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Abstract—Edge operators based on gray-scale morphologic operations
are introduced. These operators can be efficiently implemented in near
real time machine vision systems which have special hardware support for
gray-scale morphologic operations. The simplest morphologic edge
detectors are the dilation residue and erosion residue operators. The
underlying motivation for these and some of their combinations are
discussed and justified. Finally, the blur-minimum morphologic edge
operator is defined. Its inherent noise sensitivity is less than the dilation or
the erosion residue operators. Some experimental results are provided to
show the validity of these morphologic operators. When compared with
the enhancement/thresholding edge detectors and the cubic facet second
derivative zero-crossing edge operator, the results show that all the edge
operators have similar performance when the noise is small. However, as
the noise increases, the second derivative zero-crossing edge operator and
the blur-minimum morphologic edge operator have much better perform-
ance than the rest of the operators. The advantage of the blur-minimum
edge operator is that it is less computationally complex than the facet edge
operator.

I. INTRODUCTION

EDGES in a scene are caused by changes in some physical
properties of surfaces of the scene, such as illumination
(shadows, for example), geometry (orientation or depth}, and
reflectance. As there is a direct relationship between the edges
and the physical properties of a scene, much of the scene
information can be recovered from an edge image. Thus edge
detection is a key step in the early processing of a computer
vision system. Edge detection converts a gray-scale image into
a binary edge image which may have direction information.
The transformation preserves a great deal of the useful
information in the original image. The rest of the vision
processes can deal with the simple form, instead of dealing
with the gray-scale image directly.

One conventional approach to the problem of edge detection
employs high spatial frequency enhancement/thresholding
algorithms. These algorithms use spatial operators to enhance
the original image, forming an edge enhancement strength
map. A threshold is then applied to the edge strength map to
determine the presence or absence of edge pixels.

The spatial operators can be differential operators or
template matching operators (Rosenfeld and Kak [33]).
Differential operators are typified by the Sobel edge operator
(Duda et al. [4]). The template-matching operators include the
Prewitt operator, the Kirsch operator, and the Robinson three-
level and five-level operators. Both approaches are extremely
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widely used and are quite old in concept (see Prewitt [31],
Kirsch [16], and Robinson [32]). However, most of the
existing masks for these approaches appear rather ad hoc, and
their theory is still being developed (for example, see Foglein
[5D.

A number of edge detectors involve fitting a function to the
image surface. They estimate edge locations from the best-
fitting surface that approximates the real image surface. One
of the earliest examples of this method was the Prewitt
operator [31]. Another early work is the Hueckel detector
[12], [13]. Brooks [2], Hummel [14], and Morgenthaler [26],
[27] all use the surface fit concept in determining edges.

Haralick [7] proposed fitting the image with small planar
surfaces or ‘‘facets.”” Edges are marked at pixels which
belong to two such facets when the parameters of the two
surfaces are inconsistent. The test for consistency is based on
goodness of fit of each surface within its neighborhood, a x?
statistic. In subsequent work on edge detection, Haralick 91,
[10] does a least squares fit to a bivariate cubic polynomial in
the pixel’s central neighborhood and determines directional
derivatives from the fitting coefficients. Instead of computing
an isotropic form of the second derivative, Haralick computes
the second directional derivative in the direction of the
gradient. If a pixel contains a high enough negatively sloped
zero crossing of the second directional derivative taken in the
direction of the gradient, the pixel is called an edge pixel.

Some recent edge detectors attempt to enhance edges by
filtering. Modestino and Fries [22] suggested a procedure for
detecting edges in noisy pictures using a Wiener filtering
approach. Shanmugan ef al. [35] proposed the use of an
optimal two-dimensional linear operator for which the Laplac-
ian of a Gaussian is an approximation. Marr and Hildreth [19]
determined edges by first smoothing the image with a
Gaussian filter and then taking the Laplacian of the resulting
image.

A context dependent edge detection using a relaxavion
labeling scheme was proposed by Zucker ef al. [40]. The
general context approach is described in Haralick and Lee
[11]. Montanari [23] and Martelli [20] proposed methods of
linking together edge segments based on dynamic program-
ming and heuristic search. Brenner ef a/. [41] implemented a
boundary finding scheme for histopathology automation. The
scheme is also based on heuristic search.

Mathematical morphology is an approach to image process-
ing based on set theoretic concepts of shape. The early works
include Dineen [3], Kirsch [15], Preston [28]-[30], Landsman
et al. [15], Moore [24], [25], and Golay [6]. It was formalized
at the Eéole de Mines in Paris in the mid 1970°s by Matheron
[21], and extended by Serra [34] and Sternberg [36], [37]. It
has grown to envelop a variety of applications and hardwares.
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Several companies manufacturing machine vision hardware
successfully use mathematical morphology to solve industrial
machine vision problems (MVI) [18]. The machines they
produce can deal with morphological operations more effi-
ciently than other operations. Judging by the scientific archival
literature, the techniques of mathematical morphology seem to
be less used and less explored by the academic research
communities.

This paper explores the use of gray-scale morphology in
edge detection. Despite their computational simplicity and
effectiveness, we are not aware of any gray-scale morphologic
edge detectors discussed in the image processing literature.

In the next section, we define some of the basic morphologic
operations. In Section III, we introduce the simplest morpho-
logic edge operators and explain their performance. We then
introduce different combinations of the simple operators.
Section IV discusses some improved morphologic edge
operators. Section V provides some experimental results of the
morphologic edge operators and of comparisons with the cubic
facet edge detector (Haralick [10]) and the enhancement/
thresholding edge operators.

