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Multispectral Image Context Classification 
Using Stochastic Relaxation 

MING CHUAN ZHANG, ROBERT M. HARALICK, FELLOW, IEEE, AND JAMES B. CAMPBELL 

Abstract -A new multispectral image context classification, which is 
based on a stochastic relaxation algorithm and Markov-Gibbs random 
field, is presented. The implementation of the relaxation algorithm is 
related to a form of optimization programming using annealing. The 
authors motivate a Bayesian context decision rule, and a Markov-Gibbs 
model for the original Landsat MSS (multispectral scanner) image is 
introduced, and then develop a new contextual classification algorithm, in 
which maximizing the posterior probability (MAP) is based on stochastic 
relaxation, an annealing optimization method. Finally, experimental results 
that are based on simulated and real multispectral remote sensing images 
to Fhow how classification accuracy is greatly improved are presented. The 
algorithm is highly parallel and exploits the equivalence between Gibbs 
distribution\ and Markov random fields (MRF). 

I. INTRODUCTION 

ONVENTIONAL automatic classification tech- C niques, in particular for remote sensing data, classify 
each pixel independently. This type of classification can 
only exploit spectral or, in some cases, spectral and tempo- 
ral information. Using coherent spatial information for 
classification efficiency and accuracy in remote sensing 
application has long been desired. In recent years some 
researchers have discussed t h s  realization. A spatial 
stochastic recursive contextual classification was proposed 
by T. S. Yu and K. S. Fu [l]; an estimation method of the 
context function was discussed by J. S. Tilton, S. B. 
Vardenman, and P. H. Swain [2]; a recursive context 
classification using dynamic programming was presented 
by R. M. Haralick, M. C. Zhang, and J. B. Campbell [3]. 

In statistical pattern recognition, there appears to be two 
main approaches to the specification of spatial stochastic 
processes. Whittle [4] proposed a random field model that 
arises from the joint probability distribution of the vari- 
ables in a neighborhood. Whittle's definition requires that 
the joint probability distribution of the variables in a given 
neighborhood be of the product form 
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where D,, is a set of random variables within the neighbor- 
hood of the pixel (i, j )  and Q ,  , is a nonnegative function. 

On the other hand Bartlett [5]-[7] proposed a model 
that arises from the conditional probability distribution of 
Dl,. His definition requires that the conditional probability 
distribution of D,, depends only upon the values at the 
neighbors of ( i ,  j ) .  

Most of the existing methods [1]-[3] are based on the 
model that arises from the conditional probability distribu- 
tion of D,,. 

Besag [8] found that constraints on the conditional prob- 
ability structure are so severe that they actually dictate 
particular models. 

Under the stochastic model for spatially oriented pixels, 
image correlations exist between any pair of pixels. Yu and 
Fu [l] noted that the best way to incorporate these correla- 
tions statistically is to consider the joint probability den- 
sity function of all the site-variables involved. For example 
a five dimensional joint probability density function will 
account for all the correlation between any pair of sites in 
a four-neighbor system. Similarly, a nine-dimensional joint 
density function can be used for the eight-neighbor system. 
For practical reasons most of the estimated context deci- 
sion rules deal with maximizing the conditional probability 
distribution of pixel (i, j ) ,  given all values within the 
nearest neighborhood of pixel ( 2 ,  j ) .  

Besag [8] argues that the conditional probability model 
has a number of disadvantages. First, there is no obvious 
method of deducing the joint probability structure associ- 
ated with a conditional probability model. Secondly, the 
conditional probability structure itself is subject to some 
unobvious and highly restrictive consistency conditions. 
Third, it has been remarked by Whittle [4] that the natural 
specification of an equilibrium process in statistical me- 
chanics is in terms of the joint distribution rather than the 
conditional distribution of their variables. Similarly the 
most natural and important quantity in evaluation of the 
discriminant function in contextual classification is 
the joint probability density function [l]. The conditional 
probability approach, however, has served as the basis for 
a commonly used class of models-the Markov image 
models. 

In this paper we develop an alternative context classifi- 
cation approach, which is based on a stochastic relaxation 
algorithm and Gibbs distribution. The favorable features 
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of this approach are that its random model arises from the 
joint probability distribution of the variates in a neighbor- 
hood, and that the algorithm is highly parallel. The parallel 
algorithm, which is performed by a neighborhood opera- 
tor, might be implementable in special purpose VLSI hard- 
ware. 

The stochastic relaxation methods are not new concepts: 
they have been used in statistical physics for many years. 
There the problem of analyzing the macroscopic properties 
of a physical system is translated into one of analyzing the 
global properties of random fields with a given local 
structure. However only Geman and Geman [9] have intro- 
duced these concepts into image restoration, and they have 
given a few simple results using synthetic images. In this 
paper we use them in context classification, and we make 
an analogy between image and statistical mechanics sys- 
tems. Pixel gray levels and category labels are viewed as 
states of atoms or molecules in a lattice-like physical 
system. The assignment of energy functions in a physical 
system determines its Gibbs distribution. Because of the 
Gibbs distribution-Markov random field (MRF) equiva- 
lence, this assignment also determines a MRF image model. 

In this paper, we first motivate a Bayesian context-deci- 
sion rule, and then we use a Markov-Gibbs model to 
develop a new contextual classification algorithm, in which 
maximizing the a posteriori probability (MAP) is based on 
stochastic relaxation, an annealing optimization method. 
Finally we present experimental results with both simu- 
lated and real multispectral remote sensing data to show 
how classification accuracy is greatly improved. 

