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1. INTRODUCTION

Filtering by morphological operations is particularly
suited for removal of clutter and noise objects which
have been introduced into noiseless binary images. The
morphological filtering is designed to exploit differences
in the spatial nature (shape, size, orientation) of the ob-
jects (connected components) in the ideal noiseless im-
ages as compared to the noise/clutter objects.

Since the typical noise models (union, intersection set
difference, etc.) for binary images are not additive, and
the morphological processing is strongly nonlinear, opti-
mal filtering results conventionally available for linear
processing in the presence of additive noise are not di-
rectly applicable to morphological filtering of binary
images.

In this paper we describe a morphological filtering ana-
log to the classic Wiener filter, a preliminary account
having been given in [1]. The discussion begins in Section
2 with a review of the Wiener filter and its extension to a
binary Weiner filter; in these the underlying model entails
decomposing the signal and additive noise into spectral
elements in terms of an orthogonal basis set. Classic Wie-
ner optimal estimation weights the respective spectral
elements in the noisy signal according to the expected
values of signal and noise energy across the spectrum.
Section 3 extracts the essence of the algebraic structure
underlying the derivation of the Wiener filter, doing so in
a way that retains the concepts of energy and spectral
decomposition, but eliminates the assumptions of noise
additivity, orthogonal bases, and even the concept of in-
ner product. The stage is thus set for the subsequent
morphological filtering results where those assumptions
do not apply. Section 4 derives an optimal morphological
filter for binary images composed of the union (not sum)
of the signal and noise connected components. The spec-

tral decomposition of signal and noise is in terms of an
ordered basis of connected components where the order-
ing is based on the morphological opening operation.
(Such a basis is, in a certain sense, a ‘‘nested’’ collection
of sets.) Thus the underlying model is based upon that
ordered basis (which provides prototypes of signal and
noise objects scattered throughout the binary image) and
upon a morphological spectrum derived from openings.
Section 5 expands the results of Section 4 beyond allow-
ing signal and noise objects to be taken from a single
ordered basis (e.g., an ordered set of discs). In Section 5,
the collection of prototypes can include any number of
coordinated ordered bases (e.g., an ordered set of discs,
as well as an ordered set of squares, as well as several
ordered sets of lines each at different orientations.)

Whereas in the first five sections we restrict ourselves
to finite-component spectral representation, in Section 6
we treat the continuous case for a single ordered basis.
Section 7 extends these results to multiple ordered bases.
In Section 8 we compare the opening-spectrum filter dis-
cussed herein to general mean-square morphological-fil-
ter estimation.

2. THE WIENER FILTER

Regarding the discrete Wiener filter, let b, . . . , b,
be an orthonormal basis. The model for the ideal random
signal f is that f = 2., a,b,, where Ela,] = o-}n, and
Ela,a, = 0, m # n. The variances o-}n are taken to be
known. The model for the random noise g is that g =
Z1 Bubn, where E[B,] = 0, V[B,] = o2 , and E[B,,8,] =
0, m # n. Noise and signal are uncorrelated so that
Ele,B8.] = 0.

The observed noisy signal is f + g = 20 (a, + Br)b,.
The Wiener filtering problem is to determine weights
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wi, . . ., wy to make the estimate fof f f=23N,
wa(a, + B,)b, to minimize E[p(f, f)], where p is a metric.
In the case of Euclidean distance for the metric p,

Elp(f, /)] = ElIf - fI.

Now,
o N N
”f_ f“2 = ”21 anbn - 2:‘ Wn(an + Bn)bnuz
(1)
N
= Zj [W,,(a,, + ,Brz) - an]Z
and

N
Ellf - fiIF = Z] El(walan + Ba) — @,

(2)
N
= > wia} + o) — 2w,o} + o}
n=1
Hence, the minimizing weights are given by
ol
Wy = =l ©)

2 2
gy, + s

One can also define a binary Wiener filter, with weights
restricted to 0 or 1. To determine the minimizing weights,
we need just examine

ifw,=0

if w, = 1.

7}

2
T,

wf,(a'}n + o-ﬁ,n) - 2w,,o-}n + o-}n = { 4)

Hence, under the constraint that the w, € {0, 1}, the

minimizing weights are given by

0 ifo} <o}
w =

1 otherwise.

®)

In this case the estimate f = 2,cs(a, + Ba)bn, Where S =
{n | w, = 1}. Thus the optimal binary Wiener filter retains
that part of the spectrum where the expected signal en-
ergy exceeds the expected noise energy and discards the
rest.

3. OPTIMAL FILTERING IN THE GENERALIZED CASE

This section restates the binary Wiener filter results,
retaining the classic algebraic structure under far less re-
strictive assumptions than those of Section 2. The new
assumptions will in fact be consistent with the morpho-

logical filter we will develop in Section 4. Specifically we
now relax the assumptions of additive noise, vector
norms, inner products, and orthonormal bases, replacing
them with more general assumptions on the nature of
noise inclusion, distance, energy, and spectral decompo-
sition, and the relationships among them.