1I. Basic MorpHOLOGIC OPERATIONS

An image can be represented by a set of pixels. The
morphologic operators work with two images: the original
data to be analyzed and a structuring element, which is
analogous to the kernel of a convolution operation. Each
structuring element has a shape which can be thought of as a
parameter to the operation.

First we consider the case of binary images. Let 4 be the set
of points representing the binary one pixels of the original
binary image and B be the set of points representing the binary
one pixels of a structuring element. The dilation of A by B,
denoted A @ B, is defined by

A e B=U {b+alb € B}. (1)
acA
The erosion of A by B, denoted A e B, is defined by
A e B={p|B+p € A}. 2)

The extensions of the morphologic transformations from
binary into gray-scale processing by Sternberg [36]-[39] in the
mid 1980’s introduced a natural morphologic generalization of
the dilation and erosion operations.

The dilation of a gray-scale image f by a gray-scale
structuring element b is denoted by d and is defined by

d(r, cy=max (f(r—i, c=j)+b(, Jj)) 3

where the maximum is taken over all (i, j) in the domain of b
such that (r — i, ¢ — j) is in the domain of f. The domain of d
is the dilation of the domain of f with the domain of 6. The
erosion of a gray-scale image f by a structuring element b is
denoted by e and is defined by

e(r, o)=min (f(r+i, c+j)—b(, /) 4
L
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where the minimum is taken over all (7, j ) in the domain of b.
The domain of e is the domain of f eroded by the domain of b.

The algorithms of mathematical morphology combine se-
quences of dilations and erosions, and their residues. These
operations often produce useful and pleasantly surprising
results.

III. UNDERSTANDING THE SIMPLE MoRrPHOLOGIC EDGE
DETECTORS

The purpose of this section is to explore some simple
morphologic edge detectors which do not work well to provide
some understanding of morphologic operators and to provide
the basis for those discussed in Section IV which do work
well. A simple method of performing gray-scale edge detec-
tion in a morphology-based vision system is to take the
difference between an image and its erosion by a small rod-
shaped structuring element. The difference image is the image
of edge strength. We can then select an appropriate threshold
value to threshold the edge strength image into a binary edge
image.

We denote the center of a local neighborhood by (0, 0) and a
point which is a distance ér from the center in row direction
and a distance 6c¢ from the center in column direction by (ér,
8c). We define the rod as a gray-scale structuring element
which is flat on top and has a disk-shaped domain. As an
example, the domain of the structuring element rod of radius 1
is defined by the set

Drod]:{(()? _1): (Os 1)! (—1, O): (1! O)}

Let b:Dyoq — {0, - -+, 255} be the rod 1 structuring element.
Since a rod is flat on top, the gray-scale value of all the b(r, c),
(r, ¢) € Dy, is zero.

The erosion of a gray-scale image f(r, c) by the structuring
element rod of radius 1 can be carried out by the rule:

[f(f-i'l‘, C+j)_b(rs C)]

min

e(r, )=
(r, ©) (./YEDrod |

(&)
which in the case of a zero height structuring element becomes

©)

min

e(r, 0)=
{i,/)YEDrod 1

f(r+i, e+ )]

The erosion residue edge detector produces the edge strength
image G, defined by

Ge(r, C):f(r, C)—E(r, C)

=f(r,c)— min f(r+i, c+Jj)
(L)EDrod 1
= max [f(r, )=f(r+i, c+J)] )]
{1,/)E Drog |

Since D,y includes exactly the four connected neighbors of
position (0, 0), the edge strength image we obtain is

G.(r, c)= max [f(r, ©)~f(i, J)]

(i.,/)E Na(r.c)

@®)

where N,(r, ¢) is the set of four connected neighbors of
position (r, ¢).

We can now interpret the morphologic edge operator as a
local neighborhood nonlinear operator which takes the maxi-
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mum among the four first differences in directions 0°, 90°,
180°, and 270°.

A natural nonmorphological variation of this operator takes
the summation instead of maximization. This is the negative of
the familiar linear digital Laplacian operator V2f(r, c)
(Rosenfeld [33]) which is the digital convolution of f(r, ¢) with
the kernel

0 -1 0
i &
0 -1 O

To compare the performance of the nonlinear morphological
edge operator with the linear Laplacian operator, we apply
them to four perfect digital step edge patterns of edge contrast
E running in directions 0°, 90°, 45°, and 135°, respectively,
as

E EE EEO E EE EEE
EEE EEO EEQ 0 EE
000 EEQOQ E Q0O 00E
Eye Eyge Eyse Ej350

The magnitude of the responses of G and V2f are as follows:

Ey Egpe Esse Epsse
E E E E
2E 2F .

Ge
Vif. E E

Thus the responses of V2f to these edges are E, E, 2E, and
2E, a bias of two in favor of the diagonal edges. These biases
are eliminated if we use the morphological operator G, instead
of V2f. G, yields values in the same range as the original gray-
scale values, which is most convenient on any computer vision
system that has frame buffer limitations on the range of gray-
scale values.

Next we try both operators on a single noise point pattern
with noise height A:

0 0 0

0 A 0.

0 0 0
The responses of G, and VZfare h and 4h, respectively. Thus
although both G, and V2f are noise sensitive, the noise
response of V2f is four times the response of G, and hence
four times the response of V2f on a vertical or horizontal ideal
step edge with edge contrast A.

