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Abstract: With the increasing demand for minerals, the development of efficient technigues for mineral recovery is important.
The application of image analysis techniques to mineral beneficiation studies is described in this paper. We carry out ore iden-
tification not pixel-by-pixel but rather by considering the average reflectance of grains. This is accomplished by first carrying
out segmentation, a process in which a facet model based edge operator is used to delineate the boundaries of grains.
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1. Introduction

The increasing demand for mineral resources,
the increasing dependence on lower grade re-
sources, and the increasing costs of energy necessi-
tate the development of new, and the streamlining
of old techniques in the mineral industry. Image
analysis techniques which have already been found
useful in research areas such as biomedical applica-
tions, industrial automation and remote sensing,
are just beginning to find applications in the
mineral processing industry. The present paper
describes the application of image analysis tech-
niques to the characterization and analysis of
mineral beneficiation products.

Petruk (1976) of the Canada Center for Minerals
and Energy Technology (CANMET) describes the
application of the Quanitimet image analyser to
quantitative mineralogical analysis. In 1978, a
Leitz-T.A.S. automatic image analyser was in-
stalled in the Mineralogy Division of the National
Institute for Metallurgy in South Africa. A general

description of the system is given by QOosthuyzen
(1980).

Grains can generally be differentiated on the
basis of their differing reflectances. In most com-
mercial machines presently operational, a thres-
hold decision on reflectances is made on a pixel-by-
pixel basis depending upon their reflectance. This
technique is highly susceptable to the noise of the
random variations inherent in the grains, thereby
making area counts of grains having similar but
different reflectances subject to inaccuracies. In
contrast, the approach we suggest here first seg-
ments the image using an edge operator to deline-
ate the boundary of the grain. To identify the grain
we use the average reflectance of all pixels sur-
rounded by the edges. Section 2 describes the entire
grain identification process which starts from the
low level image preparation and image segmenta-
tion steps to the higher level property extraction
and grain classification process.
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Fig. 1. An example of a digitized image of pyrrhotite-pyrite ore.
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Fig. 2a. The surface plot of the image of Figure 1 in which the
surface irregularity indicates the variations in the reflectance.
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Fig. 2b. The surface plot of the smoothed image of the image
of Figure 1.
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2. Processing of mineral images

2.1. Image preparation

Most ore minerals are opaque and hence are
studied by means of reflected light microscopy.
Samples were cut, ground and polished according
to the procedures described by Craig and Vaughan
(1981). In our system, ore images are either gener-
ated directly from a Hamamatsu C-1000 television
camera mounted on a Leitz Orthoplan microscope
or digitized from a 35mm film negative by a laser
scanner. The size of the image generated by the
television camera can be as large as 512x 512
pixels, while the laser scanner can produce a
1000 x 1000 image from a 35mm negative. The in-
dividual pixels each have a reflectance (or grey
tone inensity) which is proportional to the com-
posite reflection coefficient of the ore sample at
the corresponding spatial location in the sample.

Images generated by these methods are subject
to noise. Our methodology includes noise removal
operations such as median filter, box filter and
peak noise removal to remove these undesirable
features from the image. This reduces the occur-
rence of error in later processing. Figure 1 shows
an example of a digitized image (256 x 256). Fig-
ures 2a and 2b show the surface plots of the
original image and the smoothed image respec-
tively,

2.2. Edge detection

The facet model is used to accomplish the step
edge detection which is required in our segmenta-
tion process. A precise mathematical description
of the edge operator can be found in Haralick
(1982,1983). The facet model states that any
analysis made on the basis of the pixel values in
some neighborhood has its final authoritative in-
terpretation relative to the underlying grey tone in-
tensity surface and that the neighborhood pixel
values are noisy sampled observations of the
underlying surface.

Pixels which are part of regions have simple grey
tone intensity surfaces over their areas. Pixels
which have an edge in them have complex grey
tone intensity surfaces over their areas. Specifi-
cally, an edge occurs in a pixel if and only if there
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is some point in the pixel’s area having a zero
crossing of the second directional derivative taken
in the direction of a non-zero gradient at the pixel’s
center.

To determine whether or not a pixel should be
marked as a step edge pixel, its underlying grey
tone intensity surface must be estimated on the
basis of the pixel values in its neighborhood. For
this, we use a least squares fit with a functional
form consisting of a linear combination of the ten-
sor products of discrete orthogonal polynomials.
The highest order tensor product we currently use
is cubic (i.e. the highest order terms are x*, x*y,
xy* and »*). The appropriate directional deriva-
tives are easily computed from this kind of a func-
tion. By using a 7x7 neighborhood, Figure 3
shows the detected edges of the image of Figure 1.