Let f be any binary image in a set B of binary images
and ¥ be a mapping (a spectral decomposition} taking f
into the N-tuple (f;,. . . ,fn); thatis, ¢: B— BV, (In the
case of the Wiener filter, the N-tuple (fi, . . . , fy) is
(ayby, . . . , ayby). Here, we incorporate into each f,
both the scalar and the basis elements.) Let ~! be the
inverse mapping reassembling (f;, . . . , fy) back into f;
that is, y~': B¥Y — B. The identity operator can be ex-
pressed as ynp~! and Y~ 'y. For any two binary images f
and g in B let there be defined a binary operation <>
such that f <> g is also a binary image in B. When g is
the noise, f <> g corresponds to the observed noisy
binary image. We require that <> and i satisfy the rela-
tionship

V(<> =h<>g,...,.n<>gn. (6

Let p be the function evaluating the closeness of one
image to another. Hence p: B X B— [0, «). The function
p must satisfy p(f, h) = 2N, p(f,, h,), where ¢(f) =
(fr,- . - /M) and Yth) = (b, . . ., ).

For any binary image g, we let # represent the opera-
tor which quantifies the energy in the binary image g; #:
B — [0, ). The operator # must satisfy #g = 2., #g,,
for spectral decomposition Y(g) = (g1, . . . , gn). For
example, #f can be defined to be the number of binary-
one pixels in f. Finally, there is a relationship between p
and #: The distance between the binary image and the
ideal image is just the energy in the noise image; p(f <>
g f) = #g.

Let w, € {0, 1}, n = 1, . . ., N be binary weights
and let the filtered binary image have a representation

wi(fi <>g1), . . ., walfn <> gn)), where
fa<>gn ifw,=1
wa(fn <> gn) = . W)
ifw,=0

and ¢ is the binary image satisfying f <> ¢ = f. The
filtered binary image f itself can then be written as

F=y'mfi <> g0, . . walfy, <> gw). @)
In essence the effect of the filtering is obtained by nulling
spectral content of the observed noisy binary image.

The optimal filter parameters w, are chosen to mini-
mize
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I

Elp(f. f) E{gmﬁﬁﬂ

I

N
2 Elpwa(fo <> gn), fu)] )
n=1
N #g, ifw,=1
=>E , :
n=1 #f, if w, 0
Hence, the best value for w, is given by

0
w, =
1

Then the index set S corresponding to the spectral con-
tent that will be included in the optimal filter output can
be defined by § = {n | E[#f,] = E[#g.]}-

if E[#f,] < E[#g.]

otherwise.

(10)

4. OPTIMAL BINARY MORPHOLOGICAL FILTER

To apply the foregoing algebraic filtering paradigm to
mathematical morphology, we need to define the random
ideal image model, the random noise model, the relation-
ship of the observed image to the random ideal image and
random noise, the formulation of representation operator
¢ from morphological operators, the energy measure #,
and the closeness measure p. We begin with the repre-
sentation operator s, which will be formulated relative to
morphological opening, where the opening of binary im-
age A by structuring element X is defined by

Aok = | (K. K. C A}, (1

where subscripts having names like x or y designate a
translation of the set subscripted and where we assume
all images are compact subsets of k-dimensional Euclid-
ean space RX. (See Serra [2], Haralick ez al. [3], or
Dougherty and Giardina [4, 5] for the fundamental prop-
erties of the morphological opening.)

The representation operator i will be defined in a man-
ner akin to the morphological granulometric pattern spec-
trum. To set up our definition for ¢ in a way which relates
to the ideal random image and noise models, we note that
the opening operator has the following property: If A =
U!, A;, where each A; is a connected component of A,
and X is a connected structuring element, then

I

AoK=(U Ai)°K= U (A; ° K). (12)
i=1

i=]

This property, that the opening of a union of connected
components is the union of the openings, will be essential
throughout our development. It is this property which
motivates the following definition: Two sets A and B are
said to not interfere with one another if and only if X, a
connected component of A U B, implies that X is a con-
nected component of A or of B but not both. It immedi-
ately follows that if A and B do not interfere with one
another and K is a connected structuring element, then

(AUB)°K =(A°K)U (B K). (13)

The opening-spectrum operator s will be defined in
terms of a set of openings. This set of openings will be
based on the structuring elements in a naturally ordered
morphological basis. We define a collection ¥ of structur-
ing elements to be an opening-spectrum basis if and only
if K € ¥ implies that K is connected and K, L € X
implies that Ko L = K or K° L = ¢. A opening-spectrum
basis X = {K(1), . . . , K(M)}is naturally ordered if and
only if K(1) = {0} and

K@i j=i

K(@) - K(j) = { (14)
¢

j>i.

