condition Accuracy
3 Exclusive Initial 78

2,3,5 Exclusive Averaging 77-84
2,3,5 Non-exclusive Initial 80-85

3 Non-exclusive Rotating 88-92

They also tried experiments to see how much a change
occurred when different mutually exclusive random index sets
were tried. The results, shown for one decimal place accuracy,
are for the handwritten block characters in Table III. The mean
correct identification accuracy was 78.4 % and the standard
deviation was 1.0 %, indicating that for their data set, the
collection of random mutually exclusive index sets were used
made little difference.

5

TABLE III
SHOWS THE PERCENTAGE OF CORRECT IDENTIFICATION FOR FIVE

DIFFERENT CHOICES OF RANDOM N-TUPLING WHERE THE N-TUPLE SIZE
WAS 2.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Mean St. Dev.
78.5 78.2 77.2 77.8 80.1 78.4 1.0

In one section of the paper, where they discuss other ways
of setting up the subspace classification method, they write:

It might well prove useful to employ a correlation
technique in which a sum is taken of the products
of corresponding scores [2] page 230.

It is interesting that because that sentence foresaw a more
principled way of designing a subspace classifier as we shall
read in the next section.

The Bledsoe and Browning paper quickly stirred comments.
The first to comment was Highleyman and Kamentsky [17].
They had a handprinted data set produced by 50 different
people at Bell Labs with 36 character classes and they had a
machine printed character database of the 10 digits produced
by an IBM 407 line printer. As mentioned in Bledsoe and
Browning, they shifted each character to the upper left hand
corner of the box containing the character. They used index
sets of size 2, like the initial experiment in the Bledsoe and
Browning paper. They used a specially built generalized scan-
ner for pattern and character recognition studies that produced
a thresholded image of 12 rows by 12 columns. In addition
to the replication of the first experiment of the Bledsoe and
Browning paper, they tried the averaging characters technique,
meaning for each class they averaged the class measurements
over the 50 training instances and recognized by doing a
cross correlation of the measurement to the average of the
measurements in each class. Likewise for the 10 digits of the
machined printed data. Their results are shown in Table IV.
Highleyman’s conclusion was

It is evident that this study does not verify the results
of Bledsoe and Browning.

TABLE IV
SHOWS PERCENT CORRECT RECOGNITION IN HIGHLEYMAN’S

REPLICATION OF ONE OF THE BLEDSOE AND BROWNING EXPERIMENTS.

Results Obtained Replication of Character
Data Set By Bledsoe Bledsoe Averaging

Browning Browning
Hand Printed 78.4 19.6 77.2

Machine Printed 100.0 86.7 99.6

Highleyman and Kamentsky [17] also used a different
method to normalize the entries in the table where for each of
the MK tables they divided each class k table entry by the
square root of the sum of squares of all table entries for that
particular class k table.

They tried the maximum likelihood method. The normaliza-
tion was made by replacing each table entry with its logarithm
and the table entries that are 0 are replaced with some pre-
defined negative number. As it can be observed from the
Figure IV, among the various table models, normalized tables

created by the maximum likelihood method gives the best
performance.

They also tried a cross-correlation method where for each
character class, a pixel position contained the probability of
that position being occupied by one of the training tuples of
the class. They cross-correlated the measurement tuple with
the average probability matrix for each class and assigned the
class that whose cross-correlation peak was highest [18]. For
the hand printed data set, the test set was the same as the
training set. For the machine printed data, the test set was
independent of the training set.

Bledsoe [19] seeing that the Highleyman and Kamentsky
replication of his own work produced an accuracy of only
19.6% when his own work produced an accuracy of 78.4%
soon published a comment on the Highleyman and Kamentsky
article. He argued that the cause of their small accuracy was
due to the size of the index tuple, which was 2 in their
initial experiments, should be chosen depending on the data
sets. To support his argument, he makes reference to the fact
that Highleyman had shared his data set with the Sandia
Corporation and they used index sets of size 6 and 8, and
obtained the results shown in Table V.

TABLE V
SANDIA PERCENT CORRECT RECOGNITION [19]

Index Set Results
Size Obtained by Accuracy

Sandia
6 Hand Printed 80
8 Hand Printed 86
6 Machine Printed 100
8 Machine Printed 100

IV. EXTENSIONS

We begin by discussing the first extension done by Bledsoe
[19]. The Bledsoe and Browning paper was published in 1959
at the Eastern Joint Computer Conference. Marvin Minsky
was one of the people present and had listened to the Bledsoe
presentation and read their paper and even commented on
it in a discussion of problems in pattern recognition [20] at
the Eastern Joint Computer Conference. Minsky [21] wrote a
paper in 1961 that referenced the Bledsoe and Browning paper.
In the page before he mentions Bledsoe and Browning, Minsky
speaks of combining properties by using the assumption of
class conditional independence.

Bledsoe read the Minsky paper and jumped on the idea of
using products as he had mentioned in his 1959 paper. Minsky
gave the equation for the class conditional independence
assumption. Let the feature tuple be pf1, . . . , fN q. The condi-
tional probability of the feature tuple given a class c is written
as P pf1, . . . , fN | cq. The class conditional independence
assumption states

P pf1, . . . , fN | cq �
N¹

n�1

P pfn | cq

The maximum likelihood method finds that class c which
maximizes P pf1, . . . , fN | cq.

6

What Bledsoe and Bisson [22] did is to think of their
features as being generated by their projection of the mea-
surement tuple xN�1 to the subspaces defined by the mutually
exclusive index sets J1, . . . , JM . Under the class conditional
independence assumption

P px | cq �
M¹

m�1

P pπJmpxq | cq

In order to use class conditional probabilities, the definition
for the Tmk tables must be changed to make the entry mean
an estimate of the class conditional probability.

Tmpu | kq �
|tz P r1, Zs | u � πJm

pxzq and cz � ku|

|tz P r1, Zs | cz � k|u

Hence, TmpπJmpxq | cq is an estimate of P pπJmpxq | cq
and by the class conditional independence assumption, for
any x, the maximum likelihood method would compute±M

m�1 TmpπJm
pxq | cq for each class c and then find the

maximizing class c to assign to x.
Table VI shows a selection of their results using the

handwritten block printed characters of Highleyman [17]. The
images were 12� 12. In Table VI, the 40 sets training and 50
sets testing means that the 40 sets training is included in the
50 set testing. The 40 sets training and 10 sets testing means
that the training and testing sets were independent.

TABLE VI
PERCENT CORRECT RECOGNITION

SIZE 2 AND SIZE 6 REFER TO THE SIZE OF THE INDEX SETS [22].
HK IS THE ABBREVIATION FOR HIGHLEYMAN AND KAMENTSKY.

40 Sets Training 40 Sets Training
Method 50 Sets Testing 10 Sets Testing

Size 2 Size 6 Size 2 Size 6
Initial 13.0 62.0 2 24

Averaging 48.5 25
HK 78.5 81.5 58 53

HK Zero-State Suppressed 77.2 80.7 62 51
Max. Likelihood 83.2 91.7 63 61

It is clear that the technique is memorizing rather than gen-
eralizing and the training set needs to be much larger. Indeed,
Kirsch [20] made the statement that in general, researchers
were using training and test sets that were too small.

The class conditional independence assumption has an ex-
tension. Let tJ1, . . . , JMu be a partition of I � t1, . . . , Nu
with |Jm| � s, m P r1,M s and tJM�1, . . . , J2Mu be another
partition of I with |Jm| � s, m �M � 1, . . . , 2M .

Then with the class conditional independence assumptions
both

P1px | cq �
M¹

m�1

PmpπJmpxq | cq

P2px | cq �
2M¹

m�M�1

PmpπJmpxq | cq

hold. Different conditional independence assumptions yield
different joint probabilities, but each joint probability is an

extension of the marginals forming them. In that case, it would
be reasonable to assign class c to x when

c � argmax
2M¹
m�1

TmpπJm
pxq | cq

Or using the Bledsoe and Browning sum rule for scores,

c � argmax
2M̧

m�1

TmpπJm
pxq | cq

Those who adopt the Bayesian position would write

c � argmax
2M̧

m�1

TmpπJm
pxq | cqP pcq

Obviously this idea works for any number of partitions. From
the N-tuple point of view, using multiple partitions allows for
the index sets of one partition to overlap with the index sets
of another partition.

Bledsoe and Bisson [22] specifically discuss optimization.
They state,

Optimization, therefore, must at least include: find-
ing the best n (index set size) and finding the best
corresponding memory matrix (values to store in the
Tmk tables). [22] page 415.

They did try to find a better way to form the N-tuple index
sets. In this effort they worked with the Highleyman data set
[17]. They determined the probability, taken over all classes,
that each position took the value 1. Let p1, . . . , pN be those
probabilities. They then sorted the probabilities in descending
order. Let the resulting order be pi1 , . . . , piN . They formed
12 index sets by taking 6 sequential indexes at a time from
this ordering. The unused bottom 72 positions not covered by
these index sets were pixels that were close to the border of
the grid and whose probability of taking the value 0 was high.

They compared taking the index sets to be random size 6
index sets and index sets obtained from the ordering of the
probabilities that a pixel takes the value 1. They compared
two methods: the first using their initial approach and the
second using the maximum likelihood approach. Their results
are shown in Table VII. 40 sets means the same 40 complete
alphabet sets were used for training and testing. 10 sets means
40 complete alphabet sets were used for training and 10
complete alphabet sets were used for testing. The 0-1 approach
means the initial approach they took using table entries which
were 0 or 1. The maximum likelihood approach means the
table entries were the estimated class conditional probabilities.

TABLE VII
PERCENTAGE OF CORRECTION RECOGNITION

Method 40 sets: 10 sets:
Testing = Training Testing

0-1 approach; random 62 24
0-1 approach; improved 98 50
maximum likelihood; random 91.7 61
maximum likelihood; improved 99.75 67

This suggests a generalization where the values a feature
takes is more than 2. Determine the entropy for each of the N

7

order 1 marginal distributions. Low entropy means that a few
values have a high probability and most of the values have low
probability. The distribution is informative about the values the
distribution generates. High entropy means that the probability
of any value is similar to any other value. The distribution is
not informative about the values the distribution generates.
Therefore there is more information in the sample of values
that the distribution generates. [23]. Discrimination means that
the sample values are informative. With this idea we can we
can order the first order marginals by entropy in descending
order and create size s index sets, taking each successive index
sets from the ordering.