2.3. Region extraction

Once edge pixels have been marked by the edge
operator, the regions extracted are the largest con-
nected areas of pixels which are entirely surrounded
by edge pixels. This process is accomplished by a

Fig. 4. The resulting segmentation of the image of Figure 1. The
minimum size of individual segments is 10 pixels.
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connected components algorithm which assigns a
unique label to each maximally connected group of
non-edge pixels. An efficient memory limited con-
nected components algorithm is implemented and
its validity is proved (Lumia (1982)). This algo-
rithm requires only one top-down scan and one
bottom-up scan of the entire image.

After the non-edge pixels have been labelled, the
edge pixels which exist between regions will stay
unaffected. If a more accurate area count of grains
is desired, a symmetric fill operator can be used to
fill up all or part of these gaps by expanding the
regions. Experiments show that polished effects at
grain bondaries and internal imperfections (due to
scratches, inclusions, etc.) often create a large
number of small regions. These regions will lead to
an inaccurate count of grains and to misclassifica-
tion of grains. In order to avoid these problems,
small regions with sizes less than a certain size
threshold are first marked and then eliminated by
expanding symmetrically the neighboring unmark-
ed regions. By eliminating all regions with less than
ten pixels, the resulting segmentation of the image
of Figure 1 is illustrated in Figure 4.

The region extraction process, though working
well for most images, sometimes produces opened
regions when the detected edges are unable to close
the boundaries of grains. In these cases, the edges
are expanded symmetrically for a few pixels or
until the gaps are closed. The expanded edges are
then shrunk by expanding the labelled regions after
the connected components step.

2.4. Region property list

Once an image has been segmented into regions,
properties of the regions ae computed. Currently,
as many as thirty measurements are kept for each
region. Among the set of properties measured for
each region, the following measurements are most
useful in mineralogical analysis.

(1) Area and perimeter of a region. They are
measured respectively as the number of pixels in a
region and the number of boundary pixels of a
region.

(2) Grey level information consists of the four
grey level region properties: maximum, minimum,
mean and variance.
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(3) The center of mass (%, p) of a region. It gives
the spatial distribution of the regions in the image.

(4) Elongation and angle are measures of the
shape and orientation of a figure. Elongation is
obtained as the ratio of the length of the major axis
to the length of the minor axis of the best fitting
ellipse of the region. Angle is measured as the slope
of the major axis of the best fitting ellipse.

(5) The ellipticity measure satisfies the follow-
ing criteria:

1. it increases as a figure becomes more circular;

2. the results for digital figures follow those for
the corresponding continuous figures;

3. it is orientation independent; and

4. it is size independent.

Haralick (1975) shows that the ratio of the mean
u, to the standard deviation s, of the distances
from the center of the figure to its boundary points
has these properties. We calculate ellipticity after
rotating and scaling the region so that its best fit-
ting ellipse becomes a circle. This is done to separ-
ate the effect of elongation from ellipticity. For a
region R centered at (¥, 7), the radius of a boun-
dary point (x, y) of R is computed as:

r=[e*((x—X)sin 8+ (y — F)cos 6)*
+ ((x—%)cos 8- (y - P)sin 8)*]'/*

where e and 6 are elongation and angle respec-

tively. And the ellipticity measure Cg is given by:

2.5, Grain classification

After the segmentation process, each region in
the segmented image is tagged with a unique label.
A region property file which contains for each
region in the segmented image a set of properties
is also generated. The individual regions can then
be classified on the basis of their average grey in-
tensities, which are stored in the property file, The
results of classification are then written back into
some designated areas of the property file.

A training phase is required in order to obtain
the parameters necessary for classifying grains of
different types. In the training phase, ore samples
of known reflectances are prepared and input to
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Fig. 5. Reflectance curves for the common ore minerals en-
countered in massive sulfide ores of the Central and Southern
Appalachians. Data are taken from Henry (1977).

the computer as training images. From a training
image we generate a segmented image and a cor-
responding region property file. The operater can
then identify, with the aid of an interactive display,
all the grains of a particular type. A simple de-
cision rule, which is usually based on the average
grey intensities of the segments of the known
grains, is then obtained and entered into the system
and is used to identify grains in unknown samples.