11. MOTIVATION AND PROPOSED APPROACH 

The contextual information, which we would like to 
study, is a form of correlation existing among the succes- 
sive pattern classes in the two-dimensional (2-D) image. 
Every pixel in the image can be considered as having one 
random variable associated with a 2-D Markov random 
field. Two pixels in spatial proximity to one another are 
unconditionally correlated, with the degree of correlation 
decreasing as the distance between them increases. All the 
spatial correlations among " site-variables" on a lattice of 
an image can be extracted by the specified spatial process. 
As mentioned earlier the most important quantity in the 
contextual Bayes' decision problem is the joint density 
function of all the site-variables within the specified con- 
textual neighborhood. So the best way to incorporate these 
correlations statistically is to estimate the joint probability 
density function of all the site-variables involved. 

For pratical reasons, most of previous studies deal with 
some specific cases (in which the four-neighborhood as- 
sumption is invariably utilized in the context algorithms) 
and the contextual information is incorporated by consid- 
ering the conditional probabilities of pixel ( i ,  j ) ,  given its 
neighbors. 

These approaches are certainly based on a realistic 
premise but it is computationally feasible only for first 
order neighborhoods. The new contextual decision rule 

introduced in this section improves this by considering the 
joint probability of the pixels in the neighborhood of the 
pixel ( 2 ,  j )  and by using a larger context. 

Before presenting this rule, we must first give some 
notational conventions, and assume that each pixel of the 
multiband image considered in the paper has a N-tuple of 
finite gray-tone values. 

A.  Notation 

In order to have a precise framework within which we 
can describe the stochastic relaxation algorithm, we need 
some notational conventions. 

designates the row index set of an im- 
age I =  {l,- . . ,M,}.  
designates the column index set of an 
image J = { 1,. . . , M, }. 
designates a neighborhood of pixel 

the collection of all measurement vec- 
tors in the neighborhood N,, of pixel 

assigned category labels in the neigh- 
borhood. 
assigned category labels in the neigh- 
borhood, excluding the central pixel of 
the neighborhood. 
designates the number of rows in a 
neighborhood. 
designates the number of columns in a 
neighborhood. 
designates the local row index set of 
the neighborhood 

( i ,  j ) .  

( 4  j ) .  

L, = { - N,; . , N , } .  

designates the local column index set 
of the neighborhood 

K , =  { - N,; . ., N , } .  

designates a local position in neighbor- 
hood 

( I ,  k )  E L,XK,. 

an observed measurement vector from 
pixel (I, k ) .  
assigned category label of pixel ( I ,  k )  
in the neighborhood. 
set of all possible categories. 
designates a pattern configuration of 
assigned labels in neighborhood. 
set of all possible pattern configura- 
tion of assigned labels in neighbor- 
hood 

e = { o,, e,,. . . , o,, 1, 
m is total number of pattern configu- 
ration of assigned labels in neighbor- 
hood. 
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17) N 

18) L 

19) W 

designates a neighborhood system on 
the two dimensional finite set of I X J .  
designates a clique in the neighbor- 
hood of pixel (i, j ) .  
designates family of cliques in the 
neighborhood of pixel (i, j ) .  W = 

{ L,, L,; . ., L k } ,  k is total number of 
cliques in N,,. 
designates a potential associated with 
clique L 

v,: RIL’ + [o,co) L E w. 
designates an energy function as- 
sociated with Gibbs distribution 

designates an energy function as- 
sociated with Gibbs distribution P ( C ) .  
designates an energy function as- 
sociated with Gibbs distribution 

P(D,,). 

P ( D , / >  C) .  

B. Bavesian Context Classification Model 

From the Bayesian Model [lo], the context classification 
problem can be stated as follows: to assign labels C to the 
pixels in the neighborhood of pixel ( i ,  j )  that minimizes 
the expected loss 

c 10s ( C ,  C*) P ( C*P,, .Q) (2) 
C* 

where P (  C*ID,,, Q )  is the probability that the true label- 
ing of the pixels is C* given: 1) the measurements D;, of 
the pixels in the neighborhood of pixel (i, j ) ,  2) the prior 
information Q we have about pixel dependencies, and 
where los( C: C*)  is the loss incurred for the assignment of 
interpretation C to the pixels in the neighborhood of pixel 
(i, j ) ,  when the true interpretation is C*. 

We use the most common zero-one loss function for our 
study problem. There is no loss for a correct joint assign- 
ment and unit loss for any incorrect joint assignment. 
Here, correct assignment means that each pixel in the 
neighborhood is assigned correctly. Thus there is no dis- 
tinction in loss between an incorrect joint assignment in 
which only one pixel is incorrectly assigned or an incorrect 
assignment in which all pixels are incorrectly assigned. 

Such a loss is defined by 

There are two assumptions about the world and pixel 
measurement process that can simplify the expected loss 
expression (2). 

The first assumption states that the description process 
is local. When the pixel ( i ,  j )  is being examined, no 
characteristics from any other pixel but pixel ( z ,  j )  affect 
the description obtained from pixel (i, j ) .  Hence 

The second assumption states that the n-tuple measure- 
ment of pixel (i, j )  depends only upon the true interpreta- 
tion e:, associated with pixel ( i ,  j )  and does not depend 
upon any relationships pixel (i ,  j )  may have with other 
units or upon the interpretation associated with any other 
pixel. Hence 

T Jnder these assumptions, the optimal decision rule de- 
termines interpretation C for the pixels in the neighbor- 
hood that minimize 

With the loss function defined by (3), the best decision 
procedure chooses interpretation C that satisfies the maxi- 
mality condition 

for all Z E G? (7) 
The choice of C satisfying this maximality condition 

cannot be independently done pixel by pixel. 