It is also possible to increase the reighborhood size of the
morphologic edge operator by increasing the size of the
structuring element used on the erosion operation. For
example, we can have an eight-connected neighborhood edge
operator by changing the structuring element to be flat on top
and have domain

Ds‘cunnecled:{(_ 1! - 1), (07 —1), (ls = 1); (— la O)a

(11 O)s ('" 15 1): (0: 1)’ (la 1)}- (9)
The edge strength image we obtain is then
GeS—-cnnnecled(ra c)= - max [f{rr ) _f(ia .])] (10)
(iL)EN8(r.e)
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where Ng(r, ¢) 1s the set of eight connected neighbors of image
position (r, ¢).

The corresponding linear Laplacian operator which has
eight counected neighborhood support can be implemented as
the digital convolution of f(r, ¢) with the kernel

~1 =i —4
-1 8 =1
~1 =1

We now apply both operators to the four perfect digital step
edge patterns Eye, Egp°, Eys°, and Ej3so. The magnitude of
the responses of G, and V2f are as follows:

Eye Ege Eys° Epse
Ges — connected E E E E
szﬁ—connected 3E 3E 3E 3E.

With increased neighborhood size, the V2f operator achieves
uniform performance on these edges. The response of both
operators on the single noise point pattern are 4 and 8h,
respectively. Thus both operators are noise sensitive, the
Laplacian being more noise sensitive. This explains why the
raw Laplacian operator is not a good edge detector in noisy
images.

It is now common to filter noisy images by a Gaussian filter
and then apply a Laplacian operator. Edges are located at zero-
crossings of the Laplacian (Marr and Hildreth [19]). How-
ever, the Gaussian filter can shift the positions of most of the
edges in real images.

The erosion residue morphological edge detector is a
nonlinear Laplacian-like operator which is also noise sensi-
tive; it cannot be a good edge detector for noisy images. The
rule that increasing the neighborhood size of the operator will
reduce the amount of noise fails with the erosion residue
morphological edge detector. Consider, for example, the
erosion residue morphological edge detector on the following
image pattern

FFFFF

FFFFF
FFOFF.
FFFFF
FFFFF

The pattern shown above is a flat area with pixel intensity F
and a noise spike at the center of this area with pixel intensity
zero. The response of the morphological edge operator is

00000

oo oo
o

F
0
F
0

St
cooco

which has the same value F for each of the eight-connected
neighbors of the center point. If we increase the size of the
neighborhood support of the morphological operator, the
number of pixels which are assigned the value F' will also
increase accordingly. As a matter of fact, each pixel of the
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neighborhood support except the center point will be assigned

the value F. Thus a larger neighborhood can result in worse’

results with this operator.

The erosion residue morphological edge detector is position
biased. It only gives edge strength to border pixels on that side
of the edge where the pixels have the higher value. For
example, the operator only gives the inside boundary of the
higher valued checkers of a perfect checkerboard image its
corresponding edge strength and gives the outside boundary of
the higher valued checkers edge strength zero.

To resolve this bias and give both inside and outside
boundaries of the checkers their corresponding edge strengths,
the dilation residue morphological edge detector can be used in
conjunction with the erosion residue operator. The dilation
residue operator takes the difference between a dilated image
and its original image. For example, if the structuring element
for the dilation is a rod of radius 1, then the dilation of the
gray-scale image f(r, ¢) is

d(r,e)= max [f(r—i,c=Jj)] (1
(i,/)E Drod 1
and the edge strength image is
Gy(r, c)=d(r, c)=f(r, c)
= max [f(i, )-f(r ol (12)
(i /)ENa(x, )

It is obvious that this operator only gives edge strength to that
side of the edge which has the lower value.

A position unbiased edge operator can be obtained by a
combination of the operators G.(r, ¢) and Gy(r, ¢) using the
pixelwise minimum, maximum, or sum. Let us consider the
maximum first. Define

E(r’ C):max (Ge(rs C): Gd(r’ C))
= max |f(r, )—f(i, DI

(13)
(LDEN ©)

where N(r, c) is the neighborhood support of the structuring
element for both dilation and erosion operations.

To understand the performance of this operator, we apply it
on four perfect digital step edge patterns of edge contrast E,
one ideal ramp edge pattern of edge contrast E, and one single
noise pattern of noise height N, as follows:

EEEEE EEEO00O
EEEEE EEEOQ0DO
EEEEE EEEO0O
00000 EEEO0OD
00000 EEEO0O

Eye Egye
EEEEE EEEEE
EEEEDO 0OEEEFE
EEEO0O 00EEE
EEO0OQ0O 000EE
E0O0O0O 0000F

Eyse
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00E2EE 0000O00O0
0O0E2ZEE 000CO00O0
0O0E2EE O0O0NOO
0O0E2EE 00000
0O0E2EE 00000
E 4o noise

The results of this edge operator
support is Ny(r, c) are

when the neighborhood

00000 0O 0EEO
00000 0O0EEDO
EEEEE O00EEDO
EEEEE O0O0EEDO
00000 OOFEETDO
Eqge Eg°
0000E EO0O0O0O0
0O00EE EEO0O0O0
00EEQOQ OEEO0O
0O EEO0O 0 0EEDO
EE0O0O0 000FEE
Eyse Ej3s°
0 E/2 E/2 E/2 0 00000
0 E/2 E/2 E/2 0 0O0ONOO
0 E/2 E/2 E/Z20 O0ONNNO
0 E/2 E/2 E/2 0 00ONODO
0 E/2 E/2 E/2 0 00000
E,y° noise

Now the performance of the edge operator can be easily
evaluated. This operator performs perfectly on ideal step edge
patterns. However, it is sensitive to noise. It responds with
five noise edge points to a single noise point. The results are
even worse for the ideal ramp edge pattern. The detected edge
pattern for the ramp should have a single pixel width edge line,
and its edge strength should be equal to the edge contrast.
Instead, this operator assigns edge strength of only half the
edge contrast, and the detected edge is wide, three pixels in
width.