The question naturally arises what are the best collection
of index sets to use. This is equivalent to ask what are the
best subspaces? Lewis [23] argues from an information and
entropy approach, that the best subspaces to use in a product
approximation of an unknown joint distribution where the only
thing known are its marginal probabilities for the subspaces,
defined by the index sets J1, . . . , JM , are those that maximize
the entropy of the distributions on the subspaces.

His argument is from an information point of view. If we are
given the marginal distributions whose product forms a joint
probability distribution that is an extension of the marginal
distributions, then in an information sense, the closest product
approximation to the unknown joint distribution is that formed
by a product having the largest entropy and therefore minimum
information. Since the approximation is a product form, the
entropy of the approximation is the sum of the entropies of the
marginals forming the product. Interestingly enough Kullback
[24] also used the same information point of view and it has
come to be known as the Kullback-Liebler Divergence. Shore
and Johnson [25] discuss the issue of the maximum entropy
criterion.

Definition 5: The Kullback-Liebler Divergence from a prob-
ability distribution Q to a probability distribution P , both
defined on the set X is given by

DKLpQ||P q �
¸
xPX

log2P pxq

�
P pxq

Qpxq

Historically, Lewis was not aware of the 1951 Kullback and
Liebler [24] article although his paper appeared later in 1959,
which was same year as the Kullback book [26].

In our context, we have estimates of the class conditional
marginals defined by the subspace indexed by each of the
index sets for each class. The implication from Lewis suggests
that the collection of index sets of one class should be
independent of the collection of index sets for another class. If
the index sets are the same size, from the computation point of
view, there is no more computation and memory used when the
same collection of index sets is used to define the subspaces,
as it is in the original formulation of the N-tuple method, for
each of the class conditional compared to when the collection
of index sets are different for each of the classes.

However, in the more generalized case, we do not have to
have the restriction that each of the index sets have to be
same size. But we do have to have the restriction that the
total memory to store the class conditional distributions is no
more than the size of memory we are restricted to use by the

computer hardware on which the N-tuple method is executed.
Since the range sets are fixed, then the restriction amount to
designing the index sets Jmk,m � 1, . . .M ; k � 1, . . . ,K to
satisfy

M̧

m�1

Ķ

k�1

| "jPJmk
Lj | allowable maximum memory size

When would we want the collection of index sets for a
particular class to have one or more index sets larger than the
common size for the others? We would make this happen for
a class c that had lower identification accuracy or a class c
that had a larger false identification rate for a different class
c1 than desired; i.e. P passign c1 | true cq ¡ β, c1 � c. Of
course if we make one class have an index set larger than the
common index size, we would have to make other index sets
smaller.

A. Generalization of the Class Conditional Independence
Assumption

It is also possible to generalize the class conditional in-
dependence assumption in a principled way and allow for
overlapping index sets. We will illustrate with a small concrete
example and then describe the general case. Consider the fol-
lowing expression where each of the probabilities P134, P352,
is greater than 0 regardless of their values of their arguments.

P134px1, x3, x4qP352px3, x5, x2q

P3px3q

Notice that this form does define a probability distribution.
Since each of the terms are positive, the fraction is positive.
And the sum over all values for x1, x2, x3, x4, x5 equals 1. To
see how this works, sum on x1, x4 first and discover that the
total is 1.

¸
x3,x5,x2

¸
x1,x4

P134px1, x3, x4qP352px3, x5, x2q

P3px3q
� 1

This shows that the product forms a probability distribution.
The next question is whether the product distribution is an
extension of the third order marginals used in the product. If
the sum over all values of px1, x4q is done first we are left with
the marginal P352px3, x5, x2q. And its sum over x3, x5, x2 is
1. So the product distribution is an extension of P352. If we
do the sum over all the values of px2, x5q we are left with
the marginal P134. So the product distribution is an extension
of P134. Hence the product distribution is an extension of the
given marginals.

Now we describe the general pattern where the successive
marginal distributions overlap with one common variable. Let
J1, . . . , JM be the index sets defining the subspaces. Consider
the following constraints

Ja X Jb � H if b ¡ a� 1 (2)
Ja X Ja�1 � tjau, a � 1, . . . ,M � 1 (3)

8

Constraint (2) requires that non-successive index sets in the
ordering x1, 2, . . . ,My have no elements in common.

Constraint (3) requires that successive index sets have only
one element in common. Constraint (2) implies that the one
element in common of successive index sets are unique.

If constraints (2) and (3) are satisfied, then±M
m�1 PJm±M�1
m�1 Pjm

is the largest entropy probability distribution that is an exten-
sion of the given marginals PJ1

, . . . , PJM
.

Everything that we did for the case of an overlap of one, is
true for the overlap of 2 or more and the overlaps do not all
have to be the same size. For example,

P134px1, x3, x4qPx3,x4,x5
px3, x4, x5q

P34px3, x4q

is also a probability distribution that is an extension of its third
order marginals.

What we have used here is a specialization of the theory
of graphical models [27], [28], [29]. Form a graph whose
nodes are the variables. Make each index set form a complete
subgraph. Make sure that cliques are the index sets. Using
the ordering xJ1, . . . , JM y and have the index sets satisfying
constraints (2) and (4)

Ja X Ja � 1 � H, a � 1, . . . ,M � 1 (4)

The resulting graph will be triangulated (every loop of 4
or more will have a chord). Define Sm � Jm X Jm�1,m P
r1,M � 1s. In graphical models S1, . . . , SM�1 are called the
separators. Then the joint probability of all the variables can
be expressed by the product form

PIpxq �

±M
m�1 PJm

pπJm
pxqq±M�1

m�1 PSm
pπSm

pxqq

Now we bring in the argument of Lewis [23] in a more
general sense. Suppose we could know all the

CN
i �

�
N !

i!pN � iq!

ith order marginals and we want to choose a subset of them
that are mutually exclusive and which cover I . Which ones
should be selected so that the entropy of the product extension
has largest entropy? This is a combinatorial problem which
Chow and Liu solved [30] for the case i � 2.

Suppose that there are N variables and the marginal proba-
bility of each of the NpN�1q{2 second order probabilities Pi,j

are known. Chow and Liu form a complete weighted graph
with one node for each variable. The edge between node i and
node j is given the weight defined by the mutual information
of pi, jq. He proves that the largest entropy product is obtained
by finding spanning the tree with the largest total weight.
Variations of the Chow and Liu procedure can be found in
[31].

Definition 6: The Mutual Information of variables indexed
by i and j is defined by

Ipi, jq �
¸

xi,xj

Pijpxi, xjqlog2
Pijpxi, xjq

Pipxiq, Pjpxjq

Chow and Liu used Kruskal’s algorithm [32] to compute the
maximal mutual information sum spanning tree. They called
the spanning tree a dependence tree. Although they only did
the proof for the case where order 2 marginals are used, the
idea of a dependence tree itself holds in the more general case.
We consider the case of 4th order marginals.

We will construct a graph. Suppose that I � t1, . . . , Nu.
For the sake of simplicity of explaining, we assume that N is
dividable by 2. There are Q � NpN � 1q{2 size 2 subsets
of I . Let 1,. . . ,Q be the designations for the nodes, each
associated with a subset of I of size 2. We call those subsets
W1, . . . ,WQ. Form a graph having Q nodes. Connect node a
with node b with an edge if and only if Wa XWb � H. Put
a weight

IpWa,Wbq �
¸
x

PWaYWb
pπWaYWb

pxqq

log
PWaYWb

pπWaYWb
pxqq

PWa
pπWa

pxqqPWb
pπWb

pxqq

on the edge between node a and node b. The difference now
is that we are not interested in a spanning tree on the Q nodes.
Rather we are interested in a subtree of N{2 nodes with each
node designated by having a pair ti, ju � I satisfying that
that the N{2 node subsets are mutually exclusive and cover I .
To find the tree we are interested in, we cannot use Kruskal’s
spanning tree algorithm because we are not going to construct
a spanning tree on the Q possible nodes. However, like the
Chow and Liu idea, we will construct a dependence tree T on
a subset of N{2 nodes and N{2� 1 edges which is a tree in
the big graph of Q nodes satisfying that tWi1 , . . . ,WiN{2

u is
a partition of I .

We would like that dependence tree having the maximal
sum of mutual information. To do this we suggest a greedy
suboptimal algorithm. Let Sn �Win , n � 1, . . . , N{2. Begin
by choosing the pair of nodes whose edge has the largest
mutual information. Then successively connect a node to the
existing tree having no overlap with the nodes in the graph
so far, and not forming a loop, and having the largest mutual
information. We continue until the graph is a tree of N{2
nodes whose associated subsets S1, . . . , SN{2 form a partition
of I . Figure (4) illustrates this. The edge set E of the tree in
Figure (4) is

E � tt1, 2u, t2, 4u, t2, 5u, t1, 3uu

In our clique-separator product form, the index sets S1 Y
S2, . . . , SN{2�1YSN{2 serve as the cliques and the index sets
S1, . . . , SN{2�1 serve as the separators.

The joint probability PI of the product decomposition is
suboptimally the largest entropy extension of the marginals
PSiYSj for ti, ju P E. Since we are computing the class
conditional probabilities, let c be the class we are working
with. Then

PIpx
N�1 | cq � PS1

pπS1
pxq| cq

¹
ti,juPE

PSiYSj pπSiYSj pxq| cq

PSi
pπSi

pxq| cq

There are also other combinatorial approaches to construct-
ing a tree to cover all the variables, but we have no space here
to discuss it.

9

1
1,6

2
2,4

3
8,9

4
5,7

5
3,10

Fig. 4. Shows a dependence tree example for a measurement tuple with 10
components. Since each node has 2 indexes, the tree has five nodes. Each edge
is associated with the pair of indexes in the upper node combined with the
pair of indexes in the lower node thus forming a size 4 index set, indicating
an explicit dependence among the index sets. Because of this dependence,
the marginal probabilities are fourth order. The top of nodes are labeled 1
through 6 with bold font. The bottom of the nodes are the corresponding size
2 sets of indexes.