111. MARKOV RANDOM FIELDS WITH NEAREST 
NEIGHBOR ASSUMPTION 

It is clear that any efficient computer algorithm for 
image analysis, classification, and processing can only be 
done using the framework of a proper image model. The 
Markov random field (MRF) and Gibbs model, which is 
pervasive in the image processing literature, constitutes a 
promising natural way to capture context assumptions in 
classification. 

Consistent with the 2-D discrete MRF for multispectral 
image processing applications, we assume a random obser- 
vation vector d,,, and the pixel position (i, j )  is defined on 
the 2-D finite integer set of I X J .  

The MRF model may be defined as the following. Let 
{ dl,l(z, j )  E I x J }  be an observed image, and N,, be the 
appropriate symmetric neighbor set of the pixel (i, j ) .  It is 
postulated that this is generated by an appropriate 2-D 
(noncausal) MRF model. The model characterizes the sta- 
tistical dependency among pixels by requiring that 

P(di,ld,,: ( m :  n )  E I X J ,  ( m ,  n )  + ( i ,  j ) )  

=P(d,,ld,,: (m,+N,,) .  (8) 

If Nil = ((0, l), (0, - l), ( -  L O ) ,  (1 ,O))  it corresponds to 
taking the simplest Markov model. By including more 
neighbors we can construct a higher order Markov model. 

Unlike the l -D discrete time series, where the existence 
of a preferred direction is inherently assumed, no such 
preferred ordering of the discrete neighborhood is appro- 
priate for 2-D. In other words, the notion of “past” and 
“future” as understood in a unilateral l -D  Markov process 
is restrictive in 2-D as it implies a particular ordering in 
which the observations are scanned top down and left to 
right. It is quite possible that an observation at a pixel p 
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may be dependent on surrounding observations in all 
directions. 

An alternative representation of random fields is by the 
Gibbs distribution. We say that a random field has a 
Gibbs distribution if its density function is p e n  by 

(9) 

where K is a Boltzmann’s constant, T is temperature, and 
U( D, , )  is called the energy. Z is the normalizing constant 
as 

- U(D,,) -~ 

(10) 
K T  Z = C e  

4, 

The energy U(D, , )  is the sum of local potentials V, 
(0,;) such that 

l J ( D , , )  = - C VL(D, , ) .  (11) 
L E W  

The VL( D, , )  are called local potentials, whch are evalu- 
ated over each clique on the neighborhood of pixel ( i ,  j ) ,  
where a clique is a subset in which each pixel is a neighbor 
of all pixels in the subset L. The W,, designates the family 
of cliques in the neighborhood of pixel ( i ,  j ) .  

A .  Markov Properties 

Before describing the relaxation algorithm, it is first 
necessary to define neighborhood system and MRF, and 
then to discuss the factorizability property characteristic to 
Gibbs states with nearest neighbor potentials. 

I )  Definition I :  A collection of subsets of I X J de- 
scribed as N,, E I X J is a neighborhood system over the 
2-D finite set of I X J ,  if and only if &,,the neighborhood 
of pixel ( i ,  j )  is such that: 1) ( i ,  j )  does not belong to &j 
and2)if(k,I)€&j,then(i,j)ENk,,forany(i,j)EZx 
J ,  if ( k ,  I )  E NI,, ( k ,  I )  is said to neighbor ( i ,  j ) .  

We can now formally define a MRF with respect to the 
neighborhood system N defined over the 2-D finite set of 
I x J .  

2) Definition 2: Suppose N is a neighborhood system 
defined over the two-dimensional finite set of I X J .  A 
random field { d,,:  ( i ,  j )  E I X J }  is an MRF with respect 
to the neighborhood system N if and only if 

p (  d,,ld,,, (1, k )  E I x J ,  (k 1 )  # ( i ,  j ) )  

= P(d,; ld , , ,  ( k J  E N ; ; ) ,  

for all ( i ,  j )  E I x J .  (12) 
3) Factorizability Property: A set of pixels L is a clique 

if every pair of pixels in L are neighbors. We include the 
empty set (no pixel) as a clique. If we considered only the 
empty set (no pixel), single pixel, and cliques consisting of 
pairs of pixels, it is called a first order model. If we also 
consider cliques consisting or triples of pixels, it is called a 
second-order model. 

The factorizability property is the theoretical base of 
decomposing the potential functions by cliques (see for- 
mula 11). It is very useful for finding the canonical poten- 
tial form in our problem. 

The factorization property can be stated as follows. 
Suppose that the rectangular lattice G ,  defined as G = Z X J 
has several rectangular sublattices (connected components) 
G,, m = 1 , 2 , - . . ,  defined as G , E G .  If D =  { d , , :  ( i , j ) E  
G }  is MRF on the rectangular lattice G ,  and each 0, = 
{ d,,:  ( i ,  j )  E G,} is also MRF defined on the rectangular 
sublattice G,, then the probability P over the MRF G is 
the product measure 

P = n P, ( rn = 1,2, . . . ) (13) 
rn 

where P, is probability measurement of MRF G,. 
From this, we see that the factorization property guaran- 

tees the decomposition of the complex potential function 
(see (11)) into a set of simple potential functions of each 
clique over the neighborhood. 