We now consider the edge operator which is defined as the
summation of G.(r, ¢) and G;(r, ¢). Thus

E(r, ¢)=G,(r, c)+ Gu(r, c). (14)
To see the performance of this operator, we apply it on the
edge patterns we used to test the maximum version edge

operator. The results of this edge operator when the neighbor-
hood support for dilation and erosion is Ny(r, ¢) are

00000 00EEOQ
00000 0 0OEEDOD
EEEEE OO0EEDO
EEEEE OO0EED
00000 0O0EEDO



146 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 2, APRIL 1987

0000E EO00O00O0
000FE EEO0O0O0
00EEDOD 0O EFEEO0O
0O EEO0DO 0 0FEED
EEO0OO0O0 000FEE
Eyse E\3s0
0 E/2 E E/2 0 00000
0 E/2 E E/2 0 0 0ONOO
0 E/2 E E/2 0 0O NNNDO
0 E/2 E E/2 0 0 0ONODO
0 E/2 E E/2 0 000O00O0
E.° noise

It is easy to see that, like the maximum version of this edge
operator, the summation version performs perfectly on ideal
step edge patterns and is also noise sensitive. It responds with
five noise edge points to a single noise point. However, for the
ideal ramp edge pattern, it detects an edge line whose edge
strength equals edge contrast and two lines on both sides of the
edge line whose edge strength equals half-edge contrast. Thus,
by thresholding with a value greater than half-edge contrast, it
is possible to have perfect performance on the ideal ramp edge
pattern in the sense that it detects a single width edge line.

Finally, we consider the edge operator which is defined as
the minimum of G.(r, ¢) and Gu(r, ¢). Hence

E(r, ¢)y=min {G.(r, ¢), G,(r, ¢)}. (15)

To understand the performance of this operator, we again
apply it on the edge patterns we used to test the maximum and
summation version edge operators. The results of this edge
operator when the neighborhood support for dilation and
erosion is Ny(r, ¢) are

00000 00000
00000 00000
000020 00000
00000 00000
00000 00000
Eye Eg°
0000EFE 00000
00000 00000
00000 00000
00000 00000
00000 00000
Eyse E\35°
00 E200 00000
00 E/200 00000
00 E200 00000
00 E200 00000
00 E200 00000
E g0 noise

The results of this operator are interesting. The performance
on the ideal ramp edge pattern is promising. The operator can

detect a single edge line with edge strength £/2, and it is noise
insensitive. It has no response when applied to the single noise
point. Unfortunately, it is not able to detect ideal step edge
patterns. This motivates a new edge operator which first
performs a blur operation to convert all the ideal step edges
into ideal ramp edges and then applies the minimum version of
the edge operator to them. In the next section, we will analyze
this blur-minimum operator and some variations in greater
detail.

IV. ErrecTivE MorrHOLOGIC EDGE OPERATORS

As shown in the previous section, the simple morphological
edge operators based on erosion or dilation residues are either
sensitive to noise or cannot detect ideal step edges. In this
section we discuss some effective morphological edge opera-
tors which can detect ideal step edges and are not noise
sensitive. They are the improved dilation and erosion residue
operators and the blur-minimum operator.

A. Improved Residue Operators

1) Improved Dilation Residue Operator: In this section
we introduce an improved version of the dilation residue
operator Gy(r, c). Let ay, a3, a3, a4, and D, be structuring
elements which are flat on top. Let the domains of these
structuring elements be given by

D, ={(-1, 0), (0, 1)}
Dn={0, -1, (1, 0)}
Dp={(-1,0), (0, - 1)}
Dy={(0, 1), (1, 0)}
Dy={(-1, -1, (-1,1), (1, =D, (1, D}. (16
The operator is defined by
G (r, ¢) =min {dilationp, . ,(r, ¢)=f(r, ¢),
dilationp,(r, €)= f(r, ¢), GJ(r, )} (A7)
where G/ (r, ¢) is defined by
G (r, ¢)=max {|(dilation,(r, ¢) - f(r, c))
— (dilation,s (r, €)= f(r, ©))|,
|(dilation,s(r, ¢) = f(r, ¢))
— (dilation,4(r, ¢)—f(r, c))|}. (18)

To see the performance of this operator, we apply it on four
perfect digital step edge patterns of edge contrast E, one ideal
ramp edge pattern of edge contrast E, and two single noise
patterns of noise height N:

EEEEE EEEOQOQ
EEFEEE EEEO0O0
EEEEE EEEO0O
00000 EEEO0O0
00000 EEEOQ0QOQ
Eq° Egp°
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EEEEE EEEEE
EEEEDOD O EEEE
EEEO0O 00FEEE
EEO0O0O 000FEE
E00O00O0 0000FEFE
Eys0 Eyss0
00 E/2 EFE 00000
00 E/2 EE 00000
00 E/2 EE 0O O0ONOO
00 E/2 EE 00000
0 0 E/2 EE 00000
E,q° noise 1
NNNNN
NNNNN
NNONN.
NNNNN
NNNNN
noise 2
The results of G g (r, ¢) are
00000 000EDO
00000 000EDO
00000 000EOD
EEEEE 000FEO
00000 000EQO
Ey° Egye
00000 00000
0000E EO0OO0O0O
000FEQO 0FE0O00
00EO0O0 0 0EO0DO
OEO0O0O 000FEO
Eyse Ej3s°
0 E/2 E/2 00 00000
0 E/2 E/2 00 00000O0
0 E/2 E/2 00 00000
0 E/2 E/2 00 00000
0 E/2 E/2 00 00000
E,q° noise 1
00000
00000
00000O0.
00000
00000
noise 2

Thus, like the simple dilation residue operator, this operator
assigns edge strength E to all the edge pixels which are on the
low value side of the ideal step edge, and it detects two edge
lines of half-edge contrast from ideal ramp edge patterns.
However, unlike the simple dilation residue operator, it will
not pick up a noise pixel. Hence this is an improved version of
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the G, (r, ¢) operator. It is also noted that this operator does
not need any blurring as preprocessing.