Further information can be found about product extensions
in [33]. and there is a statistical methodology to go from the
training set for a given class to the conditional independence
graph from which the cliques (our index sets) and separators
can be determined. [34], [35] [36]. But there is not enough
space here to even open up the topic.

Having explored some of the different kinds of product
forms, we will now explore a different kind of sum form.
Recall that for any measurement tuple x, TmpπJm

pxq | cq is
an estimate for PmpπJm

pxq | cq. What happens if we consider
each of the probabilities Pmpc | πJmpxqq, the probability of
class c being the true class given the evidence πJmpxq as the
basis for a classifier in its own right.

This is a problem that began to be examined in the 1990’s
with the classifier ensembles. The most popular method is
having each classifier vote its most likely class. Tabulate the
votes and the class having the plurality of votes is the class
that gets assigned.

For the case of two classes, the rational for counting the
votes for each class and then assigning the class having the
majority comes from Nicolas Caritat de Condorect (1743-
1794), a mathematician who advocated that it was better to
have a group of people who are partial experts than one person
who is an expert to make a decision. This has come to be
known as the Condorcet Jury Theorem. It states that if there
are two classes and an odd number of n jurists, (n � 2m� 1
for some m), who act independently, each with a probability
p ¡ 1{2, of making a correct decision, then the probability of
a jury using the majority vote rule will make a correct decision
monotonically increases to 1 as the odd n increases to infinity
[37].

More precisely, if S is the sum of the majority n voters
for an action, where n � 2m � 1, then the probability that
S ¥ m� 1 is given by

P pS ¥ m� 1q � p2m� 1q

�
2m
m

» p

0

xmp1� xqmdx

This is the conceptual basis for the ensemble classifiers such
as [11]. Those interested in reading more about the use of
multiple classifiers and combining their results can consult
[38], [39], [10], [40], [41], [42].

To make use of the voting, if there are W partitions
then for each w, the subspaces specified by the mutually
exclusive Jw

1 , . . . , J
w
M index sets each having its own clas-

sifier rule based on the estimated class conditional probability
Tw
Jm
pπJm

pxq | cq.
For the voting scenario, when

Tw
Jm
pπJmpx | cqP pcq ¡ Tw

Jm
pπJmpx | kqP pkq, k � c

a vote for class c is counted. So taken over the ensemble
consisting the M index sets in each of W partitions the vote
count for class c is given by

Vc �
W̧

w�1

M̧

m�1

$&
%

1 if Pw
Jm
pπJmpx, cq ¡ Pw

Jm
pπJmpx, kq,

k � c
0 otherwise

Kittler and Alkoot [43] showed that when the error of the
estimates for the class conditional probability for the various
subspaces has fat tails, then the plurality vote method does
better.

In closing this section, we mention the possibility of using
deep learning to perform automatic feature extraction from
images, sequence of images, multiband images and other
forms of spatial data. The automatically extracted features
can be input to the N-tuple subspace classifier. This is ad-
vantageous because the N-tuple classifier can use class prior
probabilities and is able to control misidentification errors by
reserve decisions.

V. SURVEY

In this section we select a group of representative papers
that the original Bledsoe and Browning 1959 paper inspired
and give a short description of their contribution, in the way
of innovations, applications and experimental comparisons of
the accuracy of the N-tuple subspace classifier with other state
of the art classifiers.

Ullmann [44] did experiments to observe how the tuple size
behaves differently with different sizes of training sets. The
task is to recognize hand-printed characters, more specifically
the numerals from 0 to 9, that were written by 650 different
people. Then the papers that the subjects wrote on, were
digitized, centered, size-normalized producing 30 � 22 sized
images for each character. Figure 5 shows the true probability
of correct identification as a function of index set size.

As it can be observed from the results of the experiment, as
the index size increases, depending on the size of the training
set, the accuracy increases, stabilizes and then decreases. The
larger the training set size the higher the accuracy is obtained,
particularly for the larger sized index sets. From Figure 6, the
number of index sets of size 14 to 20 gives the best accuracy
is 264 and above.

In order to use the N-tuple method, real-valued measure-
ments must be transformed to take integer values, the smallest
being zero, so that the integers in the different components
can be used to form an address into memory. In general an
L level quantizer is a monotonically increasing function that
takes in a real number and assigns a non-negative number
from 0 to a maximum integer L� 1. The function that takes

10

Fig. 5. Taken from 5, the figure shows that as the training set size becomes
larger up to 630 measurements, index set sizes between 14 and 20 give the
best accuracy. When the index set sizes go beyond 20, the accuracy decreases.
This experiment was done on a plain, non-weighted version of the N-tuple
subspace classifier and it did not have any flexibility other than allowing the
selection of the size of the index sets for different sizes of the training.

Fig. 6. Shows the experimental results for an N-tuple model with different
numbers of 14-tuples along with the identification for the training and testing
sets of 600 and 50, respectively per class for the same experimental data
shown in Figure 5 .

Fig. 7. Shows Minchinton Cells. As seen from the example preprocessing
elements, M cells sample two indexes from the data, and produce either binary
1 or 0 based on the comparison of point A and B: adapted from [48]

in a quantized measurement tuple and converts it to a memory
address is the kind of function that determines an address in
a multi-dimensional array.

A preprocessing quantization technique that has been used
with the N-tuple technique is called Minchinton Cells. In this
technique, before sending the input vector into the network
there are preprocessing elements called the Minchinton cells
[45]. Minchinton cells act as simplifiers of the data. Each cell
selects 2 random indexes, adjacent or close to each other,
from the input vector and produces a binary 1 if the first
value is greater than the second or a binary 0 otherwise. The
new set of binary 0 or 1 values form the feature set. Also
just like the N-tuple subspace method, the Minchinton cells
can be implemented in hardware as discussed in Mitchell and
Minchinton’s 1993 article [46] see Figure 7. In 1998, Mitchell
and Bishop conducted experiments [47] that provided evidence
that Minchinton cells produce a good quantization.

In the previous section, we mentioned the commercial WiS-
ARD that implemented the N-tuple method. A good discussion
of the WiSARD by Alexsander can be found in [49]. We
just note here that there are also modified versions of the
WiSARD model, where they merge the WiSARD model with a
virtual neuron technique [50], [51]. There is another extension
DRASIW with the capability of producing the frequencies of
seen patterns, prototypes during the training in an internal
data structure called “mental images” [52] [53] [54], WiSC;
extends the learning and the classification capabilities of
WiSARD with the data transformations for numeric/symbolic
data processing discussed in detail in [55], CDNet; a special
version designed by De Gregorio for change detection [56]
and tWiSARD (threshold WiSARD) created by [57] for open
set recognition.

The index sets J1, . . . , JM can be optimized for highest
classification accuracy. Jung et. al. [58] proved that this
problem is NP complete. However, they indicate that one can

11

Fig. 8. Shows the probability of a random collection of index sets producing a
given probability of correct identification for the NIST handwritten character
database. This figure is taken from [63].

design generators that do not take exponential time and get
close to the best answer [59].

One of the many strategies for selecting the index sets uses
a genetic algorithm. Although the idea dates back to 1970,
Cavicchio [60] suggested that genetic algorithms might be
used for the selection of optimum sets for pattern recognition
tasks, this was first proposed by Bishop [61] for the N-tuple
method. In his method, the index set selection technique uses
an evolutionary learning strategy. By the definition of genetic
algorithms, the logic is simple, generate children better than
their parents, or the same logic as survival of the fittest in the
hopes that better tuples will result in generating even better
tuples. If a randomly selected index set gives an undesirable
result compared to the other randomly selected index sets, then
it is discarded, and a new index sets is generated based on the
mutation and crossing over between the index sets.One of the
early experiments using this optimization technique is done by
Badii and Mumford [62] in their speech recognition task.

Each class k P r1,Ks has its own collection Jk of index
sets. M is the number of index sets for each class.

1) For k P r1,Kst
2) Set Jk � H,
3) Do While |Jk| Mt
4) Generate random index sets J1, ..., JM for class k
5) Using the training set, compute the class k scores

for each of these M index sets.
6) Based on the class k score, sort the M index sets

in descending order
7) If ScorepJp1qq is high enough, add Jp1q to Jk

8) u
9) u

Azhar et. al. [63] have an interesting figure in their paper. They
did an experiment with the NIST character database. They
randomly chose 2000 collections each of 140 sized 8 index
sets. For each collection, they determined the probability of
correct identification for the N-tuple subspace classifier. From

this data they are able to graph the probability of a randomly
selected collection of 140 sized 8 index sets producing any
given percentage of correct identification.

This is shown in Figure 8. The correct identification mode
is 81%. The left tail is larger with a minimum correct
identification of about 78%. The smaller right tail shows a
maximum correct identification near 83%. It was undoubtedly
the information of this figure that prompted Azhar et. al. to
design a stochastic search algorithm to find a good performing
collection of index sets. Noteworthy is that they find a different
collection of index sets for each class.

We show here a slightly modified, more effective version,
of their algorithm. Each class k P r1,Ks has its own collection
Jk of index sets. M is the number of index sets for each class.

1) For k P r1,Kst
2) Set Jk � H,
3) Do While |Jk| Mt
4) Generate random index sets J1, ..., JM each of sized

sk for class k
5) Using the training set, compute the class k scores

for each of these M index sets.
6) Based on the class k score, sort the M index sets

in descending order
7) If ScorepJp1qq is high enough, add Jp1q to Jk

8) u
9) u

An alternate approach of generating index sets is the
domain-aware selection of indexes for index set Jm. In this
approach, the index set generation is not totally random but
modified such that some indexes will be picked more and some
certain indexes will be omitted. A domain aware selection
of Jm, [56] [57] pays attention to the dataset properties e.g.
centered, normalized aiming to select indexes that will yield
meaningful tuples as well as aiming to avoid indexes that
create fewer different tuples. For instance, if the input vector
has all same values in some certain indexes for every class,
then it will be useless to include those indexes in the neural
network model. Distinctive indexes are preferred.

