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To efficiently perform morphological operations with specialized pipeline hardware which is
not able to utilize all the points in the domain of the structuring element in one pipeline stage
requires the capability of decomposing the structuring element into a morphological dilation of
smaller structuring elements each of which is utilized in a successive stage of the pipeline. In
this paper, we give the theory and algorithm for such optimal structuring element decomposi-
tion. © 1986 Academic Press, Inc.

I. INTRODUCTION

Mathematical morphological operations [1] such as dilation, erosion, opening, and
closing are important techniques in image processing. Specialized hardware such as
the cytocomputer and the image flow computer [2-4] have been built which are
capable of efficiently performing morphological operations. The cytocomputer is a
pipelineable machine which can process a 3 X 3 neighborhood morphological
operation in each stage. The image flow computer is a pipelineable machine which
can process a morphological operation on any pair of pixels in each stage.

If the given structuring element used in the morphological operation has a
domain larger than the domain which the hardware can handle in one stage, the
structuring element must be decomposed into smaller structuring elements which
each are capable of being handled by one stage in the pipeline and whose
morphological composition is the given structuring element. The decomposition
problem is to determine a smallest sequence of small structuring elements whose
morphological composition is the given structuring element.

To make the problem definition more precise requires some morphological
definitions. Let EX be K dimensional Euclidean space and X ¢ EX and B c EX.
The dilation of X by structuring element B is denoted by X @ B and is defined by

X@®B={ylforsomexec Xandbe B, y=x+b}. (1)
The erosion of X by structuring element B is denoted by X © B and is defined by
Xoe B={y|foreverybe B, y+be X}. (2)

The reader should beware that the above definition of © differs from that given by
Serra [1] in that he requires y — b € X instead of y + b € X.

Two important idempotent morphological operations are composed of dilations
and erosions. A dilation followed by an erosion is called a closing. An erosion
followed by a dilation is called an opening. See Serra [1] for details about how
openings and closings are used.
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It follows in a straightforward manner from these definitions that dilation is
associative and commutative and that

(XeB))oB,=Xo (B, oB,).
Hence if the structuring element S has the decomposition
S=H ®&H,® - --- ®H,
the dilation of X by S can be performed as
XeS=Xeoe (HoH,® - 0Hy,)=((xoH) ®H,)---) @ H,.
The erosion of X by S can be performed as
XeS=Xe(HoeH®o- -oH,)=(-(XeH)oH,)- -)eH,.

The structuring element decomposition problem is given a structuring element S.
Determine the smallest N and corresponding structuring elements By Hoyoosy Hy
such that

S=HeHo- - oH,

where each H, satisfies the smallness requirement of the hardware pipelineable
stages.

To make this decomposition problem more concrete, consider the following
example in 2-dimensional Euclidean space. We take the structuring element S to be
a 7 X5 rectangle whose corner pixels are missing. What is the most efficient
decomposition of this structuring element into structuring elements which are each
2-point sets? One decomposition, not the most efficient, is given by

§ = {(0,0),(0,1)} & {(0,0),(0,1)} ® {(0,0),(1,1)} ® {(0,0),(1,0)}
®{(0,0).(1,0)} @ {(0,0),(1, -1)} @ {(0,0),(0, ~1)} @ {(0,0),(0, —1)}.

The theory and algorithm developed in this paper enable us to develop answers to
questions like: Is the 8 2-point set decomposition given for S the smallest such
decomposition? How is the smallest decomposition constructed?

In Section II, we detail the hardware motivation for using structuring elements
which are highly decomposable. In Section III we initially describe a brute force
search procedure to determine an optimal decomposition. The body of Section 111
discusses how to make the search a finite search which utilizes the forward checking
technique [6] for reducing the number of possibilities actually searched. In Section
IV are some examples of some optimal decompositions. Section V is the conclusion.

II. HARDWARE MOTIVATION FOR USING STRUCTURING ELEMENTS
HAVING DECOMPOSITIONS

If each H, in the decomposition of S,

S=H & oH,,
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is a 2-point set, then the resulting decomposition is said to be a 2-point decomposi-
tion. In this section, we provide the hardware motivation for using a 2-point set
decomposition. A canonical 2-point decomposition involves only H,’s for which
0 H, n=1,..., N. Canonical 2-point decompositions are important because

n?

dilation with such a 2-point set can be accomplished by a shift and an OR. Erosion
can be accomplished by a shift and an AND. We now review enough mathematical
morphology to illustrate these facts.