2) Improved Erosion Residue Operator: In this section we
introduce an improved version of the erosion residue operator
G(r, ©). Let a;, @, @3, a4, and D, be the structuring elements
which were defined in the previous section. Then the
improved erosion residue operator is defined by
G.(r, c)=min {f(r, ¢)—erosionp_, (7, ¢),

f{r, ¢)—erosionp,(r, ¢), G/ (r, )} (19)
where G (r, ¢) is defined as

G/ (r, c)=max {|(f(r, ¢)—erosion,(r, c))
_(f(rs C)_EI'OSiOI'laz(r, C))|,
|(f(r, ¢)—erosiongs(r, ¢))—(f(r, ¢)

—erosiong(r, ¢))|}. (20)

We apply this operator on the same edge and noise patterns
that we used in the previous section. The results are

00000 0O0EO0O
00000 00EO0DO
EEEEE O0OO0EO0O
00000 00EO0QO
00000 00EO0O
E0° E90°
0000FE EO0O0O00O
000EOQ 0OEO0O0O0
00EO0O0 00FEOCO
OE0O00O0 000FEO
E0O0O0O0 0000E
Eyse E\35°
00 E/2 E20 00000
00 E2 E/20 00000
00 E/2 E/2 0 00000
00 E/2 E/20 00000
00 E/2 E/2 0 00000
E,y° noise 1
00000
00000
00000
00000
00000
noise 2

Like G,(r, ), G . (r, c) assigns edge strength E to all the edge
points which are on the high value side of the ideal step edge
and detects two edge lines of half-edge contrast from ideal
ramp edge patterns. However, unlike the simple erosion
residue operator, it will not pick up the noise pixel. Hence this
is an improved version of the G,(r, ¢) operator.
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3) Putting G, and G; Together: Tt is natural that an
improved version of the morphologic edge operator which has
no position bias and is noise insensitive will be a combination
of the improved dilation residue and erosion residue operators.
Consider the sum of these two:

E'(r, ¢)=G/(r, )+ G i(r, ©). 21)

The results of this operator applied to the same test patterns are

00000 00EEDQDQ
00000 0 0EEDO
EEEEE 0O 0EED
EEEEE 00EEDOD
00000 0O 0EEDOD
Eqge Egge
0000F E00O00O
00 0EE EEOQOO0CO
00EEDO OEEO0DO
O EEO0DO 00EEDOD
EEO0O0O 000EE
Eys° E\35°
0 E/2 E E/2 0 00000
0 E/2 EE2O0 00000
0 E/2 E E/2 0 00000
0 E/2 E E/2 0 00000
0 E/2 EE2O0 00000
E, g° noise 1
00000
00000
00000
00000
00000
noise 2

The operator has perfect performance on ideal step edges and
single noise patterns. Thresholding with a threshold value
greater than E/2 perfectly detects ideal ramp edges. The
shortcoming of this operator is that it works onlyona3 X 3
local neighborhood. Thus its capability for reducing the effects
of noise is limited.

B. Blur and Minimum Operator
This morphological edge operator is defined by

Todge - surengeh = MR { I, — erosion (I,), dilation m-ny 22

where I, = blur {fippu} and blur {Lippu} is the input image
with a blurring operation. We use the same neighborhood size
for both the kernel of the blur and the structuring element of
the dilation and erosion.

Consider the following one-dimensional step edge sequence
as a motivation for this definition. In this sequence, the blur
uses a neighborhood of width three, and the erosion and
dilation use a flat structuring element having domain {-1,0,

1}.

original 0 O 0 0 E E E
E 2F
blur 0 0 0 3 3 E
E 2E
erosion of blur 0 O 0 0 3 T E
dilation of blur 0o O % 2—:? E E E
blur-erosion 0o 0 0 E E 1—5 0
3 3 3
o E E E
dilation-blur 0 0 3 3 3 0 0
E E
edge strength 0 0 0 3 3 0o 0

The advantage of this operator, as illustrated below, is that it
will not detect a single noise point:

original o 0 0 N O O O
i " N N N
ur 0 3 3 3 0 0
N N
erosion of blur 0o O 0 3 ? 0 0
o N N N N
dilation of blur 0O — — = = 0 0
3 3 3 3
N
blur-erosion 0 O ? 0 0 0 0
N
dilation-blur 0 3 0 0 0 0 0
edge strength o 0 0 O o O O

Now let us examine the performance of this operator on ideal
ramp edge sequences. Let &; be a one-dimensional sequence
which has ¢; = Oforalli = Oand ¢; = Eforalli > 5. Leta,
=g, foralli > j,i,j € {1, --+, 5}. Let the sequence e; be
the result of applying a blur-minimum operation of three point
support to the sequence g;. Then

g;=0 for all i<0

a ap
e=—e6=7

min (a3, a4— @)

ey =
: 3

min (@4 — @y, ds— )

&= 3 (23)

min (as— az, E—a3)
ey= 3
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E_a4 E'—HS
= ;€6=

3 3

€s

e;=0 forall i>6.