B. Markov - Gibbs Equivalence 

them determines another and vice versa. 

for a state 7~ in a 2-D discrete random field. 

We call two state representations “equivalent,” if one of 

Preston [12] proved that the following are “equivalent” 

1) T is an equilibrium state. 
2) 7~ is a state of MRF. 
3) 7~ is Gibbs state with nearest neighbor potential. 
This equivalence, called the Markov-Gibbs equivalence, 

implies that a purely probabilistic notion of an MRF can 
be equated to the physically based Gibbs distribution. The 
Gibbs model describes the interaction of a macroscopic 
system in thermal equilibrium in the same way the spatial 
Markov models describe local dependence. For an MRF, 
the conditional probabilities are expressed in terms of 
nearest neighborhoods, while for a Gibbs distribution the 
energy E is the sum of potentials V measured over the 
same neighborhood. 

From this we see that the MRF-Gibbs equivalence 
provides an explicit formula for the joint probability distri- 
bution in terms of an energy function, and it supplies a 
powerful mechanism for modeling spatial features. 

Kinderman [13] proved that a nearest neighbor Gibbs 
distribution determines an MRF, and provided theoretical 
formulas to determine the canonical potential from the 
local characteristics. 

The proof that the MRF determines a nearest neighbor 
Gibbs distribution is given by Preston [12], and Grimmett 
[14]. They note that there is not a unique potential func- 
tion. However there is a unique canonical potential that is 
singled out in the following manner: the states are renum- 
bered 0,1,2; . ., r with 0 playing the role of a preferred 
state. The potential is then said to be a canonical potential 
if V J o )  = 0 when o assigns the value 0 to at least one site 
in C. It is then proved that there is a unique canonical 
potential for a given MRF. 
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From the previous discussion we have seen that we are 
able to determine a Markov field if we have a nearest 
neighbor potentials. If we have a MRF on a finite 2-D 
integer set I X J, then the local characteristics do uniquely 
determine this measure. In fact the canonical potential can 
be determined from these local characteristics by a for- 
mula, wluch we will discuss in Section IV, and then the 
Gibbs distribution is determined. We cannot merely choose 
any set of local characteristics because we have to satisfy 
the measure and be consistent with these characteristics. 
The greatest difficulty is in choosing appropriate local 
characteristics; so the key step in the method becomes to 
determine the proper potential function. We will discuss 
tlus in Section IV. 

Iv.  THE MARKOV-GIBBS MODEL FOR BAYES’ 
CONTEXT CLASSIFICATION 

In this section, we will show how the Markov-Gibbs 
model is incorporated with the Bayes’ context classifica- 
tion, and how the optimal decision rule determines an 
interpretation C for the pixels in the neighborhood of pixel 
(i, j )  that satisfies the maximality condition (7). 

From (7), we know that with the zero-one loss function, 
the best decision procedure chooses a labeling C that 
satisfies the maximality condition 

n P ( d / k I C / , ) P ( C )  n P ( d / k I Z / k ) P ( Z ) 7  
(1 .k)  (1. k )  

for all Z E S I .  
From the previous section, we can see that 

P ( D I J , c )  = n P ( d l , l C l , ) P ( C )  (I4) 
( v )  E N 

is a Gibbs distribution, since we can rewrite P( DIJ ,  C) as 

P ( D , , , c )  = l e - u ( D I j ’ C ) / K T  z (15) 

where U(D,,,C) is an energy function associated with 
Gibbs distribution P( D,,, C), which has the form 

u ( D I J , c )  =-c logP(d/ , lc /k)+U(C)  (16) 
and U ( C )  satisfies 

Z and K are constants and U ( C )  is the energy function 
associated with Gibbs distribution P ( C ) ,  which has the 
form 

U @ > =  c UC). (18) 
L E K J  

Y J  denotes the family of cliques in the neighborhood 
N,, of pixel ( 2 ,  j ) .  Each V, is a function on N,,, with the 
property that VIA( C) depends only on those coordinates 
and assigned labels of pixel (i, j ) ,  which are located in the 
clique L. Such a family { V,, L E W }  is called a potential. 
The V, functions in (18) represent contributions to the 
energy U( C)  from external fields (singleton cliques), pair 
interactions (doubletons), etc. 

Z is the normalizing constant given by 

z= & - U ( C ) / K T  (19) 
C 

where T, stands for “temperature.” For our purposes T 
controls the degree of “peak” in the “density.” Choosing T 
“small” makes it easier to find the minimal energy config- 
urations by sampling; this is the principle of annealing, 
and will be applied to our procedure in Section V. 

The assigned category, in the sense of Bayesian infer- 
ence, is determined by maximizing (15). This is a maxi- 
mum posterior estimate. The probability is maximized 
when the energy is minimized. This is analogous to the 
situation of thermal equilibrium in statistical physics, in 
which the most probable molecular configurations occur at 
the lowest energies. For the case of Bayes context classifi- 
cation, the most probable labeling occurs when the nega- 
tive exponent is minimized. Using conventional gradient 
techniques, maximizing posterior probability is virtually 
impossible for all by the first-order MRF models, because 
of the existence of many local extrema. However stochastic 
relaxation, which is a new multivariate or combinatorial 
optimization technique (finding the minimum of a given 
function depending on many parameters), developed by 
Kirkpatrick et al. [ll], offers a practical solution. 