The above classification process relies upon the
differences in reflectances to separate one phase
from another. Such separation is readily accom-
plished if there are broad differences between the
reflectances but becomes difficult if the reflectance
differences are small and/or variable (e.g. due to
differences in polishing, in bireflectance, or high
density of inclusions of fracures). Figure 5 illus-
trates the reflectance curves for pyrite, pyrrhotite,
chalcopyrite, magnetite and sphalerite from 400 nm
to 700 nm. The distinct differences between pyrite,
pyrrhotite, and magnetite at all wavelengths are
apparent; these differences allow for relatively
easy discrimination in reasonably well polished
samples. The reflectance curve for chalcopyrite lies
below that for pyrrhotite at wavelengths less than
460 nm but above the pyrrhotite curve at wave-
lengths above about 500 nm. It is known that chal-
copyrite, although distinct to the human eye be-
cause of its yellow color, is difficult for image
analysis systems (operating in black and white) to
separate from pyrrhotite because the reflectances
are similar when averaged across the white light
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spectrum. The present investigators found that if
monochromatic light in the ranges 440-460 nm or
560-620 nm were used for illumination, phase
separation of pyrrhotite and chalcopyrite should
be most readily accomplished.

Although mineralogic identification is generally
accomplished by means of differences in reflec-
tance (grey-level), our system also allows identi-
fication on the basis of size, shape, surface texture
or color from multi-band images.

3. Applications to mineral processing

3.1. Liberation studies

The ‘degree of liberation’ is a measure of the
degree to which mineral particles occur as in-
dividual singlephase units in a crushed sample.
Determination of the degree of liberation of each
type of mineral species in beneficiation is vital in
mineral processing. The degree of liberation (L;)
of mineral component i can be determined by the
following formula:

F
— £
L;=100x Arf+ﬁA,lf
where Af is the total area of mineralogical com-
ponent i occurring as free particles, A} is the total
area of mineralogical component / occurring as
locked particles, and f; is the locking factor of the
mineral. A region is considered to be locked if it is
adjacent to any other non-background region of
different type, and is considered to be free other-
wise.

To accomplish the liberation computation, a
region adjacency graph must be determined. The
region adjacency graph contains indexes of all
pairs of adjacent regions in the segmented image.
Two regions R, and R, are said to be adjacent if
there exists some pixel in R; having a neighboring
pixel in R,. Once a region adjacency graph is
obtained, locked and free particles can easily be
determined by comparing the mineral types of
pairs of adjacent regions from the adjacency graph.

In addition to the degree of Iiberation, the
following cooccurrence measurements can also be
obtained from the region property list and the
region adjacency graph: (1) the percentage of a
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phase which occurs as locked particles; (2) the
percentage of particles which are locked; and (3)
the correlation of each mineral species with each
other mineral species.

3.2. Shape analysis

Mineralogical shape in an ore or rock is a func-
tion of the growth characteristics of the mineral
(i.e. some minerals such as pyrite and garnet have
a strong ‘force of crystallization’ and characteristi-
cally assume euhedral shapes), the environment of
initial formation (i.e. open voids vs. crystallizing
melts, etc.), and their post-depositional history
(i.e. recrystallization or fracturing due to meta-
morphism). The shape of the mineral grain may in
turn affect the manner in which it responds to
crushing, grinding, and liberation. We currently
allow the quantitative determination of particle
shape in terms of elongation and circularity. Ex-
amples of elongation and cirularity measurements
are demonstrated for ideal shapes and for real
grain in complex sulfide ores in Figure 6 and
Figure 1.
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Fig. 6. The circularity and elongation measures for ideal and
real figures. The real figures correspond to the numbered grains
of Figure 1.

3.3. Areal and grain size distributions

The mineralogical composition of an ore or
benefication product is measured in terms of the
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Fig. 7. The histogram of the mineralogical content of the image in Figure 1 in terms of reflectance.

area occupied by each mineral in a polished section
or thin section. Figure 7 represents a typical histo-
gram of mineral reflectance versus abundance for
the image shown in Figure 1; once limits are speci-
fied, the calculation of areal percentages of each
phase is immediate.

Measurements of the sizes of the individual
mineral grains and/or the distributions of grain
sizes in samples are extremely important, because
the sizes determine the degree of liberation of
minerals during beneficiation. Knowledge of the
size distribution therefore allows for prediction of
liberation characteristics and the use of minimal
amounts of energy during comminution.

4. Concluding remarks

We have described in this paper the application
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of image processing techniques to mineral benefi-
cation studies. The success of our work will help
the mineral industry in recovering base metal
efficiently from the domestic fine-grained ore
deposits. Furthermore, the basic knowledge gained
in this work is hoped to benefit the other applica-
tion areas in image processing.
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