A simple example of an ordered opening-spectrum basis
is a set of squares of increasing size, beginning with a
square of one pixel.

Now we can define the operator s which produces an
opening spectrum with respect to a naturally ordered
opening-spectrum basis X = {K(1), . . . , K(M)}. ¢ is
defined by $(A) = (A, . . . , Ay), where

Apn=A°K(m) — A K(im + 1) (15)
form=1,. .. ,M—1,Ay=A°K(M), and K(1) = {0}.
A, is that part of A which is open under K(m) but not
open under K(m + 1), except for Ay which is A opened

by K(M). It follows from this definition that fori # j, A; N
A; = ¢. This happens because

AiNA=[A-K(@i) —A°K(i+ 1)]
N[A-K(j) - A-K(j+ 1)]
=[Ac K@i N A-K(JN]
NAK@i+1)UAK({G + D] (16)
= [A o K(max{i, jH] N [A o K(min{i + 1, j + 1})]
= ¢ since max{i, j} = min{i + 1, + 1}

forany i #j,i,j <M.
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Fori< M,

ANAy=[AK@ -AKi+ 1D]NA-°KWM)
=([AK(iHN[AK(M)))N[AK(G+ 1]
=AsKM)N[A-° K@i+ 1)) (17)

since A o K(i) D A - K(M)
=¢since A K(i+1)DA°KM)
It is easy to see that from the opening spectrum

(A, . . ., Ay), the original shape A can be exactly re-
constructed. Consider

M
UJan -
m=1

[AeK(1) —A-K2)JU .. U[A KM -1

— A K(M)] U A K(M). (18)
Since K(i) - K(j) =
K@Yfori=j A K(j)DAK(i)fori=j (19
Hence the sets A = A K(1), A K(?2),. .., A K(M)
are ordered in the sense that
A=A°K(1)DA°KR2)D...DAKM). (20

From this it follows that for any m = 2,

[AcK(im—1)—A°K(m)]UA*K(m)=AK(im—1).
21

Now by working from the right end of the union repre-
sentation, taking two terms at a time, the entire union is
seen to collapse to A o K(1) = A.

! can then be defined by Y~ '(A,, . . . , Ay) = UY_,
A.. The existence of ! implies that once K is specified,
the representation is unique in the sense that two differ-
ent opening spectra must be associated with two different
shapes and two different shapes must be associated with
two different opening spectra. It implies, as well, that the
representation is complete.

Next we discuss the spatial random process generation
mechanism which produces binary image realizations. A
spatial random process producing a set A is a noninter-
fering spatial Poisson process with respect to an ordered
opening-spectrum basis ¥ if and only if:

* For some Z, a Poisson distributed random number
(with Poisson density parameter A,), which is the total
connected component count of a binary image realization
A;

+ For some multinomial distributed numbers L;, . . . ,
Ly with Z¥_, L, = Z (with respective multinomial proba-
bilities p1, . . . , pu), which split the Z connected com-

ponents into M subsets containing objects of the same
type;

* For some randomly chosen translations x,;, m =
..., M;j=1, .., L,

e A= UM, UJ-L;”I K(m),, , where the translated struc-
turing elements do not interfere, i.e.,

K@), () K(m),,, = {

1

K(@),, ifi=mandj=n
(22)
) otherwise.

From this definition of a noninterfering random process,
it follows that

M
AOKQ)=(LJ
}:::l

- U

m=1

U K(m)x,",) > K(\)
j=1

m

[K(m),,, > K(M)] (23)

J=1

m

L
U K(m)xmj.
m=x j=1
Moreover, If $(A) = (4, . . . , Ay), then
Lm
A= | k0m),,,

J=1

form =1, . .., M. We interpret these results in the
following manner: If A is opened by the Ath basis struc-
turing element, all components originating from
“‘smaller”” (lower-numbered) basis structuring elements
are removed; the opening spectrum of A (with respect to
the basis from which it was built) sorts A according to the
index number of the underlying basis structuring ele-
ments and leaves nothing out.

We consider both the ideal random image and the noise
image to be generated by noninterfering random spatial
processes. The observed noisy image is the union of the
ideal image with a noise/clutter image. This motivates a
definition of noninterfering spatial processes which here
plays the role of the zero correlation between the coeffi-
cients of the image process and the coefficients of the
noise process in the Wiener filter case. A random process
generating realization D and a random process generating
realization E are said to be noninterfering random pro-
cesses if and only if D and E are always noninterfering
sets for each realization.