After creating the Gibbs models for Bayes’ context 
classification, the problem now is to find U( DIJ ,  C). 

A general form of U( D,,, C) is that 

U ( D ~ , , c )  = -  logP(d/kIC/k)+U(C) 
( I .  k )  6 W J  

u(c) = c q / , k ) ( c / k )  
(1. k )  E W J  

+ ?/, k ) ,  ( /+ 1 .  k )  ( ‘Ik3 ‘/+ 1. k ) 
( 1 . k )  E W J  

+ c q / , k ) , ( / , k + l ) ( C / k , C / . k + * )  (20) 
(1.  k )  E W ,  

where the summation is over all (k, 1 )  E N,, ,  and NIJ 
denotes the nearest neighbor. The Ising model [15], which 
is the earliest and best-known lattice system, can be thought 
of the special case of (20) in which C is binary (C, = (0, l)), 
homogeneous (strictly stationary) and isotropic (rotational 
invariant). Its potential function is 

U ( C )  = a  c G + P (  c C/k*CI+lk 
( I . k ) E W J  ( I . k ) E W ,  

+ c c/k*c/k+l) (21) 
( / . k )  E W J  

for some parameters a and P, which measure, respectively, 
the external field and bonding strengths. 

For our contextual classification case, in which U ( C )  is 
a function of pattern configurations, the expression for the 
Ising model (21) is not suitable. But we still assume that 
the image is homogeneous and isotropic. 
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Before we derive the canonical potential for the general 
case, we first describe a useful theorem of potential func- 
tion [14]. If the random field = (c,,, (i, j )  E I X J )  is a 
Markov field, then its potential function is given by 

V&) = ( - l ) ~ w - L ” l o g P ( c L # )  (22 )  
L, E w 

where the summation is over all cliques in W,CL, desig- 
nates the configuration that agrees with C on L,, but 
assigns the value 0 at all sites outside of L,, and p =  
(- 1)Iw- L i I  is a Mobius function, and W -  L,, the differ- 
ence of W and L,, is {xlx is in W and x is not in L,}.  

From this theorem we see that given an MRF on a finite 
set I X J, the local characteristics (see Section 111-A) do 
uniquely determine this potential function; the canonical 
potential can then be determined from these local charac- 
teristics. 

Three types of potential functions are defined as 

c q ( / , k ) ) ( c / k )  
( / , k ) E N , I  

= c logP(c/k) 
(1. I )  E N(, , )  

* c V{( / ,  k ) ,  ( I +  1, k)) ( C/k 3 c/+ Ik ) 
( / . k ) c W l  

= 2* c 1% m / k l c / + l k )  
( / . k ) c N ( , l )  

. c V ~ ( / , k ) , ( / , k + / ) J ( C / k ,  G+l) 
( 1 .  E Wl 

= 2* c logP(c/klc/k+l). (23) 
( 1 .  k )  E N < , l )  

These definitions are based on the factorization of an 
MRF and a neighboring clique assumption. In this model 
only cliques of size two are involved. 

From the previous definitions, the problem in this paper 
can be stated as follows: the assigned category is deter- 
mined by minimizing 

u ( D , J , c )  = logP(d/klCC)+U(C) 
( / . k )  E X I  

where 

W )  = c logP(d/kICc)+ c logp(c/k)  

+ 2* c 1% p ( C/k IC,, Ik ) 

+ 2* c 1% p (C/klC/k + 1). (24) 

( 1 .  / . ) E  ( I .  k )  E y,l) 

( 1 ,  k )  E N( , , )  

(1 ,  k )  E N( , , )  

Because of the existence of many local extrema, the 
computation cost of maximizing the posterior probability 
for Bayes classification is usually computationally high. 
For example if a MSS (multispectral scanner) image has N 
class categories on a 4 X M lattice, the number of config- 
urations is at least N . Hence, the identification of even a 
near-optimal solution is surprisingly difficulty for such a 
relatively complex function. In Section V we present the 

implementation of a stochastic relaxation procedure, which 
overcomes the computational difficulty remarkably well. 

V. IMPLEMENTATION OF THE STOCHASTIC 
RELAXATION CONTEXT CLASSIFICATION 

The method used in the stochastic relaxation context 
classification is essentially a variant of a Monte Carlo 
procedure, due to Metropolis et al. [16]. In the Metropolis 
procedure samples are randomly generated from a Gibbs 
distribution at constant temperature. This simulates the 
behavior of a physical system in thermal equilibrium. The 
algorithm can be briefly described as follows. For each 
state D,, of a model D, a random perturbation is made. 
The change in energy, AU is computed. If AU I 0, the 
perturbation is accepted, that is the new pattern configura- 
tion, which correspondings to the new “energy,” U = U, + 
AV, replaces the original one. If AU is positive then the 
perturbation is accepted with probability 

P( AU) = e-Au/T. (25)  
This conditional acceptance is easily implemented by 

choosing a random number R uniformly distributed be- 
tween 0 and l. If R < P ( A U )  then the perturbation is 
accepted; otherwise the existing model is retained. Ran- 
dom perturbation according to these rules eventually causes 
the system to reach equilibrium, or the configuration 8,  
corresponding to maximum probability. The technique 
used here, slowly lowers the temperature T during execu- 
tion of the iterative procedure. If the system is cooled 
sufficiently slowly and equilibrium conditions are main- 
tained, the model converges to a state with minimum 
energy or maximum posterior probability. This was proved 
by Geman and Geman [9]. Geman also pointed out that 
the most important aspect of any cooling function is that it 
be slow, especially near the critical temperature where 
convergence is rapid. The successful choice of an annealing 
schedule requires experience; ideally, the procedure would 
be interactive. As T decrease, samples from the distribu- 
tion are forced towards the minimal energy configurations. 
The temperature T( k )  used by Geman satisfies the bound 

G 

T ( k )  log(l+ k )  
It is employed in executing the kth site replacement 

(i.e., the k th classified labels are produced in the iteration 
scheme). For every k , G  is a constant independent of k.  
When k + 00, the configurations generated by the algo- 
rithm will be those of minimal energy. 