Thus, for an ideal ramp edge of three pixels (@, = @ = 0, a3
= E/2, a;, = as = E), the edge strength will be

e € € €3 ey €5 €
E E E
6 3 6

0 0 0

For an ideal ramp edge of four pixels (@, = @, = 0, a3 = E/
3, as = 2E/3, a; = E), the edge strength will be

€ € € € ey €5 &
E 2F 2FE FE
9 9 9 9

0 0

For an ideal ramp edge of five pixels (@, = 0, @, = E/4, 03 =
E/2, a, = 3E/4, as = F), the edge strength will be

e € € e & e €&
E E E E E :

0 — -— — — — 0
12 6 4 6 12

For an ideal ramp edge of six pixels (¢, = E/5, a, = 2E/5, a;
= 3E/5, a; = 4E/S, as = E), the edge strength will be

€y e é; e €4 € €5
E 2E E E 2E E 0 ’
15 15

15 15 5 5

For an ideal ramp edge of seven pixels (&, = E/6, a, = E/3,
ay = E/2,a, = 2E/3, as = 5E/6), the edge strength will be

e € € € €4 €5 &
E E E E E

18 9 6 6 6 9 138

The Slur-minimum morphologic edge operator is noise insen-
sitive. For the ideal step edge, it produces a result which has
nonzero edge strength on both the edge pixels. This is
consistent with the fact that an ideal step edge line should be
two pixels in width. However, due to the effect of blurring, the
edge strength assigned to the edge pixels is one third the edge
contrast. For ideal ramp edges of larger spatial extent, it will
assign a significant nonzero edge strength to more than one
pixel. However, the true edge pixel is usually given a higher
edge strength than its neighbors. Thus, by thresholding the
edge strength image with a suitable threshold value, we can
extract the ideal ramp edges. It is alsu noted that as the spatial
extent of the ideal ramp edge increases, the edge contrast of
the detected edge point decreases. For the case of a seven pixel
ramp edge, the detected edge strength of the edge point is the
same as the edge strength of its immediate adjacent pixels.
The reason why we need a small amount of blurring is that
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this operator only assigns a pixel to be an edge pixel if it has a
value in the middle between two gray-scale extremes of the
neighborhood centered at the given pixel. Thus there must be
significant differences in gray-scale value between the pixel
and both its nearby gray-scale maximum and nearby gray-
scale minimum pixels. The edge pixels are the two pixels on
either side of the jump. For the ideal step edge, these pixels are
a local maximum and minimum. Hence this operator cannot
detect the ideal step edges unless we blur the ideal step edge
before applying it.

To have a better understanding of this edge operator, we
give a derivation which explains this operator as an easily
understandable local neighborhood nonlinear operator. Let K
be the neighborhood size of the kernel of the blur and the
domain of the structuring element. Without loss of generality,
we assume that K is an odd number. Let L = (K — 1)/2, and
b; = blur (a;), e; = b; — erosion (a;), d; = dilation (a@;) — b;.
Then

i+L
2
b’_:p:i—l.
K
e;= max i~ Uiy L-
i e {b, bz+L q}
1 ! 4
SK cets = Girrept D Gimi-t4p )y
p=1 p=1
q q
E ai-r-L-H—p_E ar’—L—p)a 0} ’
p=1 r=1
and
di=  max bivr-q— b
i g0, K1} { i+L-g b:}

1 & 3

p=1 p=1

q q
(E ai—L—p_E ﬂ'f+L+1—p) » 0} .
p=1

p=1

@4

For example, with X' = 3, we define four one-dimensional
five-point masks:

1
A1=§*[—1 00 1 O]
1
1
1

A“ZE*[ 0 -1 0 0 1].

Then the edge detector becomes
min {max {A, * f, A, * [}, max {43 * f, As * f}} (25)

where f is the input data and * is the convolution operation.
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In the case that K = 5, we define eight one-dimensional
nine-point masks:

1

1
A=2*[-1 -1 0 00 1 1 0 0

1
A3=§*[ 6 0 1 00 0 0 -1 0]
As==*[ 0 0 1 10 O 0 -1 -1]
1
1
A6=§*[ 1 1 0 00 -1 -1 0 0
1
A=*[ 0 0 -1 00 0 0 1 0

Then, the edge detector becomes

min {max {A; * f, Ay * f, A3 * [, A4 * f},
max {As * f, As * f, A7 * f, Ag * f},0}. (26)

This operator finds the difference between each side of a
given point. Instead of considering only the difference of the
average pixel intensity on both sides of a pixel, it considers
differences of varieties of local structures and combines the
result of each difference by maximizations and a minimization
operation. Thus by increasing the neighborhood size of the
blur operator and the neighborhood size of the morphologic
operation, this operator can reduce the effects of noise and yet
not blur the edges too much.

V. EXPERIMENTAL RESULTS

To understand the performance of the morphologic edge
operators, we examine their behavior on two simulated
images. We also compare the results of the morphologic edge
operators with the cubic facet second derivative edge operator
(Haralick [10]) and ten enhancement/thresholding edge detec-
tors (Abdou and Pratt [1]).

The first simulated image is an image which has ten
distorted square boxes. To simulate edges of different direc-
tions, the left side of the square boxes are tilted such that their
corresponding edge lines have directions ranging from 0° to
45°. The edge contrast of these edges is 50, and the box size is
50 x 50 pixels. To this image, we add independent Gaussian
noise having mean zero and standard deviation 15. The
original and noisy images are shown in Fig. 1.

To compare the performance of different edge operators,
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Fig. 1. Image containing ten boxes of different edge directions and noisy

images with g, = 15.0. Edge contrast is 50.