We can now define an observed noisy image. Let A be
a realization of a noninterfering spatial process (with re-
spect to an ordered opening-spectrum basis X) producing
images of interest and let N be a realization of a noninter-
fering spatial process (with respect to the same ¥) pro-
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ducing noise/clutter. We suppose that these processes do
not interfere with one another. The observed noisy real-

ization is defined as A U N. Let $i(A) = (A, . . . , Axy),
$(N) =(Ny,. .. ,Ny),and 4(A UN) =(By, . . .,
BM).Then
B,=(AUN)oK(m) —(AUN)Kim+ 1), (25)
form=1,...,M-1,and
By = (A U N) e K(M). (26)

Because the processes do not interfere with one another,

B, = [A o K(m) U N K(m)]
—[AsK(m+ DU N-°K(m+ 1)]

=[A°K(m) — A°K(m+ 1)] 27
U[Ne°K(m)— NoK(im+ 1)]
=A,UN,,
and
By = A°K(m) | B K(m)
= AM U N‘w.
Thus we have just seen that
YAUN)= (A UN, ... Ay UNy. (28

The filtered image A will be based on selecting the most
appropriate components from the opening spectrum of
A U N. Letting § be the set of components selected, we
estimate A by A where

A=UJ@Aa,unNnpord=JB.,. @

mes meSs

Thus by choosing the form of the estimation analogously
to that of the binary Wiener filter, the estimation problem
becomes one of choosing an appropriate index set §.
To determine S, - we must first state our error criterion.
For any two sets A and A, we define the closeness (non-
overlap) of A to A by p(A4, A) = #[(A — A) U (A — A)],
where # is the set counting measure (pixel count, area).
Our error criterion is then
Elp(A, A)] = E{(#(A4 - A UUA - AL (30)

_To see how to choose § to minimize E{#[(A - A) U
(A — A)]}, first note that

M M
A-A=JAa.- U (A, UN,) = UA,,,
m=1 mes m=1
megS (31)
R M M
A-A= UA,,,UN,,,— UA,,,= UN
meSs m=1 mes
Hence,
p(A, A) = #[(A — A) U (A — A)]
= #(A — A) + #(4 - A)
M
=#UA,,,+#UN,,, (32)
m=1 mes
mes

M
> #An + O #N,.
:z';l? mes

The two summations above are respectively the area of
the ideal image left out, plus the noise and clutter area left
in. The individual terms decompose that area by spectral
content.

Now, since each spectral component is built of trans-
lates of the same basis structuring elements, and since
noninterference implies mutual exclusivity,

HA, = # LLJ K(m),,

i=1

L (33)
= Y. #K(m),, = L,#K(m)
j=1
so that
E[#An,] = #K(m)pmhad, (34)

where p,, is the multinomial probability for the ideal im-

age process, A4 is the Poisson density parameter of the

ideal image process, and o is the area of the image spatial

domain. Likewise, E[#N,,] = #K(m)q,Aysd, where q,, is

the multinomial probability for the noise process and Ay

is the Poisson density parameter of the noise process.
To determine the index set S, we then have

mesS

m=1

M {#A,,,

. R me&S
E#A-AUMA - A} = E[z N ]

M
-2 E[#N,] m€ S.
(35)

{E[#A,,,] me&S
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Hence, the best S is defined by

§ = {m | E[#N,] < E[#Anl}, (36)

or equivalently, for the statistical assumptions made,

S = {m | q'n)\N < pm}\A}- (37)
A spectral component is retained according to the rela-
tive expectations of that component’s ‘‘leave-out’ of
ideal image vs “‘leave-in’’ of noise and clutter.

Figure 1 illustrates the concept of the filter. A is the
ideal binary image; B is the observed noisy image. There
are four structuring elements K(1), K(2), K(3), and K(4)
which constitute an ordered basis. The four component
images are given by

Bl = B°K(l) - B> K(2)
B2 = B K(2) — B> K@3)
B3 =B°K(3)— B°K(@4)
B4 = B o K(4)

Note that all the binary-one pixels in Bl are noise.
Thus the index set S, which selects which components

a K(1)
g3 @
H K@

E K(4)

O IDEAL
§© NOISE

S={23}

FIG. 1. Illustration of the filtering process. A is the ideal image; B is
the observed noisy image. Using structuring elements K(1), K(2), and
K(4) as the ordered basis produces component images B1, B2, B3, and
B4. Component images B2 and B3 have more ideal image than noise;
thus the filtered image A is B2 U B3.

constitute the filtered image, will not contain the index 1.
The component images B2 and B3 contain more ideal
image than noise so indices 2 and 3 are in S. Finally, the
component image B4 has more noise than ideal image.
Hence index 4 is not in S. The filtered image A is then
defined by A = B2 U B3.