We begin by stating the relationships among dilation, erosion, set union, and set
intersection. These relationships are all easily proven in a few steps using the
definitions of the operations:

Ae(BeaC)=(4eB)eC

Ae(BuC)=(4eB)Uu(4eC)
(AUB)eC=(4d® C)U(B®C)
(AnB)eC=(4eC)n(BeC)
Ae(BucC)=(4eB)n(4deC).

Next we need the definition of translate. Let X be a subset of EX and ¢ be an
element of EX. Then the translate of X by 7 is denoted by X, and is defined by

X,={y|/forsomex € X, y=x+1}.

In this context we call ¢ a shift and say that X has been translated by the shift ¢ or
that X has been shifted by z.
It follows immediately from the definition of dilation and erosion that
Xe {1} =X
Xe {1t} =X,
A®B =(4®B),
A© B =(AeB)_,=A_, 6B,

Since A @ (BU C)=(4 & B) U (A4 @ C) it follows directly that

AeB= | 4,
beB

This says that dilation can be accomplished by taking the union of all the translates
of A where the shifts in the translates come from B. Since 4 © (B U C) = (4 © B)
N (A © C), it follows directly that

AeB= )4,
beB

This says that erosion can be accomplished by taking the intersection of all the
translates of A, where the shifts in the translates are the negated members of B.
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The hardware consequences for using canonical decompositions are important. If
H = {0, h}, then

ABH=A,UAd, =AU A4,
AOH=4NA_,=ANA_,.

Dilation with H is accomplished by a shift to produce 4,, followed by a union with
A. Erosion with H is accomplished by a shift to produce 4_, followed by an
intersection with 4.

To compute a dilation of 4 with a canonical two point decomposition
H & ... @H,, the computation proceeds in the form

(~-((4deH)oH)® ) - H,

where each successive dilation is accomplished by taking the previous result, shifting
it and ORing the shifted result with the previous result to produce the next result.
That is, if H,={0,h,}, n=1,..., N,

B'=A®H =4UA4,
and

B"=B"'eH,,=B"'u(B"), n=2,...,N,

n=17

then the desired result 4 ® H, ® --- @ H,, = B",
Similarly, to compute an erosion of A with a canonical 2-point decomposition
H, ® --- @ Hy, the computation proceeds in the form

(~-((4eH)eoH,)e-)eH,

where each successive erosion is accomplished by taking the previous result shifting
it and ANDing the shifted result with the previous result to produce the next result.
That is, if

Bl=AoH =ANA_,
and

B"=B"'eH,  =B"1n(B"1)_, n=2,...,N

n—17

then the desired result 4 © (H, ® --- ® H,,) = B".

ITI. SEARCHING FOR THE DECOMPOSITION

111, 1. Overview

A structuring element § is decomposable into the N structuring elements
Hy,...,Hyifand onlyif S = H, & --- ® H,,. The problem we solve in this section
is to construct a decomposition of § having the smallest N, if one exists, where each
H, has no more members than the prescribed fixed number k determined by
hardware constraints. We also assume that S is finite in size.
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To determine such a decomposition of S, if one exists, requires a combinatorial
search process. The search begins at the root node. Consider an m-level mode. It
contains the partial decomposition H, ® -+ @ H,,. If there is no translation ¢ of
H & --- @ H, such that (H; @ --- @H,,), C S then the node dies. If there is a
translation which is a subset of S, then the node lives. Suppose that there are M
possible structuring elements which can be considered for H,, ;. Then this m-level
node has M children. If at some level in the tree no node survives, the tree search
terminates and S has no decomposition. If S has an optimal decomposition (a
decomposition with the smallest N), then one will be found by a breadth-first
search. It will be the first one found by a breadth-first search.