Giordano and De Gregorio [64] designed a way for opti-
mizing the index sets. They use a full-evolutionary algorithm
to optimize the selection of the index sets. First, they create
N � M matrices to represent the number M of index sets
and the index set size t as a 2-dimensional array. Then they
apply the steps of evolutionary algorithms. Create a matrix
S, Swapping two indexes from the same index set or between
two index sets. They measure the fitness of the index sets with
the given tuples by calculating the 10-fold cross-validation
accuracy for each combination. After generating initial ma-
trices and measuring their fitness, they apply crossing-over
and mutation. And they check the new fitness of the newly
generated index sets with the given tuples. After calculating
the 10-fold cross-validation accuracy for them, they take the
fittest to the generation of index sets, or they discard it
depending on the accuracy they get.

Roy and Sherman [65] show a correspondence between the
N-tuple subspace classifier and the Φ machine. The Φ machine
consists of two parts: the Φ preprocessor followed by a simple
neural network. The φ preprocessor inputs the pattern tuple

12

px1, . . . , xN and outputs the R tuple pf1pxq, . . . fRpxqq. In
the case of the φ quadratic preprocessor, the output consists of
the original tuple components plus all pairs of products of the
tuple’s N components. If the N-tuple subspace classifier has
M mutually exclusive sized 2 index sets then a full quadratic
preprocessor will have more terms to sum. But the terms of
the N-tuple classifier are more effective because they are class
conditional probabilities. When the index sets are sized s ¡ 2,
the class conditional probabilities of a selected set of s-tuples
could very well be competitive with a s-term Φ preprocessor.
The Φ machine can do statistical approximation which was
adapted by Kamentsky-Liu [66] and Steck [67]. Interestingly,
Jürgen Schürmann [68] used a quadratic Φ preprocessor for
the recognition of letter postal addresses for the German Post
Office. His reader was used for many years in the German
Post Office.

In 1994, Aleksander proposed a hybrid method, that uses
a weighted neural network, and weightless neural network
concepts combined to perform the machine learning tasks.
He aimed to use the advantages of each approach; synaptic
sensitivity of weighted models and the pattern sensitivity of
weightless ones [69]. If a probabilistic model is used, in case
that there are skewed class priors, there is a work by Linneberg
and Joergensen [70] who describe a design algorithm to imple-
ment the cross-validation technique for the N-tuple subspace
method. They proposed a non-complex design strategy that
allows the N-tuple subspace method to perform satisfactorily
even in cases with skewed class priors. In 1999, Jørgensen and
Linneberg [70] discussed the relationship between the Ham-
ming Distance and the class scores for the N-tuple subspace
method. They stated that the class scores can be also calculated
using a Hamming Distance function.

The original 0 � 1 N-tuple subspace classifier, can have a
problem called saturation, when the training set is very large
or when the patterns for each class are widespread. In this
case nearly all the table entries for each class will be binary
1 after some point [71]. For this reason, adding a 1 each time
a table entry is accessed by the training data can be useful.

Grieco et. al. [54] first introduced the bleaching threshold
for the table entries. But instead of using the threshold on the
class conditional probabilities, the use it on the un-normalized
frequency counts.

Tmpu | kq � |tz P r1, Zs | u � πJm
pxzq and cz � ku|

Any table entries that are greater than or equal to this
bleaching threshold b is set to binary 1. If they are less
than this bleaching variable then they are set to binary 0.
By doing this the researchers solve the problem of saturation
that occurs with over-training. The technique finds an optimal
bleaching threshold, since larger thresholds will yield to only
the most frequent sub-patterns present which would create
poor learning.

The method was used and tested by a number of researchers
beginning with Carvalho et. al. [72]. Coutinho et. al. [73] and
França [74] designed DRASiW to improve WiSARD. Then
it was used by Kappaun et. al. [75], and proven effective by
Carneiro [76]. His work indicated that bleaching is a powerful

Fig. 9. A demonstration of bleaching where the class is k, Index set size is
3, bleaching threshold b � 2 and SkT the class score for class T . The grey
addresses are from other training set measurement tuples. The red addresses
are from the pattern on the retina having counts at least as large as the
bleaching threshold. The hashed red address is from the pattern on the retina
but does not pass the bleaching threshold. This figure is adapted from [72].

enhancement that does not negatively impact the classification
ability of the model.

The question then becomes how to find the optimal bleach-
ing threshold since larger thresholds will yield to only the
most frequent sub-patterns present which would create poor
learning. Smaller thresholds will yield to saturation [72].

The optimization procedure starts with setting the bleaching
threshold b to 0 and observe the outcomes for all the tables
that belong to the same class. After this process, some of the
tables will have a 1 while some others have 0 as their output.
Then among those tables whose output is 1, by increasing
b by 1 and observing the outcome of those tables whose
output was 1 with the increased bleaching threshold. At the
end of these iterations, only the most relevant tables will stay.
And we can assign the class by choosing the highest score
only among these remaining tables. We think that it would
have been better to define the bleaching threshold for the
class conditional probabilities rather than the frequency counts
because depending on the prior class probabilities, one class
could have high frequency counts and another low frequency
counts.

As it can be seen in this example [72], shown in Figure 9,
the bleaching threshold b sets the score of Table1 to 0, since
its table entries are less than the bleaching threshold which is
2, and the scores of Table2, Table3, Table4 to 1 since their
entries are greater than or equal to the bleaching value, 2. In
this example, we can observe that the sub-pattern of Table1
is not useful, and the remaining 3 tables are relatively more
useful(with some higher score than Table1).

Let fpTmkpπJmpI, qqqq is the bleaching function for class
k discriminator that consists of M tables and b the bleaching
threshold. Then the function fpTmkpπJm

pI, qqqq for each table
m can be defined as follows

13

fpTmkpπJm
pI, qqqq �

#
1, if TmkppπJmpI, qqqq ¥ b

0, otherwise

Later in 2016, Kappaun et. al. [75] compared different
encoding techniques such as threshold, thermometer encod-
ing, local threshold, Marr-Hildreth filter, and Laplacian filters
[77] using bleaching technique on the mnist data set of the
handwritten numerals [78]. In their work they concluded that
using 32-bit WiSARD model with 1-threshold, is ideal for the
mnist data set, resulting in 94 % accuracy.

Bloom [79] shows the similarity between the data structures
that are likely to be used in the implementation of the weight-
less neural networks and the Bloom filters. Bloom filters are
space-efficient data structures for an Approximate Membership
Query (AMQ) which tests if an element belongs to a given set
or not, with a certain false positive probability. A Bloom filter
consists of an m-bit array and k independent hash functions
that map an element into k-bit array positions [80]. In this
work, the researchers stated that the data structures for the
N-tuple subspace method, are often dictionaries, and hash
tables. And an alternate approach is to use Bloom filters along
with such data structures, hash tables. They created a unified
model called Bloom WiSARD, where they use the advantage
of the Bloom filters in the WiSARD model. They observed a
significant increase in the model’s accuracy compared to plain
WiSARD, and Dictionary WiSARD. Also in 2020, Nazuno,
Nava, Medina used a set of multiple weightless neural net-
works working together to perform the tridimensional pattern
reconstruction [81].

VI. APPLICATIONS AND EXPERIMENTS

In this section we discuss the variety of experiments using
the N-tuple method, on real world data sets. Also from
these experiments we can observe the performance of the
N-tuple subspace classifier compared to the performance of
other competitors. Throughout the years, researchers used
the N-tuple method not only for the classification of hand
printed numerals but also for a wide area of machine learning
tasks, including face/image recognition [15] [82] [83], finger-
print recognition [84] speech recognition [62] [85], change
detection [86], 3D video acceleration [87], automated text
categorization and clustering [88] [89] [90], fault detection
[91], background modeling [16] [92] [93], financial credit
analysis [94], forecasting stock market prices [95] [96] [97],
automatic disease diagnosis using wearable technology [98],
P300-Based Brain-Computer Interface [99], real-time music
tracking [100] robotics [101] [102] [103], observing artificial
consciousness [104] [105] [106], monitoring zoological be-
haviors [107], nonintrusive load monitoring [108], predicting
multi-modal empathy [109], solving an NP-Complete 3-SAT
problem [110], the detection of elementary particles [111],
process mining classification [112], deforestation surveillance
and visual navigation [113], and open set recognition [57]
[114].

Fig. 10. Shows Rohwer and Morciniec’s large set of experimental results
with different classifiers on different data sets. The x-axis is the relative error
rate. The y-axes are designating different data sets. Each of the 24 symbols,
shown in the figure, designate a different classifier type. The red circle is the
N-tuple subspace classifier. A table of the kinds of classifiers and the kinds
of data sets can be found in [115] . The x axis is the relative error rate which
is defined as the error rate divided by the default error rate. The default error
rate is the error rate obtained by random guessing.

Rohwer and Morciniec [115] performed a large series of
experiments on standard pattern recognition databases that
contain real world data sets (European StatLog project). Their
experiments for most real data sets showed that the best results
were achieved with N-tuples of size 8 and the total number
of index sets to be approximately 1000. The experiments
use various classifiers as the competitors of the N-tuple
method, such as k-nearest neighbors, various kinds of decision
trees, radial basis functions, and multi-layer perceptrons. They
thought of the competitors in different groups: 8 different
kinds of discriminators, 6 different methods related to density
estimation and 9 different kinds of decision trees. Figure 10
shows the results of their experiments on 11 different data sets.
The N-tuple subspace classifier was competitive with 7 out of
the 11 experiments.

Rohwer and Morciniec write about these four abnormal
cases. For one of them the training set was way too small
in size. For the others the prior probability of the classes
were way skewed. It is understandable why the skewed priors
would mess up their implementation of the N-tuple subspace
classifier. Their implementation did not use the prior class
probabilities, as a Bayesian would. Later this project used
cross-validation techniques for the N-tuple method [70]

York and Duggan [116] did an experiment on the processing
of tomographic data using weightless neural networks. They
used the plain WiSARD [15] method in their experiments

14

related to image reconstruction, component fraction estima-
tion, and flow regime. Since they used a plain version of the
WiSARD model, the optimization that they implemented was
to test and decide the index set sizes (5,6,10) for each of the
training sets. They also observed how the tuple size selection
shows different results for different training set sizes. Their
average identification accuracy was 89% accuracy.