For a second example, consider the problem of page
decomposition. In this problem, the ideal page is consid-
ered to be the large white spaces between columns and
sections and the large rectangular blocks containing the
text or figures. But instead of the large rectangular blocks
containing the text paragraphs or figures being entirely
black, it has been perturbed by noise. For the text re-
gions, this noise is the small white spaces between char-
acters and words, the white spaces which are part of each
character, and the long narrow horizontal white spaces
between text lines. The black text characters can then be
thought to arise from a solid black paragraph which has
been perturbed by pepper-like white patches. Thus the
white part of the observed page consists of the large
white spaces between the columns and sections which we
consider to be the signal and the small pepper-like white
patches which are small white spaces between charac-
ters, between words, and part of each of the characters,
plus the long narrow horizontal white spaces between the
text lines.

Here the signal has no small-area white spaces and the
noise has no large-area white spaces. Thus to recover the
ideal large white spaces means that the small-area white
spaces must be eliminated. This can be accomplished by
selecting all the white spaces which are contained in an
opening of the white spaces with a structuring element
whose size is larger than the small-area white spaces to
be eliminated and smaller than the large-area white
spaces to be preserved. Thus the morphological Weiner
filter is just an appropriate sized opening, the morpholog-
ical equivalent to a low-pass filter. Figure 2 shows an
example text page sampled at 100 dpi and Fig. 3 shows
the opening of that page with a 32 X 32 structuring ele-
ment. This 32 X 32 structuring element can be thought of
as a 2 X 2 structuring element dilated with itself 31 times.
The opening image has eliminated almost all the white
area noise in the text regions.

Note that in this example if N denotes the small-area
white spaces to be eliminated and if A denotes the ideal
signal and if the observed image is A4, then it is the case
that

(AUB)eK=(A°K)U (N-°K).

This means that the random process which generates the
large-area white spaces and the random noise process
which generates the small-area white spaces are indeed
noninterfering with each other. Likewise, it is the case
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FIG. 2.

Hlustration of a 100-dpi page.

that the random process which generates the large-area
white spaces is a noninterfering process since each large-
area white rectangular block is itself open under K. It is
easy to prove that if A; o K = A;, then (U;A)) - K = UA;.
Finally, it is the case that the noise random process is
itself a noninterfering process since Ne K =and No K =
implies that if N = U;N;, then N; o K = so that (U;N)
K = U{(N° K).

5. EXTENSION TO GENERALIZED (TAU-)OPENINGS

The results we have just obtained can be extended to
where the opening operation is changed to a generalized
opening operation. Recall that in the previous section,
each basic structuring element was just a set K. In the
generalized opening operation, each basic structuring el-
ement is a collection Q of sets. The generalized opening
of an image I with Q is then defined by

1-09=\Jr-r.

LeQ

(38)

Regarding such generalized openings, Matheron [6]
calls a filter ¥ a tau-opening if it satisfies four properties:
it must be (1) antiextensive, ¥(A) C A; (2) translation
invariant, V(A,) = [V(A)];; 3) increasing, A C B implies

that ¥(A) C ¥(B); and (4) idempotent, YW = W. The
basic Matheron representation for tau-openings is that ¥
is a tau-opening if and only if there exists a collection Q
such that ¥ is defined by Eq. (38). Moreover, Q is a base
for Inv[¥], the invariant class of ¥; that is, the invariants
for ¥ are unions of translations of elements in Q. For an
elementary opening A ¢ K, (K) is the base. The Matheron
representation is discussed by Dougherty and Giardina
[4, 5], the gray-scale extension is given in [5], and both
Serra [7] and Ronse and Heijmans [8] give lattice exten-
sions.

The generalization is important because of the way it
extends the underlying signal and noise spatial random
process generation mechanism. For example, if the struc-
turing elements were all line segments, the structuring
element collection Q could consist of multiple orientation
of line segments of the same length. The corresponding
spatial random process would place noninterfering line
segments at different orientations on the image, or the
spatial random process could place noninterfering line
segments, disks, or squares on the image. For each size,
the corresponding structuring element collection could
be line segments of the given size at a variety of orienta-
tions, a disk of the given size, and a square of the given
size.

FIG. 3.
page.

Hlustration of the opening of the white spaces of the sample
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To see how the generalized opening can be used, we
illustrate the case for which each structuring element col-
lection contains exactly two structuring elements. Let
K ={K(1),...,KM}and § ={J(1),. .., J(M)}be
naturally ordered opening bases. Define the collection 2
by 2 ={0(1), . . . , Q(M)}, where Q(m) = {K(m), J(m)},
m=1,. .. ,M. To make the ordering of the collection
% and the collection I compatible, we require that

K(@i) 2 J(j) = J() - K(j) = ¢ (39)
for j > i. Qis called a generalized opening basis.

Now, using the generalized opening operator, consider
that

K(@@) » () = K() ° K(j) U K(i) ° J(j)

B {K(i) i=j (40)
N 10 otherwise.
Likewise,
J(@) » QU) = J(i) » K(j) U J(i) ° J())
B {J(i) =] (41)
- o3 otherwise.