To help make this search be more efficient we show how to search over a form
equivalent to H; ® - -- ® H,, but one with fewer degrees of freedom. We establish
that if S = H, ® --- & Hy, then there exists a g and J,..., Jy such that

(1) #J,= #H,, n=1,...,N
@0eJ,n=1...,N
B)S={q)0),® - o,

@ {g}=S8e()e - al.
Since #J,= #H,, n=1,..., N, the number of unknowns required to determine
each J, is the same as that required to find each H,. The equivalent search is not
more difficult than the original search. However, since it is known that 0 € J,,
n=1,..., N, there is one less unknown element to search over to determine each

J,. Thus the search to determine J,, ..., Jy will be less complex than the search to
determine H,,..., Hy. Since {g} = S © (J, & --- &J,), the added unknown g is
determined without search once J,, ..., Jy have been determined.

To assure a finite or terminating search, we show that the kinds of elements each
J, can contain are limited to differences between elements of S. Thus if S is finite,
the number of possibilities for each element of J, is finite.

Finally, we establish that the search required to determine J,,..., J, can be made
more efficient by the employment of forward checking. Forward checking tree
searches never instantiate a possibility if somewhere earlier in the tree search the
possibility failed and the problem guarantees that if a possibility fails any place in
the tree search then it must fail in each instance it is instantiated anywhere in the
subtree below where it inmitially failed. In the case of the structuring element
decomposition problem, we show that if at some m-level node of the tree search
Ji, ..., J, have been determined, then the only J that need be considered for any
node in the subtree below this node must be a J satisfying

(TeJ)oJaoK=S§
where

T=SoK
K=J® - &J

m-

This happens because if S has the decomposition S = {g} & J, & --- &J, then it
necessarily follows that S =[Se (J;@ --- aJ)]e(J;® --- ®J),n=1,...,N.
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Hence if for some n, S#[S©(J;® - ®J)] ® (J/; @ --- ®J) all possible
completions of the partial decomposition J, ® --- @&J, to the decomposition
J; @ -+ @J, must fail.

III. 2. Details

First we establish that if § = H, @ --- @ H,, then there is an equivalent decom-
position S = {q} ®J; & --- @J,, where #J, = #H_and 0 €J,n=1...,N,
and {g}=S6©(J,® --- &J,). To do this we use the concept of a translate
introduced in Section IIL.

To see why S = H, & --- @ Hy implies S= (g} @ J, & - - @®J), select one ¢,
from each H,, n = 1,..., N. Define J, = (H,)_, = {h|forsomex € H, h = x —
t,}. Since ¢, € H,, it is obvious that J, must contain the origin. Since each J, is just
the translate of H,, #J, = #H,. Now consider H, & --- @ H w

H & -8Hy=(J)no- - ®(Jy):,
=(N,®- -+ -+t
— 8 e W g =g BT, 8 e B

where {g} =1, + -+ +1,.

To prove that if S={g}®J & - - &J, implies that {g}) =S8
(J; ® --- ®Jy) is more involved. First we establish in Propositions 1 and 2 that if
H is non-empty and finite then H, C H implies x = 0. From this it will follow in
Proposition 3 that { p} = H, © H. From there it follows immediately in Proposi-
tion 4 that S = {4} @ J implies {¢} = § © J. Taking J = J1® -+ @Jy, we have
our result.

ProOpoSITION 1. H, C H for every x and h € H imply h + kx € H for every x
and for every nonnegative integer k.

Proof. When k=0, h+ kx="h and we have h € H by assumption. Suppose
h + kx € H We will show that 7+ (k+ 1)x € H. If h + kx € H and H,. C H,
then (h + kx) + x € H. Hence h + (k + 1)x € H. By induction % + kx € H for
every nonnegative integer k.

PROPOSITION 2. Suppose H is non-empty and bounded. Then H_C H implies
x=0.

Proof. Suppose H, C H and x + 0. Since H is non-empty there exists some
h € H.Now h € H and H, C H implies h + kx € H for every nonnegative integer
k.Butlim, , h + kx = oo, which contradicts the boundedness of H. Hence x = 0.

PROPOSITION 3.  Suppose H is non-empty and bounded. Then {p}=H,8 H.

Proof. Let x € HP © H.Then foreveryhe H, x + h € H,.Hence H, C H,or
H,_, < H. But H non-empty and bounded and H, _ » C H imply x —p =0, or

X

x = p. Since x was an arbitrary point in H,eH H,e H={p).