In 1998, Mitchell and Keating [117], created a combined
neural network model using Aleksander’s WiSARD [15] and
Hopfield Networks, to perform the control task of a simple
mobile robot. In their work, they used an array of Minchinton
Cells for the quantization. They used an algorithm to combine
the neural networks to successfully allow the robot to navigate
back to a position it recognizes within its environment.

In 2002, Azhar and Dimond [118] implemented Alek-
sander’s WiSARD model [15] in a Field Programable Gate
Array (FPGA) for a robotic navigation task. Their results
show that the weightless neural network is perfectly capable
of performing the task of robotics navigation using limited
processor capability and memory size.

In 2003, Yao et. al. [101] adapted the WiSARD model to
another robotics task: the collision avoidance problem. They
used a WiSARD model with a threshold. Their WiSARD
neural network was implemented in a robot with a very modest
microprocessor system as well as a small amount of data
memory (512 bytes). This clearly means that with a low
computational complexity and space complexity, the N-tuple
method has an advantage over the other methods that are
capable of this robotics task. As a result of their experiment
they observed that their neural network was easy to train
and the robot demonstrated the ability to detect obstacles and
navigate within its environment in real time.

In 2004, a group of biologists used the N-tuple subspace
classifier for a protein classification task [119]. They combined
the Hidden Markov Model to the N-tuple subspace method.
The learning time for protein classification was shown to be
substantially faster than the traditional neural network models,
since they were dealing with larger numbers of the input units.
As a result, 7 out of 9 sampled protein families were classified
correctly with an accuracy as high as 100%.

In 2005, De Souto, Ludermir and De Oliveira [120] de-
veloped a weightless neural network by adding hidden neu-
rons (state neurons) and a single output neuron (a feedfor-
ward node) which they called General Single-layer Sequential
Weightless Neural Networks (GSSWNNs). They proved the
weightless neural network model they developed behaves
exactly like Probabilistic Automata.

In 2006, Mpofu used the weightless neural network having
a RAM node for forecasting the stock prices in the market.
prices [95]. The model was created based on the interpretation
of Aleksander’s [15] version of the N-tuple method, and com-
pared results with the Single Exponential Smoothing (SES)
forecasting model. The results showed that on stock data, the
weightless neural network forecasting model gave a smaller
mean squared error of 0.7 whereas the SES forecasting model
gave a mean squared error of 15.4.

A year later in 2007, Oliveira et. al. used a Virtual General-
izing RAM (VG-RAM) network which is a variation of the N-

Tuple subspace classifier for the classification of economic ac-
tivities from free text descriptions [121]. For the free text, they
used the Vector Space Model (VSM) and Ludermir’s version
of the weightless neural network [7]. They compared these two
models, and their results for correct classification were 63.36%
and 67.03% for VS and VG-RAM WNN respectively.

In 2008, Arguelles-Cruz et.al. used a modified version of
a weightless neural network called the Alpha-Beta Weightless
Neural Networks [122]. They developed their own learning
algorithm to work with the data set. Although their results
were approximately as high as other state-of-art classifiers
such as RAMP, SVM, kNN, MLP, RM, C4.5, and C4.5+m,
their model could not do better in terms of accuracy. However,
they stated this trade-off in accuracy was worth it because the
difference in accuracy was small and the training was quicker.
Finally the on-line execution, whether by computer or special
hardware was quick.

In 2008, DeSouza [123] conducted face recognition exper-
iments with the AR Face Database and the Extended Yale
Face Database B. They used the Minchinton cells for data
quantization. They compared the N-tuple subspace classifier,
which they called a VG-Ram weightless neural network, to
other classifiers such as PCA, NMF, LNMF, LEM, WER, and
ARG. In some of their experiments they used local features
and in other experiments they used more global features. Their
results showed the strength of the N-tuple subspace classifier
in an image classification, producing the highest accuracy
compared to all their other classifiers both with the local
features and the global features.

In 2010 Carneiro et. al. [124] introduced the WiSARD form
of the N-tuple classifier to tag the Portuguese language. Then
in 2015, Carneiro et. al. [125] extended the tagger for multiple
languages including Mandarin Chinese, Portuguese, Japanese,
Italian, English, German, Russian, and Turkish. They called
their tagger The Multilingual Weightless Artificial Neural
Network tagger.

For optimization, they used the b-bleaching technique [54]
[72]. Their accuracy was compared to other state of art speech
taggers such as the CRF and TNT-Tagger. The tagger using
the N-tuple subspace classifier outperformed or was just as
good as CRF or TNT. The standard deviation on its accuracy
was .25%. In comparison, the standard deviation accuracy of
the TNT tagger was 2.25% and standard deviation of the
accuracy of the CRF ranged as low as 1.0% in English to
as high as 3.6% in Italian. They also compared the speed of
the learning and the tagging with the other taggers. The long
cross-validation process of CRF was beaten by the speed of
the N-tuple classifier. Although the CRF tagging was slightly
faster, the N-tuple classifier’s learning was much faster.

De Oliveira and Wilson [126] is the first paper mentioning
a quantum computing approach for the weightless neural
network nodes. In polynomial time, they solved the 3-SAT
problem, which is an NP-Complete problem, using the N-
tuple subspace classifier with a quantum computer with qRAM
nodes. The result and future work section of their paper gave
some promising hope for other NP-Complete problems to be
solved in polynomial time.

Cardoso et. al. [114] [57] extended the application area of

15

the N-tuple subspace classifier by applying it to the open set
recognition task and data stream clustering [127]. In their work
of data stream clustering they used a special algorithm of
time stamps presenting extra information about table entries
such as every time an address is recorded, its reference is
updated as the most recently used. They compared their
interpretation of WiSARD; WCDS to several conventional
clustering techniques such as k-means algorithm and HDB-
SCAN. Their results show that both in synthetic dataset, and
Complex8 dataset, their WiSARD model gave better results
than most of the competitors. Open set recognition is a term
given when the training set does not include all classes that
might be encountered and the classifier must recognize that
a measurement tuple that it is to assign a class does not
belong to any of the classes it has been trained on. Open
set recognition is a term given when the training set does not
include all classes that might be encountered and the classifier
must recognize that a measurement tuple that it is to assign a
class does not belong to any of the classes it has been trained
on. Cardoso et. al. write

Any observation is labeled as the class it best fits
if the uncertainty of this prediction is considered
acceptable; otherwise, the observation is labeled as
belonging to an unknown class. [114]

The classical pattern recognition world would call the un-
known class option a reserved decision or a reject possibility.

They used a modified version of the WiSARD classifier,
and called it tWiSARD (threshold WiSARD). Cardoso et. al.
[57] compared their model with other state-of-art classifiers
such as Support Vector Machines, Gaussian Naive Bayes, as
well as the regular WiSARD model. For most of the cases
they examined, tWiSARD had the better performance.

In 2020, Gryak et. al. [128] worked on a cryptography
problem. The competing classifiers were decision trees and
random forest classifiers [11]. They set up the N-tuple clas-
sifier to solve the conjugacy decision problem for a pair of
elements from some six different finitely presented non free
infinite groups. This problem is known to be undecidable. They
used a greedy approach to select the M index sets of the
same size and they evaluated the quality of index sets that are
chosen with an accuracy threshold, that was initially 60%.
Above 97% was considered as acceptable. They generated
three data sets for each group, three non-virtually nilpotent
groups, two non-polycyclic metabelian groups, and one a non-
solvable linear group. Each of the data sets consists of 20, 000
geodesic word pairs, 10, 000 of which represented a pair of
conjugate elements, while the other 10,000 represented pairs
of non- conjugate elements. The N-tuple classifier performed
better on five of the six groups. The highest accuracy were
98.49%, for the decision trees with entropy and depth limit;
99.41% for the random forest with 200 trees; and 99.81% for
the N-tuple subspace classifier using 50 index sets each of size
4.

Ferreira [129], performed experiments to improve the time
and the space complexity of the WiSARD model. Using hash
tables, instead of indexed lookup tables thus reducing the
number of discriminators for each of the classes, they Their
experiments were conducted on the mnnist data set [78]. The

results did not show a radical difference in accuracy from the
traditional WiSARD model. The accuracy for the traditional
WiSARD model on the same data set is approximately 93%
and the WiSARD using hash tables on the same data set is
92% for the largest sized hash table they used in their exper-
iments. Their approach presented an insight about reducing
the time and the memory requirement. Their experimental
results showed a great decrease in memory usage with a small
identification accuracy trade-off.

In 1991, Specht [130] introduced the neural network pos-
sibility for performing a kernel regression. In 1996, Kolcz
and Allinson [14] adapted the N-tuple subspace classifier
structure for the regression task. They experimentally showed
the N-tuple neural network (NTNN) general regression model
produced less error than a Gaussian kernel regression. In 2019
Filho et. al. [131] used the N-tuple Regression network to
predict palm oil production. In 2020, Filho et. al. [132] created
a software library including ClusWiSARD which allows the
same class to have more than one discriminator, Regression
WiSARD for prediction tasks, and ClusRegression which sepa-
rates measurement tuples that are not sufficiently similar. Both
Regression WiSARD and ClusRegression WiSARD models
were adapted from Kolcz and Allinson’s N-tuple Regression
weightless neural model. Their results showed that the two
modified versions of the WiSARD model they used are very
competitive with the state-of-the-art methods, while being
four orders of magnitude faster during the training phase
[133]. In addition, they tested their regression models on
three classic regression datasets, also presenting competitive
performance with respect to other models often used in this
type of regression tasks [134] [109].

In 2020, another quantum computing approach model [135]
of the weightless neural networks was used and tested on
different public benchmark data sets. The model used a
customized version of a probabilistic quantum memory nodes
PQN to perform pattern classification.