Suppose that a realization A for a noninterfering pro-
cess can be written as

Mo Lf ML
A= [U U K(mhm,] U [U U J(m)ym,], 42)
m=t  j=1 m=1 j=1

where the sets in the collection

. 9L§7j= 1,. .. 7L{n%:]
(43)

{K(m)y,,, J(m),,, :i=1,. .

are naturally noninterfering. Then

Ao Q)
M Lf ML

= [U UJ k., |J U U J(m)yw]"Q(A)
m=1 j=1 m=t j={

M L ML
= U U ke, 0001 U U U vim,,,- 00

m=1 j=1 m=1 j=1

MoLf ML
U Y ke, U U Y s, "
=z j=1 m=r  j=1

Moreover, applying the spectrum definition of Eq. (15) to
the generalized opening @ yields

Am=A°Q(m) —AoQ(m + 1)

M Lf ML
U U &xm., U U U s,
=1 =1

n=m n=m

M 15 M L
-U Uxe, U U U o,

n=m+1 j=I n=m+1 j=1

Lf L
U k., U | Jom),,.
j=1 j=1

(45)

From this it is clear that the representation operator ¢
based on 2 has an inverse and A = UY_, A,,. Further-
more, A; U A; = ¢ and #A = Z)_, #A,,. This fulfills the
required conditions described in Section 3. Furthermore,
results for @ containing collections of pairs of structuring
elements are immediately generalizable to collections
having any number of structuring elements.

To extend the optimal index set § given by Eq. (28) to
the situation where Q contains pairs, Q(m) = {K(m),
J(m)}, we need only recognize that there are now four
noninterferring processes to consider: (1) a signal process
involving {K(m)} with Poisson parameter A4x and multi-
nomial probabilities pg.., (2) a signal process involving
{J(m)} with Poisson parameter A4; and multinomial prob-
abilities p,,,, (3) a noise process involving {K(m)} with
Poisson parameter Anyx and multinomial probabilities
gxm, and (4) a noise process involving {J(m)} with Pois-
son parameter Ay; and multinomial probabilities gj..
Since Eq. (35) still applies, Eq. (45) applied to both signal
and noise yields

Elp(A, A)] = D A#KMMakPrm + MsPim]

meES

+ Y A#KMANkqkm + ANiGim)-

mes

Thus, the best S is defined by

S = {m : Ankqkm + ANsGQum < MakPkm + MasPim}.  (47)
Extension to more than two-structuring-element opening
bases is straightforward.

6. CONTINUOUS OPENING SPECTRA

In the present section we extend the preceding notions
to the case of continuously parameterized openings, and
in doing so relate the preset spectral theory to the granu-
lometric theory of Matheron [6]. Because Euclidean
granulometric theory does not apply to discrete space, it
is at once recognized that the theory of the preceding
sections is not rendered superfluous by the Euclidean
approach: specifically, the theory of discrete opening
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spectra applies to both discrete and Euclidean space,
whereas the continuous-spectra approach only applies to
Euclidean space.

Matheron [6] defines a granulometry to be a family of
binary-image operators (V,), t = 0, for which ¥, is antiex-
tensive and monotonically increasing, ¥, ¥, = ¥\ ¥, =
Ymaxn for all ¢, r > 0, and ¥, is the identity. He further
defines a Euclidean granulometry to be a granulometry
for which W, is translation invariant and ¥,(A) = rV,(A/1)
for ¢t > 0. If K is a convex, compact set, then the parame-
terized opening ¥,(A) = A o tK is an Euclidean granulo-
metry. Moreover, a deep theorem of Matheron [6] states
that, for compact K, A ¢ tK is a granulometry if and only
if K is convex. In particular, tK o rK = tK whenever ¢t = r
if and only if K is convex (clearly tK o rK = Jfort < r).

For continuous parameter ¢t = 0, ¥ = {K(r)} will be
called for an ordered opening basis if and only if K(¢) ¢
K(r) = K(t) for r = t and K(t) c K(r) = & for r > t. One
way, but certainly not the only way, to generate such a
class X is to consider a compact, convex set K and define
K(t) = K.

The spectrum operator  can be adapted to the contin-
uous setting by defining Y(A) = [A(#)],>9, Where

AW = A K@) — | A K. (48)

>t

Fort # t', A(r) N A(t') = &. To see this, suppose without
loss of generality that ' > ¢. Then

A(®) N A@') = [A < K(1) N A o K(¢')]

n {[ U AoK(r)] U [ U Aomﬂc

>t >t

=A°K(t)N [U Ao K(r)] (49)

>t

which is null since the latter union includes A o K(t').
In the present continuous setting we must adopt a more
general view of the noninterfering spatial process. To do
so we generalize the random grain model employed by
Sand and Dougherty [9] in their analysis of the statistical
distributions for granulometric pattern-spectrum mo-
ments. Specifically, we assume that to form a realization
A, a component number Z is selected from a Poisson
distribution with mean u,4, parameters ¢, t,, . . . , {zare
independently selected from some distribution II, pos-

sessing density f,(#), translations x;, x;, . . . , xz are
randomly chosen, and
VA
A= ktn),, (50)
m=1

where the components are noninterfering. There are sev-
eral salient points regarding this more general model:

1. It reduces to the former discrete model if the param-
eter class is finite.
2. Equation (22) holds.

3. Equation (23) holds, its new form being

z

A K\ = U K(lp)s, - (51)
m=x
4. Equation (24) holds, its new form being
(52)

A@ = | {Kltns, : tw = 1}.