COROLLARY. Suppose J is non-empty and bounded. Then S = {q} ® J implies
{g}=SeJ

Proof. S = {q} ®J implies § = Jo- J non-empty and bounded implies {q} =
J,© J. Since S = J,, we have {g} = S e J.
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Next we establish thatif S = {g}® J, & --- &Jy, where0 € J, n=1,..., N,
then j € J, implies there exists a p, € S and p, € § such that j = p; — p,. Since
dilation is commutative, we can without loss of generality consider an S of the form
S=A@&J, where 0 €J, and show that each j € J consists of the difference
between a pair of elements of S. The proof consists of two steps as indicated in
Propositions 4, 5, and 6. Proposition 4 establishes that the opening (S © J) ® J is
always contained in S. Proposition 5 establishes that if § = 4 @ J then S = (S ©
J) @ J. And Proposition 6 proves that if § = (S© J) @& J with 0 €J then j€J
implies that for some p; € Sand p, € S, j=p; — P,

DerFINITION. The opening of S by J is denoted by SoJ and is defined by
SeJ=(S5aJ)sJ

ProrosiTION 4. SeoJ C S.

Proof. Let s € SeJ. Then there exists an x € S ©J and j€J such that
§=x+j. But x € S 6J implies that for every y€J, x + y € S. Since j € J,
x +j€S8.But s =x 4+ sothat s € S.

PrOPOSITION 5. IfS=A & Jthen S = SeoJ.

Proof. Let s € S. Since S = A @ J, there exists an a € 4 and j € J such that
s=a+j Butforeveryx€ 4 and j€J, x +j € S. Since a € 4, we must have
foreveryy €J,a+ y € S. Thisimpliesae€ S© J Nows=a +jwithae SoJ
and jeJ imply S€(SeJ)@®J. Hence SC(S©J)®J. By Proposition 4,
SeoJ C 8. Finally, S = SeJ.

PROPOSITION 6. Suppose S =SoJ and 0 € J. Then j € J implies that there
exists ap, € S and p, € S such that j = p; — p,.

Proof. Let j € J. By definition of dilation, if § = S¢J then there exists an
s€Sand ye SeJsuchthat y+ =35 Since ye So J, foreveryz € J,y + z
€S But 0 €J. Hence, y +0 € § so that y€ S. Thus j=4s —y, where s € §
and y € §.

We can make immediate use of the fact that each structuring element consists of
members which are differences between members of S. Suppose that § has m
members and that each subscripted J must have k members, one of which is 0.
Each member of J consists of the difference between a pair of members of S. There
are n = m(m — 1) possible differences. From these n possibilities each J must
choose k — 1 members, the kth member being 0. The order in which the members
are chosen is not important. The number of different possibilities for J is then
M = n!/(n — k + 1){(k — 1)!. We designate these possibilities J%, .. ., T,

In the case of 2-point structuring elements, there are even less possibilities since it
is not necessary to consider a structuring element and its translate. If H = {0, h} is
one structuring element which is generated by a difference, then its translate by —A,
H_, = {—h,0}, is another one which will also be generated by a difference. Only
one is really needed in the decomposition, since any decomposition which involved
H_, could be changed to a decomposition which involves H instead, just by
transferring the translation to the ¢ in the decomposition S = {¢g} @ J; & --- &J,.

In the brute force tree search each node has M children consisting of precisely
JY, ..., JM. However, since dilation is commutative, a brute force tree search would
find a decomposition solution J* @& J2 @ --- ®J'~ and independently find N!
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more decomposition solutions, each of the form Jm @ J"™ @ ... @J"% where
(Rys y,..., ny) is a permutation of (i, iy,..., iy). This additional work is easily
eliminated by a restricted tree search. If a node in the tree is associated with
possibility J4, then instead of having M children J%,..., J™, it only need have
M — g + 1 children J9, ..., J™ It is obvious that this restricted tree search does

not miss any decomposition. Suppose, for example, that J" @ --- ®@J~ is a
decomposition. Then there is some permutation (n,..., ny) of (iy,..., i) satisfy-
ing ny <ny, < -+ < ny. Thus the restricted tree search will find the decomposi-
tion J™ & .-+ @J"¥ which is equal to J4 @ --- @J~, since dilation is commuta-
tive. It is also obvious that any two decompositions the restricted tree search
produces must be different for each permutation of (i, ..., iy) can only occur once
in a representation constrained so that iy < i, < -+ <i,.