VII. CONCLUSION AND FUTURE WORK

We have explained the mechanism of the N-tuple subspace
classifier in a notation which is unambiguous and complete.
We have suggested a number of extensions that should be
tested and have potential for making the N-tuple classifier
more accurate, including more generalized class conditional
probability assumptions and related these to the graphical
models. We discussed the sum rule of combining and product
rule of combining the outputs of the subspace classifiers. We
surveyed a selection of the papers that were inspired by the
Bledsoe Browning 1959 paper and had some innovation. Then
we surveyed a selection of application papers using the N-tuple
subspace classifier. Our conclusion is that the N-tuple subspace
classifier should be considered as being in the group of state
of the art classifiers. It trades off more expensive computation
to cheaper large memory lookup. It can easily be adapted
to a parallel computing environment where there would be
relatively little communication required between processors.

Our planned future work for the N-tuple subspace classifier
will be to use simultaneous perturbation stochastic approxima-
tion (SPSA) for optimizing the Tmk tables [136]. The SPSA

16

algorithm has been successfully applied to an optimization in
various situations having large numbers of variables and an
objective function that does not have an analytic form, but
which can be evaluated for any value of its arguments. The
method is faster than gradient search and does not need to
compute the Hessian matrix.

With the work of de Oliveira and Wilson Rosa [126] weight-
less neural networks obtained a popularity for another reason:
the possibility of being implemented in quantum computers as
described in papers such as [74] [137] [138] [139].

There will undoubtedly be quantum extensions to the N-
tuple subspace classifier using q-bits [140] [141], instead of
classical Boolean neurons. The recent advances in quantum
computing are very likely to affect the interpretation of the
N-tuple subspace method.

REFERENCES

[1] M. Ballantyne, R. Boyer, and L. Hines, “Woody Bledsoe His
Life and Legacy,” AI Magazine, vol. 17, no. 1, pp. 7–
20, 1996. [Online]. Available: https://www.cs.utexas.edu/users/boyer/
bledsoe-memorial-resolution.pdf

[2] W. W. Bledsoe and I. Browning, “Pattern recognition and reading by
machine,” in Eastern Joint Comptuer Conference. ACM and IEEE,
December 1959, pp. 225–232.

[3] J. Ullmann, “Reduction of the storage requirements of bledsoe and
browning’s n-tuple method of pattern recognition,” Pattern Recognition,
vol. 3, pp. 297–306, 1971.

[4] J. Austin, “A review of ram based neural networks,” in Fourth Interna-
tional Conference on Micro-electronis for Neural Networks and Fuzzy
Systems. IEEE, 1994, pp. 58–66.

[5] ——, RAM-Based Neural Networks. USA: World Scientific Publishing
Co., Inc., 1998, vol. 9.

[6] G. Tattersall, S. Foster, and P. Linford, “Single layer look-up percep-
trons,” in 1989 First IEE International Conference on Artificial Neural
Networks, vol. 313. IET, 1989, pp. 148–152.

[7] T. Ludermir, A. de Carvalho, A. Braga, and M. Souto, “Weightless
neural models: A review of current and past works,” Neural Computing
Surveys, vol. 2, pp. 41–61, 01 1999.

[8] R. M. Haralick, “Dependence,” Pattern Recognition, vol. 124, pp. 2–20,
june 2019.

[9] ——, “The table look-up rule,” Communications in Statistics-Theory
and Methods, vol. 5, no. 12, pp. 1163–1191, 1976.

[10] T. K. Ho, J. Hull, and S.N.Srihari, “Decision combination in multiple
classifier systems,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 16, no. 3, pp. 66–75, 1994.

[11] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 20, no. 8, pp. 832–844, 1998.

[12] J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining classifiers,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 3, pp. 226–239, 1998.

[13] N. Allinson and A. Kolcz, “A principled approach to n-tuple recognition
systems,” in IEE Colloquium Pattern Recognition. IET, 1997, pp. 2/1–
2/10.

[14] A. Kolcz and N. M. Allinson, “N-tuple regression network,” Neural
networks : the official journal of the International Neural Network
Society, vol. 9 5, pp. 855–869, 1996.

[15] I. Aleksander, W. Thomas, and P. Bowden, “Wisard a radical step
forward in image recognition,” Sensor review, vol. 4, no. 3, pp. 120–
124, 1984.

[16] M. De Gregorio and M. Giordano, “Background modeling by weight-
less neural networks,” in International Conference on Image Analysis
and Processing. Springer, 2015, pp. 493–501.

[17] W. Highleyman and L. Kamentsky, “Comments on a character recogni-
tions method of bledsoe and browning,” IRE Transactions on Electronic
Computers, vol. EC-10, no. 2, p. 263, 1960.

[18] W. H. Highleyman, “An analog method for character recognition,” IRE
Transactions on Electronic Computers, vol. EC-10, no. 3, pp. 502–512,
1961.

[19] W. Bledsoe, “Further results on the n-tuple pattern recognition method,”
IRE Transactions on Electronic Computers, vol. EC-10, no. 1, pp. 96–
96, 1961.

[20] W. Bledsoe, J. Bomba, I. Browning, R.J.Evey, R. Kirsch, R. Mattson,
M. Minsky, U.Neisser, and O. Selfridge, “Discussion of problems in
pattern recognition,” in Eastern Joint Computer Conference. ACM
and IEEE, December 1959, pp. 233–237.

[21] M. Minsky, “Steps toward artificial intelligence,” Proceedings of the
IRE, vol. 49, no. 1, pp. 8–30, 1961.

[22] W. Bledsoe and C. Bisson, “Improved memory matrices for the n-
tuple pattern recognition method,” IRE Transactions on Electronic
Computers, vol. EC-11, no. 3, pp. 414–415, 1962.

[23] P. Lewis, “Approximating probability distributions to reduce storage
requirements,” Information and Control, vol. 2, no. 3, pp. 214 –
225, 1959. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0019995859902074

[24] S. Kullback and R. Leibler, “On information adn sufficiency,” Annals
Of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[25] J. Shore and R. Johnson, “Axiomatic derivation of the principle of
maximum entropy and the principle of minimum cross-entropy,” IEEE
Transactions on Information Theory, vol. IT-26, pp. 26–37, 1980.

[26] S. Kullback, Information Theory and Statistics. John Wilesy and Sons,
1959.

[27] S. Lauritzen, Graphical Models. Clarendon Press, 1997.
[28] D. Koller and N. Friedman, Probabilistic Graphical Models. MIT

Press, 2009.
[29] J. Whitaker, Graphical Models in Applied Multivariate Statistics. John

Wiley, 1990.
[30] C. Chow and C. Liu, “Approximating discrete probbility distributions

with dependence trees,” IEEE Transactions on Information Theory,
vol. 14, no. 3, pp. 462–467, 1968.

[31] S. Wong and F. Poon, “Comments on approximating discrete probabil-
ity distributions with dependence trees,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 11, no. 3, pp. 333–335, 1989.

[32] J. Kruskal, “On the shortest spanning subtree of a graph and the trav-
eling salesman problem,” Proceedings of the American Mathematical
Society, vol. 7, pp. 48–50, 1956.

[33] F. Malvestuto, “Existence of extnesions and product extensions for
discrete probability distributions,” Discrete Mathematics, vol. 69, pp.
61–77, 1988.

[34] P. Spirtes, C. Blymour, and R. Sheines, Causation, Prediction, and
Search. Springer-Verlag, 1993, vol. 81.

[35] T. B. Berrett, Y. Wang, R. F. Barber, and R. Samworth, “The conditional
permutation test for independence while controlling for confounders,”
Journal Royal Statisical Society B, vol. 82, pp. 175–197, 2020.

[36] T.-M. Huang, “Testing conditional independence using maximal non-
linear conditional correlation,” The Annals of Statistics, vol. 38, no. 4,
pp. 2047–2091, 2020.

[37] P. Boland, “Majority systems and the condorcet jury theorem,” Statis-
tician, vol. 38, pp. 181–189, 1989.

[38] H. Peng, C. Lin, L. Luo, and Q. Zhou, “Accuracy of classifier combin-
ing based on majority voting,” in IEEE International Conference on
Control and Automation, 2007, pp. 2654–2658.

[39] L. Xu, A. Kryzak, and C. Suen, “Methods of combining multiple
classifiers and their application to handrwriting recognition,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 22, pp. 418–435,
1992.

[40] A. Narasimhamurthy, “Theoretical bounds of majority voting perfor-
mance for a binary a classification problem,” IEEE Transactions on
Pattern Analysis and machine Intelligence, vol. 27, no. 12, pp. 188–
1995, 2005.

[41] L.I.Kuncheva, C.J.Whitaker, C. Shipp, and R. Duin, “Limits on the
majority vote accuracy in classifier fusion,” Pattern Analysis and
Applications, vol. 6, no. 1, pp. 22–31, 2003.

[42] L. Lam and C. Suen, “Application of majority voting to pattern
recognition,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 27, no. 5, pp. 553–568, 1997.

[43] J. Kittler and F. Alkoot, “Sum versus vote fusion in multiple classifier
systems,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 25, no. 1, pp. 110–115, 2003.

[44] J. R. Ullmann, “Experiments with the n-tuple method of pattern
recognition,” IEEE Transactions on computers, vol. 100, no. 12, pp.
1135–1137, 1969.

[45] P. Minchinton, J. Bishop, and R. Mitchell, “The minchinton cell-
analogue input to the n-tuple net,” The Department of Cybernetics,
The University of Reading, UK, 1989.

17

[46] R. Mitchell, P. Minchinton, J. Bishop, J. Day, J. Hawker, and S. Box,
“Modular hardware weightless neural networks,” in Proc. Weightless
Neural Networks Workshop, vol. 93, 1993, pp. 123–128.

[47] R. Mitchell, J. Bishop, S. Box, and J. Hawker, “Comparison of methods
for processing grey level data in weightless networks,” in Proc. of
Weightless Neural Network Workshop WNNW95, Kent at Canterbury,
UK, 1995, pp. 76–81.

[48] K. De Meyer, “Foundations of stochastic diffusion search,” Ph.D.
dissertation, University of Reading, 2004.

[49] I. Alexsander, An Introduction to Neural Computing. Chapman and
Hall, 1990.

[50] S. Vitabile, V. Conti, F. Gennaro, and F. Sorbello, “Efficient mlp digital
implementation on fpga,” in 8th Euromicro Conference on Digital
System Design (DSD’05). IEEE, 2005, pp. 218–222.