TABLE I
P(E'|E*) AND P(E*|E’) VALUES OF MORPHOLOGIC EDGE OPERATORS
AND CUBIC FACET EDGE OPERATORS

Operator/Probability P(E'|E*) P(E*|E")
Maximum 0.2911 0.2953
Improved sum 0.4565 0.4380
Blur-minimum (5 x 5) 0.7870 0.7870
Blur-minimum (9 x 9) 0.9587 0.9350
Blur-minimum (13 X 13) 0.9061 0.9369
Facet edge (5 % 5) 0.8387 0.8256
Facet edge (9 x 9) 0.9355 0.9063

we use the conditional probability of the label “‘edge’’ given
the true edge P(E’|E*) and the conditional probability of a
true edge given the label edge, P(E*|E’). The adjustable
parameters of each edge operator are chosen to equalize these
two conditional probabilities. The quality of the edge operator
is determined by the value of P(E'|E*¥) = P(E*|E’).
Although this performance measure is not in general applica-
ble on all kinds of images, it is well-suited for this simulated
image.

We apply the maximum version (12), the improved summa-
tion version (21), and the blur-minimum version (22) of the
morphologic edge detectors and the cubic facet second
derivative zero-crossing edge operator on the noisy square
boxes and compare the performance in terms of P(E’ | E*) and
P(E*|E"). The neighborhood supports for the blur-minimum
operators used are 3 X 3, 5 X 5, and 7 X 7, respectively.
The effective neighborhood sizesare 5 X 5,9 X 9, and 13 x
13, because a blur is applied before the morphologic opera-
tions are actually applied to an image. From here on, we will
use the effective neighborhood size to name each operation.
The neighborhood sizes for the cubic facet edge detector are 5
X 5and 9 x 9, respectively.

Table I lists the test results of these edge operators. To
ignore image border effects, the performance probabilities are
measured in a window of size 490 X 390. The performance
probability of the maximum version of the morphologic edge
operator is only 29 percent. The improved summation version
of the morphologic edge operator increases the probability to
45 percent. The performance of the blur-minimum version of
the morphologic edge operator is superior. The probability is
increased to 78 percent, 94 percent, and 92 percent for 5 X 5,
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(a)

(c)
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Fig. 2. Edge results of different edge operators applied on square box
image. {(a) Maximum version morphologic edge operator. (b) Improved
summation version morphologic edge operator. (c) Blur-minimum version
(9 x 9) morphelogical edge operator. (d) Cubic facet second derivative
zero-crossing edge operator with 9 X 9 neighborhood.

9 x 9, and 13 X 13 neighborhood support, respectively. This
is because the blur-minimum operators have a larger number
of pixels involved in the edge detection than just a 3 x 3
neighborhood. Similarly, the cubic facet second derivative
zero-crossing edge operator also makes use of larger than 3 x
3 neighborhood support, and it performs well. Its performance
probabilities are about 82 percent and 92 percent for the 5 X 5
and 9 x 9 neighborhoods, respectively.

Fig. 2(a)-(d) show the results of the maximum version, the
improved summation version, and the blur-minimum (9 x 9)
version of the morphologic edge operators and the cubic facet
edge operator (9 X 9).

A visual evaluation also leaves the impression that the blur-
minimum edge detector and the cubic facet second derivative
zero-crossing edge operator produce much better edge conti-
nuity and have less sensitivity to noise than the other edge
detectors.

The second simulated image is a checkerboard of size 100
x 100 pixels with a check size of 20 x 20 pixels. The dark
checks have gray-scale intensity 50, and the light checks have
gray-scale intensity 100. To this perfect checkerboard, we add
independent Gaussian noise having mean zero and standard
deviation 7.5, 15.0, and 30.0, respectively. Thus the signal to
noise ratios (SNR = edge contrast/noise deviation) of these
images are 6.67, 3.33, and 1.67, respectively. The perfect and
noisy checkerboards are shown in Fig, 3.

To compare the performance of the morphologic-based

Fig. 3. Perfect checkerboard image and its noisy images. From left to right,
top to bottom: perfect image, SNR = 6.67, SNR = 3.33, and SNR =
1.67, respectively. Image size is 100 x 100 pixels. Check size in 20 x 20
pixels. Edge contrast is 50, and added noise is zero mean Gaussian noise.

edge operators with the nonmorphologic based edge operator,
we apply the cubic facet based second directional derivative
zero-crossing edge operator, ten enhancement/thresholding
edge detectors, and the maximum, improved summation, and

"blur-minimum versions of the morphologic edge operator on

the noisy checkerboard images and compare the performance
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Performance probabilities of facet and morphologic edge operators on noisy checkerboard images. Curve 1: blur-minimum

morphologic edge operator of 9 X 9 equivalent support. Curve 2: second derivative zero-crossing edge operator of 9 "X 9 support.
Curve 3: blur-minimum morphologic edge operator of 5 % 5 equivalent support. Curve 4: second derivative zero-crossing edge
operator of 5 x 5 support. Curve 5: improved summation morphologic edge operator. Curve 6: maximum morphologic edge

operator.

in terms of P(E’|E*) and P(E*|E"). The structuring element
for the maximum and improved summation morphologic edge
operators is a rod of radius 1 which has four connected pixels
as its neighborhood support. The neighborhood supports for
the blur-minimum operator are 5 % 5and 9 X 9, respectively.
The window sizes of the cubic polynomial fitting for the
second derivative zero-crossing operator are 5 X 5and 9 X 9,
respectively. There are two types of spatial edge enhancement
operators: the differential and the template matching opera-
tors. The differential operators we used are Roberts, Prewitt,
and Sobel operators. The template matching operators we used
are compass gradient, Kirsch, and three- and five-level
template mask operators (Abdou and Pratt [1]).