Consider the state of affairs at a level m + 1 node of the tree search. Here
Ji5..., J, have already been determined. Let K, =J, & --- &J,. K, represents
the partial decomposition of S determined for the branch of the tree search
terminating at the level m node. Let T,, = § & K,,. T, represents that part of S
which is yet to be decomposed.

We assume that § has the form S = {¢} @ J, ® --- &J,, N > m, and we need
to determine a possible value J for J_ ;. Rewriting the form of S as

S = ({q} @Jm+2 & - éB‘]N) ® Km ® Jm-l»l
we see that by Proposition 5, a value J for J,,,, must satisfy

S=(Se(K,aJ)) s (K, ®J)
=(T,eJ)eJ &K,

§ must be open under J & K, (i.e., the opening of S by J ® K,, must equal S),
since any J for which

s+(T,el)e ek,

implies that there can exist no decomposition of S at this level m node involving
JOK,,.

Not only is this true for the level m node under consideration, but it is also true
at every node in the subtree below this level m node. To see this let n > m.
Consider (7,8 J)® J & K

(T,eJ)eJeoK,=((SekK,)eJ)eJaK,
=(Se(K,eJ)) & (K,0J).
For J to be instantiated as a child of this level n node, it must satisfy
(Se(k,eJ))e (K, ®J)=S(K,&J)=S.

Now K,@J=J, & --- @], @J=(K,0J)& (J,.;®---®J), and we can
prove that if S is open under a dilation of two structuring elements, then S is open
under either of the structuring elements. We establish this first by a characterization
of opening in Proposition 7 from which the stated result follows almost immediately
in Proposition 8. The contrapositive of this result is that if S is not open under a
structuring element A4, then § is not open under the dilation of 4 with any other
structuring element. Since K, ® J is the dilation of (K, ®J) with (J,,,
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& --- &J)) we have the required result: if § # (7, © J) @ J @ K,, then there can
exist no decomposition of S involving J at this level m node or any node contained
in the subtree below this level m node.

PROPOSITION 7. So A = {x € S| for somet, x€ 4, C S}.

Proof. Suppose x € § and for some ¢, x € 4, C S. Hence, for every g € A4,
a +t € S and there exists a y € 4 such that x =y + 7. But ¢ + ¢t € § for every
a € A implies by definition of erosion that t € S © 4. And x =y + ¢ with y € 4
and ¢ € § © A implies by definition of dilation that x € (S © A) ® 4.

Suppose x € (S © 4) ® A. Then there exists a y € § © 4 and an a € 4 such
that x=y +a. Since yESO A4, y+tzE€Sforeveryz€ 4, 4,C S But x=y
+ a with a € 4 implies x € 4.

PrOPOSITION 8. § = Seo(4 @& B) implies S = S A.

Proof. Suppose § = Se°(4 @ B). Let x € S. By Proposition 7, there exists a ¢
such that x € (4 @ B), C S. Hence there exists a b € B such that x € (4),,, C S.
By Proposition 7, x € So A. Thus, S € S A. But by Proposition 4 it is true that
S 2 So A. Therefore, S = S+ 4.

III. 3. The Tree Search

In this section we give a complete description of the tree search using the
understanding developed in Section III.2 plus a few additional computational
efficiencies which follow immediately from what we already developed. When a level
m node is born, it is given a name J,, which is the mth structuring element in the
decomposition of S. It is also given a heritage which consists of

(1) a restricted sequence L, containing all of node m’s future generation
descendent name possibilities,

(2) the partial decomposition K,,=J, & --- &J,,, and
(3) the undecomposed part 7,, = S © K.

The sequence L, is ordered according to the initial ordering J%, ..., J™ of all
possible structuring elements that can participate in a decomposition, as discussed
in Section II1.2. The sequence L,, is, therefore, a subsequence of (J%,..., JM). The
partial decomposition satisfies S K,, = S. Hence T,, & K,, = S.