[51] I. Aleksander and W.-K. Kan, A Probabilistic Logic Neuron Network
for Associative Learning. Cambridge, MA, USA: MIT Press, 1989,
p. 156–171.

[52] E. Burattini, M. De Gregorio, and G. Tamburrini, “Mental imagery
in explanations of visual object classification,” in Proceedings. Vol.1.
Sixth Brazilian Symposium on Neural Networks, 2000, pp. 137–143.

[53] B. P. Grieco, P. M. Lima, M. De Gregorio, and F. M. França,
“Extracting fuzzy rules from “mental” images generated by modified
wisard perceptrons,” in Proc. E, vol. 26, 2008, pp. 101–773.

[54] ——, “Producing pattern examples from “mental” images,” Neurocom-
puting, vol. 73, no. 7-9, pp. 1057–1064, 2010.

[55] M. De Gregorio and M. Giordano, “The wisard classifier,” ESANN
2016 - 24th European Symposium on Artificial Neural Networks, pp.
447–452, 2016.

[56] M. D. Gregorio and M. Giordano, “A wisard-based approach to cdnet,”
in 2013 BRICS Congress on Computational Intelligence and 11th
Brazilian Congress on Computational Intelligence, 2013, pp. 172–177.

[57] D. O. Cardoso, J. Gama, and F. M. França, “Weightless neural networks
for open set recognition,” Machine Learning, vol. 106, no. 9-10, pp.
1547–1567, 2017.

[58] D. Jung, M. Krishnamoorthy, G. Nagy, and A. Shapira, “N-tuple
features of ocr revisited,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 18, no. 7, pp. 734–745, 1996.

[59] A. Shapira, “Experiments on the generation of distinguishing n-tuples
for selected character dichotomies,” Rensselaer Polytchnic Institute,
Tech. Rep. ECSE-OCR-18DEC95, 1995.

[60] D. Cavicchio, Adaptive search using simulated evolution. Computer
Science, University of Michigan, 1970. [Online]. Available: https:
//books.google.com/books?id=DFXoHAAACAAJ

[61] J. Bishop, A. Crowe, P. Michinton, and R. Mitchell, “Evolutionary
learning to optimise mapping in n-tuple networks,” in IEE Colloquium
on Machine Learning. IET, 1990, pp. 3–1.

[62] A. Badii, M. Binstead, A. J. Jones, T. Stonham, and C. L. Valenzuela,
“10 applications of n-tuple sampling and genetic algorithms to speech
recognition,” Neural Computing Architectures: The design of brain-like
machines, p. 172, 1989.

[63] H. B. Azhar and K. Dimond, “A stochastic search algorithm to optimize
an n-tuple classifier by selecting its inputs,” in International Conference
Image Analysis and Recognition. Springer, 2004, pp. 556–563.

[64] M. Giordano and M. De Gregorio, “An evolutionary approach for
optimizing weightless neural networks.” in ESANN, 2019.

[65] R. J. Roy and J. Sherman, “Two viewpoints of k-tuple pattern recogni-
tion,” IEEE Transactions on Systems Science and Cybernetics, vol. 3,
no. 2, pp. 117–120, 1967.

[66] L. Kamentsky and C. Liu, “A theoretical and experimental study of a
model for pattern recognition,” in Computer and Information Sciences.
Spartan, 1964, pp. 194–218.

[67] G. P. Steck, “Stochastic model for the browning-bledsoe pattern recog-
nition scheme,” IRE Transactions on Electronic Computers, no. 2, pp.
274–282, 1962.

[68] J. Schürmann, “A multifont word recognition system for postal address
reading,” IEEE Transactions on Computers, vol. C-27, no. 5, pp. 721–
732, 1978.

[69] I. Aleksander, T. Clarke, and A. Braga, “Binary neural systems:
combining weighted and weightless properties,” Intelligent Systems
Engineering, vol. 3, no. 4, pp. 211–221, 1994.

[70] C. Linneberg and T. M. Joergensen, “Cross-validation techniques
for n-tuple-based neural networks,” in Ninth Workshop on Virtual
Intelligence/Dynamic Neural Networks, vol. SPIE 3728. International
Society for Optics and Photonics, 1999, pp. 266–277.

[71] E. C. D. B. C. Filho, M. C. Fairhurst, and D. L. Bisset, “Analysis of
saturation problem in ram-based neural networks,” Electronics Letters,
vol. 28, no. 4, pp. 345–347, 1992.

[72] D. S. Carvalho, H. C. Carneiro, F. M. França, and P. M. Lima, “B-
bleaching: Agile overtraining avoidance in the wisard weightless neural
classifier.” in ESANN, 2013.

[73] P. Coutinho, H. C. Carneiro, D. S. Carvalho, and F. M. França,
“Extracting rules from drasiw’s” mental images”.” in ESANN, 2014.

[74] F. França, M. De Gregorio, P. Lima, and W. De Oliveira, “Advances
in weightless neural systems,” in European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning,
2014, pp. 497–504.

[75] A. Kappaun, K. Camargo, F. Rangel, F. Firmino, P. M. V. Lima, and
J. Oliveira, “Evaluating binary encoding techniques for wisard,” in 2016
5th Brazilian Conference on Intelligent Systems (BRACIS). IEEE,
2016, pp. 103–108.

[76] H. C. C. Carneiro, C. E. Pedreira, F. M. G. França, and P. M. V. Lima,
“The exact vc dimension of the wisard n-tuple classifier,” Neural
Computation, vol. 31, no. 1, pp. 176–207, 2019, pMID: 30462587.
[Online]. Available: https://doi.org/10.1162/neco a 01149

[77] R. Szeliski, Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[78] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[79] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426,
1970.

[80] L. Santiago, L. Verona, F. Rangel, F. Firmino, D. S. Menasché,
W. Caarls, M. Breternitz Jr, S. Kundu, P. M. Lima, and F. M. França,
“Weightless neural networks as memory segmented bloom filters,”
Neurocomputing, 2020.

[81] J. F. Nazuno, A. V. Nava, and E. V. Medina, “Tridimensional pattern
reconstruction by using weightless artificial neural networks,” in Inter-
national Workshop on Neural Networks Applied to Control and Image
Processing, November 7-10 1994.

[82] T. J. Stonham, Practical Face Recognition and Verification with
Wisard. Dordrecht: Martinas Nijhoff Netherlands, 1986, pp. 426–441.
[Online]. Available: https://doi.org/10.1007/978-94-009-4420-6 44

[83] K. M. Khaki, “Weightless neural networks for face recognition,” Ph.D.
dissertation, Brunel University School of Engineering and Design PhD
Theses, 2013.

[84] V. Conti, L. Rundo, C. Militello, G. Mauri, and S. Vitabile, “Resource-
efficient hardware implementation of a neural-based node for automatic
fingerprint classification.” J. Wirel. Mob. Networks Ubiquitous Comput.
Dependable Appl., vol. 8, no. 4, pp. 19–36, 2017.

[85] M. Sixsmith, “Speech recognition using n-tuple techniques.” British
Telecom technology journal, vol. 8, pp. 50–60, 1990.

[86] M. De Gregorio and M. Giordano, “Change detection with weightless
neural networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2014, pp. 403–407.

[87] C. B. Do Prado, F. M. Franca, E. Costa, and L. Vasconcelos, “A
new intelligent systems approach to 3d animation in television,” in
Proceedings of the 6th ACM international conference on Image and
video retrieval, 2007, pp. 117–119.

[88] C. B. Do Prado, F. M. França, R. Diacovo, and P. M. Lima, “The
influence of order on a large bag of words,” in 2008 Eighth Inter-
national Conference on Intelligent Systems Design and Applications,
vol. 1. IEEE, 2008, pp. 432–436.

[89] A. F. De Souza, F. Pedroni, E. Oliveira, P. M. Ciarelli, W. F. Henrique,
L. Veronese, and C. Badue, “Automated multi-label text categorization
with vg-ram weightless neural networks,” Neurocomputing, vol. 72, no.
10-12, pp. 2209–2217, 2009.

[90] C. S. Gonçalves, F. T. Pedroni, and A. F. De Souza, “Multi-label text
classification using vg-ram weightless neural networks,” in 2008 10th
Brazilian Symposium on Neural Networks, 2008, pp. 105–110.

[91] J. C. M. Oliveira, K. V. Pontes, I. Sartori, and M. Embiruçu, “Fault
detection and diagnosis in dynamic systems using weightless neural
networks,” Expert Systems with Applications, vol. 84, pp. 200–219,
2017.

[92] M. De Gregorio and M. Giordano, “Cwisardh �: Background detection
in rgbd videos by learning of weightless neural networks,” in Interna-
tional Conference on Image Analysis and Processing. Springer, 2017,
pp. 242–253.

[93] ——, “Background estimation by weightless neural networks,” Pattern
Recognition Letters, vol. 96, pp. 55–65, 2017.

[94] D. O. Cardoso, D. S. Carvalho, D. S. Alves, D. F. Souza, H. C.
Carneiro, C. E. Pedreira, P. M. Lima, and F. M. França, “Financial
credit analysis via a clustering weightless neural classifier,” Neuro-
computing, vol. 183, pp. 70–78, 2016.

18

[95] N. Mpofu, “Forecasting stock prices using a weightless neural net-
work,” Journal of Sustainable Development in Africa, vol. 8, no. 1, pp.
115–119, 2006.

[96] J. Alhassan and S. Misra, “Using a weightless neural network to
forecast stock prices: A case study of nigerian stock exchange,”
Scientific Research and Essays, vol. 6, no. 14, pp. 2934–2940, 2011.

[97] A. F. De Souza, F. D. Freitas, and A. G. C. de Almeida, “High
performance prediction of stock returns with vg-ram weightless neural
networks,” in 2010 IEEE Workshop on High Performance Computa-
tional Finance. IEEE, 2010, pp. 1–8.

[98] R. Cheruku, D. R. Edla, V. Kuppili, R. Dharavath, and N. R. Beechu,
“Automatic disease diagnosis using optimised weightless neural net-
works for low-power wearable devices,” Healthcare technology letters,
vol. 4, no. 4, pp. 122–128, 2017.