If we assume that noise realization N derives from a
similar noninterfering process with Poisson mean uy and
t; selected from a distribution Ily possessing density
fn(t), then (A U N) = [A(1) U N(1)]. The estimate A for
A is given by Eq. (29) with ¢,, in place of m; however, in
the present context S is a subset of [0, ) and is not a
discrete set. The estimation problem is to find S for which
El[p(A, A)] is minimized, with # now denoting area.

Similarly to Eq. (32), it can be shown that

p(A, A) = 3 #Alt,) + 2. #N(1). (53)

tmES HeS

Because the component counts for both signal and noise
are random, E[p(A, A)] does not easily reduce; however,
if we make the simplifying assumption that the compo-
nent counts are fixed, say at the respective means u,4 and
un, we then obtain

Elp(A, A)) = ua [, #KOf2(0) dr

(54)
+ un [ #K@ S0 d1

To see the manner in which we arrive at Eq. (54), let A
denote the first summand in Eq. (54) and let

(53

m

B {#A(t,,,), ift, &S

0, otherwise.

Then

E[A] = Ejl ElA] = maEIAL] = pua [ #KWF(0) dr,
(56)
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The second sum in Eq. (54) is handled similarly. The best
S is given by
S = {t: unfn(t) < pafa (O} 57

Note the similarity to the discrete solution given in Eq.
37).

7. EXTENSION OF CONTINUOUS SPECTRA TO
TAU-OPENINGS

Generalization of continuous theory to tau-openings
with O() = {K(#), J(1)} proceeds along similar lines to the
generalization in the discrete case, under the assumption
that K(t) o J(¢') = J(1) » K(¢') = @ for t' > t. For instance,
Egs. (44) and (45) become

Z w
Ason = | k), U U 70,
m=X k=x

(58)

A(D)
= &, tm =0 J Y V@ =1 (59
m k

where Z and W are the respective Poisson variables for
{K(0} and {J(1)}, possessing respective means g,, and
M4, and it is assumed that the corresponding parameter
sequences derive from the respective densities f,, and
f4,- Generalization to more than two structuring-element
sequences is immediate.

Like the signal, the noise too can be generated by both
{K(1)} and {J(¢)} with the K(¢) and J(¢) Poisson variables
possessing means uy, and wy,, respectively, and the cor-
responding parameter sequences possessing probability
densities fy, and fy,, respectively. Then the error equa-
tion takes the form

Elp(A, A] =
pae [ #KOfO dt + [ #TOf (0 de

+ iy, [ KOS 0 dt + [ #IOf0) di.

(60)

The preceding equation extends to any finite number of
structuring-element sequences. In particular, if any of the
Poisson means are zero, then the equation reduces to one
in which the signal and noise are generated by different
primitive shapes, which shows that our model allows sig-
nal and noise to be generated by different primitives.
As in the single-opening situation, there is a close con-
nection between the present theory and the Matheron
theory for Euclidean granulometries. Matheron [6] calls a
class of images K a generator of a Euclidean granulome-
try {¥} if the invariant class of ¥ consists of unions of

, AND DOUGHERTY

translations of scalar multiples tK, 1 = 1, of elements K €
K. If it happens that the images of K are convex, then
via)= | J{A-1K: K€K} 61)
is a granulometry with generator K. Now suppose K =
{Ki, Ky, . . ., Kp}is finite and ¢K, o t'K; = Jfor £’ >t
and i # j. If for any K; in K we define K{#) = tK;, then
{K{(} is a basis in our present spectral sense. Assuming
each realization A of the spatial process is formed in the

usual way from this basis, the spectral component A(?)
takes the form

AW = v4) - |J v@).

r>!

(62)

Note that it has been demonstrated in [6] that V,(A) <
¥.(A) for r < ¢, and that the invariant class of ¥, is a
subset of the invariant class of ¥,.