To accomplish the tree search, the node first goes through labor and then gives
birth. The labor is accomplished by performing a forward check through the
sequence L, of all future generation children possibilities in the ancestral subtree
below the node. The forward checking eliminates those children who cannot
possibly participate in a decomposition solution. The reduced sequence is called L}
and it is generated by selecting each J in turn from L, and then checking whether
or not S=(T,8J)&(J&K,) The verification proceeds in three steps. It
follows immediately from the definition of dilation that if S=(7,6J)@®
(J ® K,,), then it must necessarily follow that #S < #(T,, 6 J) - #(J & K,). So
in the first step, 7., © J and J @ K, are computed and the inequality checked. If
the inequality is not satisfied, J is not put into L¥* and the next J from L, is
selected. If the inequality is satisfied, then the dilation (7, © J) @ J is performed. If
(T,eJ)®J=T,, Jisputinto L% for in this case we must have [(7,, 8 J) & J]
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®K,=T,®K,=8 If(T,0J)&J=+T, then the dilation (7, 0 J) ® (J &
K,,) is performed and a comparison is made with S. If the comparison produces
inequality J is not put into LY and the next J is selected. If the comparison
produces equality J is put into L.

After the forward checking labor is finished, the level m node is ready to give
birth to its children. It sequences through the possible structuring elements in
Ly = (J",..., J*) and gives birth to each of them in succession. Each birth gives
rise to a level m + 1 node. The nth child is given the name J*. Thatis J, ,, = J.
For this child a new list L, ., of future generation children is created. L, .,
consists of all the possibilities in L¥* from the nth one to the last one. That is
L,y ={J",...,J%). Then the partial decomposition K, ,, created by perform-
ing the computation K, ,, = K, & J,,,. Then the reduced undecomposed part is
created by performing the computation 7,,,, = T,, © J,, ;. The name J, , ; and the
heritage L,, ., K,,,,, and T, ., are passed on to the level m + 1 node and the birth
of the nth child is completed.

Actually, the computation of 7, associated with the nth child J'* is performed
when it is verified that § = (7,,©J") & (J"" & K,,). But conceptually, the tree
search description is easier to understand without thinking about that computa-
tional efficiency.

The tree search is done in a breadth-first manner and any decomposition found
on the lowest level depth to produce a decomposition solution is an optimal
decomposition. A decomposition solution is easily recognized since when it occurs
on level N, #T, =1 and the single member of Ty is the g appearing in the
decomposition S = (g} @ J, & --- @J,,.

IV. TWO EXAMPLES

In the following we give two examples to diagrammatically explain the algorithm.
The decomposition is done by two point sets.

ExamMPLE 1. Let § be the structuring element to be decomposed. Suppose S has
the form S = {a, b, ¢, d }, where each element of S is a point in the plane and §
represents the vertices of a parallelogram. See Fig. 1.

It is clear that L, (root) contains four two point sets, J', J2, J3 J* where

J'={0,b - a)
J2=(0,c— b)
JP={0,c—-a)
J4={0,d-b)

c

Fi. 1. Tllustrates the geometry of the structuring element S for Example 1.
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Root :

Lolreot) = (b, 42, 3, NE)

]
=

Kq(root)
To(root) =5

Lo*(root) = {u',u%)

Nede 1 = J! Node 2 = J2
Ly(Node 1) =T, 42y Ly (Node 2) ={2)
K (Node 1) = J! K| (Node 2) = J2
Ti{Node 1) = fa, d} Ty(Node 2) = Ja, bj
Ly*(Node 1) = {J2) Li*(Node 2) = §
Node 3 = J2

Ly (Nede 3) =2y
Ky (Node 3) = J1 @ J2

T, (Nede 3) = {a]

Tz (Node 3) = 1

F1G. 2. Tllustrates the tree search for the S in example 1.

since neglecting signs, b — a, ¢ — b, ¢ — a, and d — b constitute all the differences
between pairs of elements of S. It is not necessary to consider the following point
sets: {0,a — b}, {0,b—c}, {0,a —c}, {0, b — d}, since they are all translates of
J, 7%, J3, J4 See Fig. 2.