[99] M. Simões, C. Amaral, F. França, P. Carvalho, and M. Castelo-Branco,
“Applying weightless neural networks to a p300-based brain-computer
interface,” in World Congress on Medical Physics and Biomedical
Engineering 2018, L. Lhotska, L. Sukupova, I. Lacković, and G. S.
Ibbott, Eds. Singapore: Springer Singapore, 2019, pp. 113–117.

[100] D. F. de Souza, F. M. França, and P. M. Lima, “Real-time music track-
ing based on a weightless neural network,” in 2015 Ninth International
Conference on Complex, Intelligent, and Software Intensive Systems.
IEEE, 2015, pp. 64–69.

[101] Q. Yao, D. Beetner, D. C. Wunsch, and B. Osterloh, “A ram-based
neural network for collision avoidance in a mobile robot,” in Proceed-
ings of the International Joint Conference on Neural Networks, 2003.,
vol. 4. IEEE, 2003, pp. 3157–3160.

[102] P. Coraggio and M. De Gregorio, “Wisard and nsp for robot global lo-
calization,” in International Work-Conference on the Interplay Between
Natural and Artificial Computation. Springer, 2007, pp. 449–458.

[103] M. Staffa, M. Giordano, and F. Ficuciello, “A wisard network approach
for a bci-based robotic prosthetic control,” International Journal of
Social Robotics, vol. 12, no. 3, pp. 749–764, 2020.

[104] I. Aleksander, “Capturing consciousness in neural systems,” Artificial
Neural Networks, 2. Proc. ICANN, vol. 92, pp. 17–22, 1992.

[105] ——, The world in my mind, my mind in the world. Andrews UK
Limited, 2013.

[106] I. Aleksander, M. De Gregorio, F. M. G. França, P. M. V. Lima, and
H. Morton, “A brief introduction to weightless neural systems.” in
ESANN. Citeseer, 2009, pp. 299–305.

[107] D. Chan, S. Hockaday, R. D. Tillett, and L. G. Ross, “Factors affecting
the training of a wisard classifier for monitoring fish underwater.” in
BMVC. Citeseer, 1999, pp. 1–12.

[108] G. C. De Lello, J. F. Caldeira, M. Aredes, F. M. França, and P. M.
Lima, “Weightless neural networks applied to nonintrusive load moni-
toring,” in 2020 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2020, pp. 844–851.

[109] L. A. Lusquino Filho, L. F. Oliveira, H. C. Carneiro, G. P. Guarisa,
A. Lima Filho, F. M. França, and P. M. Lima, “A weightless regression
system for predicting multi-modal empathy,” in 2020 15th IEEE
International Conference on Automatic Face and Gesture Recognition
(FG 2020)(FG), 2020, pp. 554–558.

[110] F. M. de Paula Neto, T. B. Ludermir, W. R. de Oliveira, and A. J.
da Silva, “Solving np-complete problems using quantum weightless
neuron nodes,” in 2015 Brazilian Conference on Intelligent Systems
(BRACIS). IEEE, 2015, pp. 258–263.

[111] P. M. Xavier, M. De Gregorio, F. M. França, and P. M. Lima, “Detection
of elementary particles with the wisard n-tuple classifier,” in ESANN
2020 proceedings, European Symposium on Artificial Neural Networks,
Computational Intelligenceand Machine Learning. i6doc.com, 2020,
pp. 643–648.

[112] R. G. Barbastefano, M. C. Lippi, and D. Carvalho, “Process min-
ing classification with a weightless neural network,” arXiv preprint
arXiv:2009.12416, 2020.

[113] V. A. Torres, B. R. Jaimes, E. S. Ribeiro, M. T. Braga, E. H.
Shiguemori, H. F. Velho, L. C. Torres, and A. P. Braga, “Combined
weightless neural network fpga architecture for deforestation surveil-
lance and visual navigation of uavs,” Engineering Applications of
Artificial Intelligence, vol. 87, p. 103227, 2020.

[114] D. Cardoso, F. França, and J. Gama, “A bounded neural network for
open set recognition,” in International Joint Conference on Neural
Networks, 07 2015, pp. 1–7.

[115] R. Rohwer and M. Morciniec, “The theoretical and experimental status
of the n-tuple classifier,” Neural Networks, vol. 11, no. 1, pp. 1–14,
1998.

[116] T. York and P. Duggan, “Processing of tomographic data using weight-
less neural networks,” Journal of Intelligent Systems, vol. 7, no. 3-4,
pp. 349–366, 1997.

[117] R. J. Mitchell and D. A. Keating, “Neural network control of a simple
mobile robot,” in Concepts for Neural Networks. Springer, 1998, pp.
95–107.

[118] M. H. B. Azhar and K. R. Dimond, “Design of an fpga based adaptive
neural controller for intelligent robot navigation,” in Proceedings Eu-
romicro Symposium on Digital System Design. Architectures, Methods
and Tools. IEEE, 2002, pp. 283–290.

[119] M. C. W. Keat, R. Abdullah, R. A. Salam, and A. A. Latif, “Weight-
less neural network array for protein classification,” in International
Conference on Parallel and Distributed Computing: Applications and
Technologies. Springer, 2004, pp. 168–171.

[120] M. C. P. de Souto, T. B. Ludermir, and W. R. de Oliveira, “Equivalence
between ram-based neural networks and probabilistic automata,” IEEE
transactions on neural networks, vol. 16, no. 4, pp. 996–999, 2005.

[121] E. Oliveira, P. M. Ciarelli, W. F. Henrique, L. Veronese, F. Pedroni,
and A. Souza, “Intelligent classification of economic activities from
free text descriptions,” in V Workshop em Tecnologia da Informaçao e
da Linguagem Humana-TIL, 2007.

[122] A. J. Arguelles-Cruz, I. López-Yáñez, M. Aldape-Pérez, and N. Conde-
Gaxiola, “Alpha-beta weightless neural networks,” in Iberoamerican
Congress on Pattern Recognition. Springer, 2008, pp. 496–503.

[123] A. De Souza, C. Badue, F. Pedroni, E. Oliveira, S. Dias, H. Oliveira,
and S. F. de Souza, “Face recognition with vg-ram weightless neural
networks,” in ICANN Lecture Notes in Computer Science, vol. Springer
Lecture Notes in Computer Science 5163, 09 2008, pp. 951–960.

[124] H. C. Carneiro, F. M. França, and P. M. Lima, “Wann-tagger-a weight-
less artificial neural network tagger for the portuguese language,” in
International Conference on Neural Computation, vol. 2. SciTePress,
2010, pp. 330–335.

[125] ——, “Multilingual part-of-speech tagging with weightless neural
networks,” Neural Networks, vol. 66, pp. 11–21, 2015.

[126] W. R. de Oliveira, “Quantum ram based neural netoworks.” in ESANN,
vol. 9, 2009, pp. 331–336.

[127] D. O. Cardoso, F. M. França, and J. Gama, “Wcds: A two-phase
weightless neural system for data stream clustering,” New Generation
Computing, vol. 35, no. 4, pp. 391–416, 2017.

[128] J. Gryak, R. M. Haralick, and D. Kahrobaei, “Solving the conjugacy
decision problem via machine learning,” pp. 2–20, 2020.

[129] V. C. Ferreira, A. S. Nery, L. A. Marzulo, L. Santiago, D. Souza, B. F.
Goldstein, F. M. França, and V. Alves, “A feasible fpga weightless
neural accelerator,” in 2019 IEEE International Symposium on Circuits
and Systems (ISCAS). IEEE, 2019, pp. 1–5.

[130] D. F. Specht, “A genral regression neural network,” IEEE Transactions
on Neural Networks, vol. 2, no. 6, pp. 568–576, 1991.

[131] L. L. Filho, L. F. R. Oliveira, A. L. Filho, G. P. Guarisa, P. Lima, and
F. M. G. França, “Prediction of palm oil production with an enhanced
n-tuple regression network,” in ESANN, 2019.

[132] A. L. Filho, G. P. Guarisa, L. F. Oliveira, F. M. Franca, P. Lima
et al., “wisardpkg–a library for wisard-based models,” arXiv preprint
arXiv:2005.00887, 2020.

[133] L. A. Lusquino Filho, L. F. Oliveira, A. Lima Filho, G. P. Guarisa,
L. M. Felix, P. M. Lima, and F. M. França, “Extending the weightless
wisard classifier for regression,” Neurocomputing, 2020.

[134] R. N. Rocha, L. Leopoldo Filho, M. Aredes, F. M. França, and P. M.
Lima, “Regression wisard application of controller on dc statcom
converter under fault conditions,” in 2020 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). IEEE,
2020, pp. 860–867.

[135] R. S. Sousa, P. G. dos Santos, T. M. Veras, W. R. de Oliveira, and A. J.
da Silva, “Parametric probabilistic quantum memory,” Neurocomputing,
2020.

[136] J. C. Spall, “Simultaneous perturbation stochastic approximation,”
Introduction to stochastic search and optimization: Estimation, sim-
ulation, and control, pp. 176–207, 2003.

[137] A. J. da Silva, W. R. de Oliveira, and T. B. Ludermir, “Training a
classical weightless neural network in a quantum computer,” Quantum,
vol. 1, no. 1, p. 1, 2014.

[138] A. Silva, W. de Oliveira, and T. Ludermir, “A weightless neural node
based on a probabilistic quantum memory,” in 2010 Eleventh Brazilian
Symposium on Neural Networks. IEEE, 2010, pp. 259–264.

[139] A. Silva, T. Ludermir, and W. Oliveira, “Single-shot learning algorithm
for quantum weightless neural networks,” ChemBioChem, pp. 1–6,
2016.

19

[140] F. M. de Paula Neto, W. R. de Oliveira, T. B. Ludermir,
and A. J. da Silva, “Chaos in a quantum neuron: An open
system approach,” Neurocomputing, vol. 246, pp. 3 – 11, 2017,
brazilian Conference on Intelligent Systems 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231217302394

[141] S. B. Ramezani, A. Sommers, H. K. Manchukonda, S. Rahimi, and
A. Amirlatifi, “Machine learning algorithms in quantum computing: A
survey,” in 2020 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2020, pp. 1–8.