VI. SUMMARY OF THE STOCHASTIC RELAXATION 
CONTEXT CLASSIFICATION PROCEDURE 

In summary the stochastic relaxation context classifica- 
tion procedure can be implemented as follows. 

1) Evaluate training statistics; this includes the mean 
vector and the covariance required for the Gaussian 
class conditional distribution. 
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2) Preclassify the image using a pixel independent or 
context free Bayes classification technique. 

3) Evaluate the transition probabilities: P( Ci,lCi, j +  1) 
and P( Ci,lCj+l, ,) from the preclassification results. 

4) Use (24)-(26) to perform the stochastic relaxation 
context classification. The experimental results with 
both simulated and real multispectral remote sens- 
ing data will be presented in Section IX. 

VII. IMPROVED SCHEME 

Now we have a desirable stochastic relaxation proce- 
dure, in which samples are randomly generated from a 
Gibbs distribution at a controlled temperature T. As T 
changes, samples from the distribution are forced towards 
the minimal energy configuration. Geman and Geman [9] 
proved the convergence properties of this algorithm, and 
showed how to reduce the computational difficulty. As we 
mentioned before, for an MSS image which has N class 
categories and a M x M size, the number of configuration 
is at least N M 2 .  In Gemans’ scheme the pattern samples 
are randomly collected from a huge pattern configuration 
space. In contrast to our proposed method, his method had 
nothing to do with reducing the pattern configuration 
space. Experimental results showed that for a significant 
improvement in classification accuracy, the number of 
iterations was still sizeable. 

In order to further reduce the computational complex- 
ity, it is important to reduce the size of the huge pattern 
configuration space or to place some constraints on the 
pattern generation procedure. We now describe how we 
can use the homogeneous assumption to control the pat- 
tern configuration sampling procedure. 

Most Landsat and aerial photograph images are divided 
into a number of elementary regions at the classification 
stage. Each region is finite, fairly homogenous, and has 
similar spectral properties over its entire ground surface. 
These homogeneous regions correspond to uniform objects 
(categories) on the earth’s surface. We believe that some 
smooth or homogeneous pattern configurations are much 
more probable than others, and some irregular patterns 
have low probabilities. 

This fact gives us a strategy for the iterative procedure 
in that we may use these most probable homogeneous 
patterns at the beginning of the iteration procedure. After 
that we randomly generate the pattern configuration and 
skip irregular patterns that have low probability. 

We should note that the global procedure is still ran- 
dom; we only set special pattern configurations into initial 
states, and give some constraints on the iterative proce- 
dure. Therefore this scheme is still a stochastic relaxation 
procedure. 

Let T( t ) be any decreasing sequence of temperatures for 
whch a) T ( t )  -+ 0 as t -+ CO, b) T ( t )  >, NA/logt, for all 
t 2 to and some integer to>, 2. And let the annealing 
procedure generate a process { D( t ) ,  f = 1,2, . . }. Geman 
proved that the distribution of D ( t )  converges to equilib- 
rium distribution T, as t -+ 00 regardless of starting config- 

SYSTEMS, MAN, AND CYBERNETICS, VOL. 20, NO. 1, JANUARY/FEBRUARY 1990 

(4 ( 4  

Fig. 1. Four simple pattern configurations for improved scheme; 
(a) has upper and lower parts; (b) has left and right parts; (c) has 
upper-right and bottom-left parts; (d) has upper-left and bottom-right 
parts. Uniform pattern and four simple pattern configurations, which 
are assumed to have higher occurring probability, are generated and 
tested at beginning of iterative procedure. 

uration. The only assumption is that we continue to visit 
every site. 

The convergence of our modified procedure can be 
proved as follows. Let process { D l ( t ) ,  t = 1, 2, . . . } be 
generated by the annealing procedure previously de- 
scribed, and process { Do(l), D0(2),. - -, Do(s)}  be a pro- 
cess with limited numbers of states. We create a new 
process D ( t ) ,  which has 

where Do(t)  is a sequence of special pattern configurations 
at the first stage, and Dl(t - s) is a process generated by 
the annealing procedure. Geman states that the distribu- 
tion of Dl( t )  converges to the equilibrium distribution, as 
t -, 00 regardless of starting configuration. Because D ( t )  
has same statistical property except having different start- 
ing configurations, new processes D( t ) should converge to 
the same equilibrium distribution as Do(t), when t -+ CO. 

First, we assume that uniform pattern configurations 
have higher occurring probabilities, and that they are 
generated and tested at the beginning of the iterative 
procedure. The assignment of these uniform labels is based 
on the labels in the neighborhood assigned at the classifi- 
cation stage. So the number of these uniform pattern 
configurations is equal to the number of categories in the 
neighborhood. 