The optimal decomposition of S: S = {a} @ J! @& J2,

ExampLE 2. Let § be a 5 X 3 rectangle whose corner points are missing.
Suppose S has a form § = {a,, a,, a;, by, b,, by, b, bs, ¢;, ¢,, ¢;}, where the a’s
represent equally spaced points on the top row, the b’s represent equally spaced
points on the middle row, and the c’s represent equally spaced points on the bottom

F16. 3. Illustrates the geometry of the structuring element S of Example 2.
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F1G. 4. Illustrates the tree search for Example 2. The # sign indicates the node dies.

root:
Ly(root) = (J':1 <i<14)
Ky (root) = {0}

Ty(root) = §
L (root) = (J', J3, J*)
Node 1 = J

Ly(Node 1) = (J', 13, J°)

K,(Node 1) = J!

Tiy(Node 1) = {ay, a3, by, by, by, by, €1, €3}
L¥(Node 1) = (J', 1*, J%)

Node 2 = J?

L,(Node 2) = (J?, J%)

K,(Node 2) = J>

Ti(Node 2) = {a,, a,, a3, by, by, bs}
L¥(Node 2) = (J*)

Node 3 = J°

Ly(Node 3) = (J°)

K, (Node 3) = J*

Ti(Node 3) = {a;, a,, a3, by, by, by}
L¥(Node 3) = @

Node 4 = J!

L,(Node 4) = (J', J?, J*)
K;(Node d) = J' & J*!

Ty(Node 4) = {a,, by, by, b3, ¢}
L*(Node 4) = (J?, J°)

Node 5 = J*

L,(Node 5) = (J?, J%)
K,(Node 5) =J' & el
T,(Node 5) = {ay, ay, by, by }
L¥(Node 5) = (J*)

Node 6 = J°

L,(Node 6) = (J*)

K,(Node 6) = J! & J*
T,(Node 6) = {a;, a3, by, by}
L¥(Node 6) = @

Node 7 = J°

L,(Node 7) = (J°)

K,(Node 7) = J° @ J*

T,(Node 7) = {ay, a;, a3}
¥(Node7) = @

Node 8 = J3

Ly (Node 8) = (J3,J%)
Ky(Node®)=J' @ J' @ J*
Ty(Node 8) = {a, by}
L¥(Node 8) = (J*)

Node 9 = J°

Ly(Node 9) = (J*)

Ky(Node9) =J' @ J' @ J°

T3(Node 9) = {a, b, }
F(Node 9) = @

Node 10 = J3

Ly(Node 10) = (J*)
Ky(Node 10) =J' @ J* & J°
T;(Node 10) = {a,a,}

Node 11 = J°

L,(Node 11) = (J%)
K,Nodell)=TlaJ'eP o)’
T, (Node 11) = {a;)

#T,(Node 11) = 1

Ilustrates the state of the search for each node in the search tree of Example 2.
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row. See Fig. 3. It is easy to see that L, (root) = (J" 1 < i < 14), where

J'={0,a, - a}, JP={0,a; - ay}, J3={O’b1_a1}>
T4 ={0,b, - a}, J*={0,by - a}, o= {0, By~ &y},
J7=1{0,bs — a,}, JE={0,¢, — a;}, J?={0,¢c;— a;},

JO = {0,6,—a;}, JU={0,¢c, - a,}, T2 = {0,¢; - a;},
= (0,by - ), = (0, — ).

See also Figs. 4 and 5.
The optimal decomposition of S: S = {g,}®J '@ J @ J>® J°

V. CONCLUSION

We have given a complete and optimal solution to the morphological decomposi-
tion of a structuring element by dilations. This decomposition problem has the same
value for hardware performing erosions and dilations as the iterated kernel decom-
position problem has for hardware performing convolutions. In the convolution
case, a large kernel is given and it must be performed on hardware which can only
perform small kernel convolutions quickly. In the morphology case, a large structur-
ing element is given and a morphological erosion or dilation must be performed
with it on hardware which is only capable of executing small structuring element
morphological operations quickly.

The essence of the solution technique was (1) the recognition that structuring
elements participating in the decomposition must have members which are the
differences between members of the given structuring element and (2) that it is
necessary for the undecomposed part of the structuring element to be morphologi-
cally open with respect to any structuring element participating in its further
decomposition. Based on these two facts plus some basic properties of morphologi-
cal operations, it was possible to describe a reasonably efficient tree search to
determine the optimal decompositions.
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