8. INTERPRETATION OF THE OPTIMAL ESTIMATOR A
IN THE CONTEXT OF OPTIMAL
MORPHOLOGICAL ESTIMATION

A general framework for the characterization of statis-
tically optimal morphological filters has been developed
by Dougherty [10-14]: given that we call an increasing,
translate invariant mapping a morphological filter, how
do we treat the problem of optimally estimating one ran-
dom variable by a morphological function of a finite num-
ber of observations? Included in the discussions [10, 11]
is the manner in which we apply constraints to the filter,
so that the optimal estimator is a particular type of mor-
phological filter, say tau-opening or linear operator. A
key class of increasing, translation invariant mappings
are the alternating sequential filters of Sternberg (15] and
Lougheed [16] (see Serra [17]), and an optimization crite-
rion for these has been developed by Schonfeld and
Goutsias [18, 19]. In the present section, we wish to
briefly investigate the relationship between the optimal
filter based on the opening spectrum and the general
problem of morphological estimation.

Returning again to the Wiener filter, the weights w, of
Eq. (3) provide the estimate f of frelative to an orthonor-
mal basis b, b2, . . . , b,, with the summation over this
basis serving as the inversion back to the spatial domain.
In the general algebraic paradigm of Section 3, fis found
from the weighted representation by applying ¢~!. When
applying optimal estimation relative to the morphological
representation in terms of ¥, Eq. (29) provides the re-
quired inversion. An interesting and important question
can be posed: Does the estimator A possess a morpholog-
ical representation? That is, can we write A = Q(4 U N),
where (1 is a ‘“*‘morphological operation’’? If by morpho-
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logical operation we mean an increasing, translation in-
variant mapping, then A possesses no such representa-
tion. Indeed from the manner in which § is chosen, it can
be seen that if A U N’ is obtained from A U N by replac-
ing a noise component K(m), of N by a noise component
K(m'),, where m' > m, m € §, m" &€ §, and K(m’),
properly contains K(m),, then A U N is a proper subset
of A U N', but, according to Eq. (25), the filtered version
of A U N' is a proper subset of the filtered version of A U
N. Thus, the optimal filter determined by Eq. (29) is not
necessarily increasing (although it might be).

Whether we take the weak definition of a morphologi-
cal filter adopted in {5, 10], that of being increasing and
translation invariant, or the strong definition adopted by
Serra [7], which includes idempotence (without assuming
translation invariance because the definition lies in the
context of lattice theory), the mapping (}(A) defined by
Eq. (29) is not necessarily a morphological filter. Conse-
quently, even though the measure E[p(A, A)] can be
interpreted as mean-square error in the binary setting,
the operator (1 is not necessarily expressable in terms of
the Matheron expansion as an union of erosions, and it is
precisely this expansion in which the mean-square opti-
mization theory of [10] is framed.

Nevertheless, the estimation operator is translation in-
variant and can be expressed ‘‘morphologically,”” where
here we mean that it can be expressed using ordinary
morphological operations in conjunction with set-theo-
retic operations. The desired expression is immediate
from the definition of the spectrum operator § and is
implied by Eq. (25) applied to S. The estimate A has the
form

A=J@UN)Km-1D—(AUN)Km). (63)

mes

9. CONCLUSION

For the problem of filtering corrupted binary images of
the form A U N, we have chosen an appropriate morpho-
logical opening spectral decomposition, as well as dis-
tance and energy measures resulting in an appropriate
measure of estimation error. Based upon these choices
(which are quite different from the analogous choices for
the additive noise/linear filter problem, and which elimi-
nate the requirement for orthogonality or an inner prod-
uct space) we have derived optimal filtering results analo-
gous to conventional Weiner filtering results based on
image and noise energy contents in each spectral bin.

The assumptions on the image and noise models in
order for the results to be valid are presently fairly
strong. The image and noise connected components are
modeled as translated copies of objects from a single or-
dered opening basis set (Sections 4 and 6) or a collection

of such basis sets (Sections 5 and 7). In addition there is a
noninterference (nonoverlap) condition so that all objects
remain distinct and no objects are created that fail to
arise directly from basis sets.

These conditions guarantee sufficiency. However,
they are actually stronger than need be. They were
sufficient to guarantee that (A U B) e K = A U B and
#(A U B) = #A + #B. There are many instances in
which (A U B)° K = A U B and A and B are not noninter-
fering sets. If A and B are not exclusive then #(A U B) <
#A + #B. Thus if the sets overlap, the quantities we
have been computing will be strict upper bounds. How-
ever, in this case, the overlapping can be regarded as a
random process and instead of computing #(A U B) a
composition of E[#(A U B)] = k(#A + #B) for an ap-
propriate 0 < k£ < 1 can be made. Therefore, the possibil-
ity of generalizing the results is quite strong.

In addition, in order to better handle irregular or ill-
defined noise sets, as well as ideal (noise free) images
comprised of families of objects for which no simple or-
dered opening basis is obvious, we are working on ex-
tending our results to instances where the assumptions
on image and noise objects are relaxed. In particular,
extension to the case where the objects are in some sense
well sorted by one or more bases in being sought in deri-
vations and experiments.
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