Subsequent to this testing, we assume that some simple 
pattern configurations (Fig. 1) also have hgher occurring 
probabilities. These are assigned and tested again. 

The pattern in Fig. l(a) has upper and lower parts. The 
assignment of labels in each part is also based on the 
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labels in that part assigned at the preclassification stage. 
Similarly, Figs. l(b), (c), and (d) show three other simple 
patterns. 

After these steps, a random pattern generator is intro- 
duced in the relaxation procedure. 

In order to restrict irregular patterns, we employ a 
measure of the irregularity as follows: 

number of classes in the neighborhood 
number of pixels in the neighborhood IR = (27) 

After we give a threshold, the irregularity measurement 
of each pattern is calculated and compared with the 
threshold. If the measurement is larger than the threshold, 
the pattern is too irregular and the procedure will skip 
testing and generate the next pattern instead. 

VIII. PARALLEL ALGORITHM 

Although the computational cost of the stochastic relax- 
ation scheme is much more expensive than the conven- 
tional context free classification methods, it is highly paral- 
lel in the sense that it is implementable by simple and 
identical neighbor operators. 

The performance of each neighborhood operator is inde- 
pendent from other neighborhood operators in the entire 
image. The amount of time required for each iteration of 
the entire image is proportional only to the number of 
pixels in the image, if all operators are executed in parallel. 

This important property allows the algorithm to run 
naturally in a fully parallel architecture. 

A more modest degree of parallelism was noted by 
Geman and Geman [9]. A graph associated with the MRF 
is divided into collections of sites with each collection 
assigned to an independently running (asynchronous) pro- 
cessor. 

Each such processor would execute a raster scan update 
of its assigned sites. Communication requirements will be 
small if the division of the graph respects the natural 
topology of the scene, provided of course that the neigh- 
borhood systems are reasonably local. Such an implemen- 
tation with five or ten micro- or minicomputers represents 
a straightforward application of available technology. Chen 
[17] noted that data flow computer architecture should be 
useful for the stochastic relaxation (annealing) algorithm 
for MRFs. 

IX. EXPERIMENT RESULTS OF THE CONTEXTUAL 
CLASSIFICATION ALGORITHM 

In order to show accuracy in the improvement of 
stochastic relaxation context classification methods, sev- 
eral experimental results based on both simulated and real 
multispectral remote sensing data are illustrated. 

A.  Simulated Data Experiments 

Classification accuracy can vary with different kinds of 
input data sets for a given classification algorithm. It is 
difficult to evaluate the effectiveness of classification algo- 
rithms using small sets of real image data. 

A desirable way to evaluate the effectiveness of classifi- 
cation algorithms is to use simple simulated data sets. In 
this subsection we illustrate a simulated data experiment, 
which is generated from the ground truth of a real remote 
sensing image. 

The simulated data generating method proposed in [18] 
is as follows. Use the ground truth (or classification map) 
and associated estimated mean vectors and covariance 
matrices of the classes (developed in performing the no- 
context classification). For each pixel, simulated data vec- 
tors are produced by a Gaussian random number genera- 
tor having the same mean vector and covariance matrix as 
the class associated with the pixel on the ground truth 
map. Thus the pixel in the simulated data set has the 
following characteristics. 

1) Each pixel in the simulated data set represents the 
same class as in the ground truth data. 

2) All classes have multivariate Gaussian distributions 
with parameters typical of those found in the ground 
truth data. 

3 )  All pixels measurement values are class-condition- 
ally independent of adjacent pixels. 

4) There are no mixed pixels. 

Data simulated in this manner are an idealization of real 
remote sensing data, but the spatial organization of the 
simulated data is consistent with a real world scene, and 
the overall characteristics of the data are consistent with 
the contextual classifier assumption. 

B. Experimental Results of Real and Simulated Remote 
Sensing Images 

The technique is first illustrated using a simulated im- 
age, which is generated from a digital remote sensing data 
collected by the Landsat MSS. The experimental data, 
which was a subset of the April 13, 1976 MSS scene of 
Roanoke, VA, was selected as the first study area. It was 
classified by a Bayes context free-classification method in 
order to compare the results. The following ground cover 
classes were used: 1) Class 1: Urban or built-up land, 2) 
Class 2: Agricultural land, 3 )  Class 3: Rangeland, 4) Class 
4: Forest land, 5) Class 5: Water (Only a small amount), 6) 
Class 6: Wetland (Only a small amount), 7) Class 7: 
Barren land. 

Because the study area was selected from the Roanoke, 
VA mountainous region (longitude from 79 52’ to 80 00’ 
W; latitude from 37 15’ to 37 23’ N), the land cover of this 
region is a complex pattern of diverse spectral classes 
occurring in small parcels. The most easily classified of 
this land cover class-open water -is not represented in 
this test area. Thus this area is a difficult area for the 
conventional pixel independent classification technique. 
The accuracies of context free classification for such re- 
mote sensing images, including Bayesian classifiers and 
ISODATA [19] are 60 percent. Such accuracies are not 
unusual for scenes of this complexity. 
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TABLE I 
BAYES PIXEL INDEPENDENT CLASSIFICATION RESULTS FOR MSS SCENE 

OF ROANOKE, VA”. 