Fig. 4 plots the probability results of the morphologic and
the cubic facet zero-crossing edge operators. The results show
that the second derivative zero-crossing edge operator and the
blur-minimum morphologic edge operator have much better
performance than the other morphologic operators. When the
SNR is large, the blur-minimum edge operator of 5 x5
neighborhood size and the cubic facet zero-crossing edge
operator perform best. As the SNR becomes small, the blur-
minimum edge operator havinga 9 X 9 neighborhood size and
the cubic facet zero-crossing edge operator perform best. The
improved summation morphologic edge operator has good
performance when the SNR is large. As the SNR decreases its
performance probability decreases dramatically and soon
becomes much worse than the zero-crossing and blur-mini-

mum operators. The maximum version of the morphologic
edge operator has the worst performance among all these
operators.

Fig. 5 plots the probability results of the differential
operators. Two different methods of gradient computation are
used for each operator: root mean squared and absolute sum.
The results show that the Roberts operators perform worse
than the other operators. The Prewitt operator performs better
than the Sobel operator, and the rms gradient is better than the
absolute summation. When compared with the morphologic
edge detector, all the differential operators perform much
worse than the blur-minimum morphologic operators, when a
significant amount of noise is injected into the testing image.

Fig. 6 plots the probability results of the template operators.
The results show that the compass operators perform worse
than the other operators. The Kirsch operator performs best
among the template operators. The three-level operator
exceeds the five-level operator in performance when the SNR
is large. When the SNR is small, both operators have similar
performance. All the template operators perform much worse
than the blur-minimum morpholdgic operators as a significant
amount of noise is added to the test images.

The performance of the edge operators can be explained in
terms of the neighborhood size we used for each operator.
Both the blur-minimum edge operator with 9 X 9 support and
the 9 x 9 cubic facet second derivative zero-crossing edge
operator involve 81 pixels in the edge detection process to
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Fig. 5. Performance probabilities of differential edge operators on noisy checkerboard images. Curve 1: Sobel rms gradient. Curve
2: Sobel absolute summation. Curve 3: Prewitt rms gradient. Curve 4: Prewitt absolute summation. Curve 5: Roberts rms gradient.

Curve 6: Roberts absolute summation.
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Fig. 0. Pertormance probabilities of template edge operators on noisy checkerboard images. Curve 1: compass template operator.
Curve 2: Kirsch template operator. Curve 3: three-level template operator, Curve 4: five-level template operator.
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(e)
Fig. 7.
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(N

(a) Sand casting mold image and its edge image. (b) Edge image of

maximum version morphologic edge operator. (c) Edge image of improved
summation morphologic edge operator. (d) Edge image of 9 X 9 blur-
minimum morphologic edge operator. (¢) Edge image of difference of
Gaussian edge operator, (f) Edge image of 9 X 9 cubic facet edge operator.

assign the edge state of a single pixel. Due to the large
neighborhood size. they have the best performance as the
noise increases. The 5 x 5 blur-minimum morphologic edge
operator and the 5 X 5 cubic facet second derivative zero-
crossing edge operator involve 25 pixels in the edge detection
process. They have good performance when the noise is small.
As the noise increascs, their performance is worse than those
with a larger neighborhood size. However, their performance
is better than the performance of the enhancement/threshold-
ing edge detectors and the improved summation morphologic
edge operator which involves only nine pixels and the
maximum version morphologic edge operator which involves
only five pixels in the edge detection process.

Note that when the noise is small, an edge operator with
small neighborhood support such as the improved summation
operator or the Roberts edge operator is good enough.
However, as the SNR becomes small, we have to use edge
operators of larger neighborhood support. Since the perform-
ance of the blur-minimum morphologic edge operator is
comparable to the zero-crossing edge operator, it will be very
useful in those applications which need large neighborhood
support, but cannot afford the higher computational cost of the
facet edge operator.

Finally, we illustrate an example of the morphologic edge
detectors applied on a real image. The image is a mold for
sand casting shown in Fig. 7(a). We apply the maximum, the
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improved summation, and the blur-minimum morphologic
edge detectors with 9 x 9 support, a difference of Gaussian
operator with circular support of diameter 40 and 24 pixels,
and the cubic facet second derivative zero-crossing operator
with window size 9 X 9 to this image. The resulting edge
images are shown in Fig. 7(b)-(f). A visual evaluation leaves
the impression that the cubic facet edge operator and the blur-
minimum morphologic edge detector have the best perform-
ance. The difference of Gaussian operator produces thick edge
lines and the edge connectivity is not as good as the blur-
minimum edge operator. The improved summation edge
operator is better than the maximum version edge operator.
Both of them are noisier than the cubic facet and the blur-
minimum edge operator.

VI. CoNcLUSION

We have introduced some edge operators based on gray-
scale morphologic operations. These operators can be effi-
ciently implemented in many machine vision systems which
have special hardware support for morphologic operations.
The simplest edge detectors are dilation residue and erosion
residue operators. Different combinations of these two simple
operators have been introduced and justified. Finally, some
operators which are insensitive to noise have been introduced.

Experimental results show the validity of the blur-minimum
morphologic edge operator. Upon comparing the performance
of the morphologic edge detectors with the enhancement/
thresholding edge detectors and the cubic facet second
derivative zero-crossing edge operator, we found that when
the noise is small, all the edge operators have similar
performance. However, as the noise increases, the second
derivative zero-crossing edge operator and the blur-minimum
morphologic edge operator perform best. The blur-minimum
morphologic edge operator has performance comparable with
the second derivative zero-crossing edge operator and it is less
computationally expensive. Thus it provides an efficient way
to extract good edges from noisy images.
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