Class URB AGR RNG FST Total ACC(percent)‘ 

URB 760 512 0 162 1437 52.8 
AGR 116 379 0 83 578 65.6 
RNG 0 0 0  0 0  - 
FSN 15 28 0 210 253 83.0 
Total 894 919 0 455 2268 59.6” 

TABLE I1 
STOCHASTIC RELAXATION CONTEXT CLASSIFICATION RESULTS FOR MSS 

SCENE OF ROANOKE, VA“.’ 

Class URB AGR RNG FST Total ACC (percent)‘ 

URB 1108 317 0 12 1437 77.1 
AGR 179 385 0 14 578 66.6 
RNG 0 0 0  0 0 
FSN 50 35 0 168 253 64.4 
Total 1337 737 0 194 2268 73.3” 

- 

~ 

“April 13, 1976. 
’Scale factor of the number of pixels 10**1. Columns represent 

‘Classification accuracy. 
”Overall classification accuracy: ratio of the number of correctly 

classified pixels to the number of total classified pixels. URB-urban or 
built-up land, AGR-Agricultural land, RNG-Rangeland, FSN-Forest 
land. 

assigned categories. Rows represent true categories. 

“April 13, 1976. 
’Scale factor of the number of pixels 10**1. Columns represent as- 

“Classification accuracy. 
”Overall classification accuracy: ratio of the number of correctly 

classified pixels to the number of total classified pixels. URB-Urban or 
built-up land, AGR-Agricultural land, RNG-Rangeland, FSN-Forest 
land. 

signed categories. Rows represent true categories. 

TABLE 111 
PIXEL INDEPENDENT BAYES CLASSIFICATION RESULTS OF TEST IMAGE “CLARK”“ 

Class WHT ALF POT CRN BNS APL PAS RNG Total ACC(percent)’ 

WHT 
ALF 
POT 
CRN 
BNS 
PAS 
RNG 
Total 

1017 
71 
40 
1 
0 
0 

15 
1146 

47 30 
382 135 

32 522 
5 1 
1 0 
0 0 

12 14 
483 704 

5 4 
10 13 
5 29 

65 2 
1 1 
0 0 
2 4 

89 78 

0 
6 
0 
0 
0 
0 
1 
7 

10 
12 
2 
0 
0 
9 
9 

42 

75 
39 
32 
4 
0 
2 

335 
490 

1188 85.5 
668 57.1 
652 84.6 

78 83.3 
3 0 

11 81.1 
392 85.4 

3040 77SC 

“Scale factor of the number of pixels 10**1. Columns represent assigned categories, Rows represent true categories, 
klassification accuracy. 
‘Overall classification accuracy: ratio of the number correctly classified pixels to the number of total classified pixels. WHT-wheat; 

ALF-alfalfa: POT-potatoes; CRN-corn; BNS-beans; APL-apples; PAS-pasture (irrigated); RNG-rangeland. 

TABLE IV 
STOCHASTIC RELAXATION CONTEXT CLASSIFICATION RESULTS OF TEST IMAGE “CLARK”“ 

Class WHT ALF POT CRN BNS APL PAS RNG Total ACC(percent)’ 

WHT 
ALF 
POT 
CRN 
BNS 
APL 
PAS 
RNG 
Total 

1080 23 
91 378 
54 23 
1 5  
2 5  
1 2  
0 1  

17 11 
1643 573 

25 
155 
544 

1 
2 
0 
0 

14 
787 

1 1 0  0 
1 0 0  0 
1 3 0  0 

65 0 0  0 
0 3 5 0  0 
0 0 0  0 
0 0 0  7 
1 0 0  1 

72 47 0 10 

58 
41 
29 
6 
4 
0 
3 

349 
1158 

1118 
666 
654 
78 
48 

3 
11 

392 
3040 

90.9 
56.8 
83.2 
83.3 
73.9 

0 
63.7 
89.1 
80.8‘ 

“Scale factor of the number of pixels 10**1. Columns represent assigned categories. Rows 

’Classification accuracy. 
‘Overall classification accuracy: ratio of the number correctly classified pixels to the 

number of total classified pixels. WHT-wheat; ALF-alfalfa; POT-potatoes: CRN-corn; 
BNS-beans; APL-apples: PAS-pasture (irrigated); RNG-rangeland 

represent true categories, 

X. CONCLUSION 

We have developed a new multispectral image context 
classification algorithm with the MRF, where remotely 
sensed data are more accurately classified compared to 
traditional context free classifiers. This new approach of 
multispectral image context classification is based on a 
stochastic relaxation algorithm and the Markov-Gibbs 
random field. The implementation of the relaxation algo- 
rithm is one form of optimization using annealing. In this 
paper we have first motivated a Bayesian context decision 

rule, then introduced a Markov-Gibbs model for the 
original Landsat MSS image. Then we developed a new 
contextual classification algorithm, in which maximizing 
the posterior probability (MAP) is based on the stochastic 
relaxation and annealing method. An improved algorithm 
has been presented to speed the stochastic relaxation pro- 
cedure. It has greatly reduced the number of iterations by 
using some special pattern configurations at the beginning 
of the iterative procedure. The algorithm is highly parallel 
and exploits the equivalence between Gibbs distributions 
and MRF’s. 
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Fig. 16. Overall classification accuracy curves versus noise level. Yellow 
line: + contextual classification by stochastic relaxation. Green 
line: + Dynamic programming approach to context classification 
(two-pass forward-backward algorithm). Red line: 4l- Pixel inde- 
pendent Bayes classification. 
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