
1478 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 6, JUNE 1991 

proving the original ESPRIT method when the sensors are per- 
turbed. All the advantages are obtained with a reasonable increase 
of computation load. However, the array manifold must be known, 
in contrast with the original ESPRIT. 
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Maximum Entropy Image Reconstruction 

Xinhua Zhuang, Robert M. Haralick, and Yunxin Zhao 

Abstract-This correspondence justifies the maximum entropy image 
reconstruction (MEIR) formulation proposed by Zhuang et al. (1987), 
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solves an open problem of whether or not there exists a solution to the 
MEIR problem, proves the fast convergence of the MEIR algorithm 
proposed by Zhuang et al., and, finally, shows that the system of dif- 
ferential equations which is the basis of the MEIR algorithm is of the 
Lyapunov type. 

I. INTRODUCTION 

This correspondence represents a continuation of the work re- 
ported in an earlier published paper by Zhuang ef al. [7]. This 
correspondence discusses the following: 

1) it justifies the proposed maximum entropy image reconstruc- 
tion (MEIR) formulation; 

2) proves the existence of the solution to the MEIR problem, an 
open problem (see [6]); 

3) shows the fast convergence of the proposed MEIR algorithm; 
4) demonstrates the MEIR algorithm is governed by a Lyapu- 

nov system, whose energy function measures the degree of 
constraint satisfaction. 

This correspondeftFe is organized as follows. Section I1 covers 
point 1) above. Section I11 covers 2)-4). The final section presents 
further research directions and a conclusion. 

11. JUSTIFICATION OF MEIR FORMULATION 

Let the required reconstructed image have positive pixel values 
fi, . . . , f, which are to be determined, and on which the entropy 

is defined, where 

Let observed image data be given by 

(3) 

where e,’s are independent, zero mean, U; variance noise terms. 
We assume U,’ is known and define a constraint satisfaction func- 
tion as follovs: 

\ 2  

Typical least squares approaches would like to determine those val- 
uesfi, * . . ,fn which minimize Q ( f i ,  . * ,&). Rather than this, 
we seek those f,, . . * , f, which maximize the entropy H ( p , ,  
. . .  , p,) subject to the constraint 

( 5 )  

which comes about from the central limit theorem [l], that is, with 
probability one 

QUI, . . . ,A, )  = f 

Thus, provided m is large, we would expect the true value off , ,  
. . .  , f, to satisfy (5). The condition (5) determines the set of fea- 
sible images each of which satisfies the given statistical test for 
consistency with the actual image data id , ,  * . , d,,,}.  In sum- 
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mary, the MEIR problem can be formulated as follows: 

max HWI, . . 
f l .  ' ' ' .fn 

subject to 
(7) 

Q ( A ,  . . .  , h )  = f and c p ,  = 1 .  
I 

Because of the linear relation between H ( p , ,  . . * , p , )  and H ( f , ,  
. . . .fn), i.e., 

H(A, * * * ,f") - log Xi, 
ci H ( p , ,  . * * , P,) = 

I 

it is easy to verify that the formulation (7) is equivalent to 

1 
subject to Q ( f )  = 2 

wheref = ( f i ,  . . . , fn)' and a, are Lagrange multipliers. The 
constrained maximization (8) can be further rearranged as follows: 

1 
subject to Q ( f )  = i. c 

As clearly seen, the main part for (9) is the following constrained 
maximization: 

( subject to Q ( f )  = i 
where p = ab. Finally, the formulation (10) is equivalent to the 
following constrained maximization: 

where the initial value, i.e.,  f(0; p)  = exp ( p  - 1)(1, . . * , 
1);  x n ,  solves V J ( f ;  p ,  0) = 0. The initial value problem comprises 
the basis of our MEIR algorithm. 

In order to prove the existence and the uniqueness of the solution 
to the MEIR problem formulated as ( 1  l ) ,  we will show, along the 
solution curvef(t ;  p )  ( t  2 0) defined by (12), that the constraint 
satisfaction function QCf(t; p ) )  approaches i as t -+ 00 or at a unique 
finite time t*. 

Assume 

(13) MIN = min ~ ( f )  5 i. 
fi 20,. . . ,jh 2 0 

We can prove even more, that is, 

Q ( f ( f ;  p)) - MIN 5 0 . (9 
Let f o  be an arbitrary point in S which is defined as follows: 

S = {f: Q ( f )  = MIN, with e a c h i  2 0, i = 1 ,  * . . , n } .  

(15) 

By the definition off(t; p )  it follows: 

J ( f ( t ;  t L ) ;  p ,  t )  2 J(fO; p ,  t )  

= -Cfp I logfp + p Cfp I - t Q ( f o )  

= const. - t MIN. (16) 

Thus 

-CL@; p)  l o g i ( t ;  p )  + p C i ( t ;  p)  

2 t [ Q ( f ( t ;  p ) )  - MINI + const. (17) 

2 const. 

> - w .  

yJ(J p9 0 = H(f) + 1.1 Ffi - t Q ( f )  

subject to Q ( f )  = i 
Since the left side of (1 7) tends to - 03 as some fi -+ 03, we con- 
clude that there must exist 0 < B < 03 so that for each i and t 2 
0 

(11) 

0 < f i ( t ; p )  5 B ,  i = 1 ,  . . .  , n.  (18) 
where t is another Lagrange multiplier. 

By now, the MEIR formulation proposed by Zhuang et al. [7], 
which was based on some heuristic consideration, has been justi- 
fied since it is exactly the same as (1 l ) ,  the latter is formally de- 
rived as the main part of the original formulation (7). As argued in 

As a result, we get 

1 
Q ( f ( t ;  p))  - MIN 5 : [-EL@; p)  l o g i ( t ;  P )  

Zhuang er a l . ,  usually we are satisfied with the solution to ( l l ) ,  
where p can be arbitrary, if not, there exists an efficient way to 
adjust p to get a more satisfactory solution. 

In the next section, we show the existence and uniqueness of the 
solution to the MEIR problem formulated as (1 1 )  and prove the 
fast convergence of the MEIR algorithm for solving (1 1). 

111. EXISTENCE, UNIQUENESS, AND FAST CONVERGENCE 

It was proved by Zhuang et al. [7], that for each fixed p and each 
fixed t 2 0, the function J(f; p,  t )  reaches its unique maximal 
point denoted as f ( t ;  p)  internally, i.e.,  A(?;  p )  > 0, i = 1 ,  
. . .  , n, furthennoref(?; p)  ( t  2 0) coincides with the solution 
curve determined by the stationary point equation, i.e., V J ( f ;  p ,  
t )  = 0 ( t  L 0), or, equivalently, determined by the following initial 
value problem of differential equations: 

[ ( V ' J ) ;  df = V Q ,  t > 0 

+ p CA(?; p)  - const.) 
I 

1 
t 

5 - O(1) 

I 

which straightforwardly leads to (14). 
If MIN c i, then there exists a unique t* such that 

Q ( f ( t * ;  cl)) = i .  (19) 

It is apparent thatf(t*; p )  maximizes J ( f ;  t*, p ) ,  satisfies (19), 
and hence uniquely solves the MEIR problem formulated as (1 1). 

If MIN = i, we can further prove that hm,+ f ( t ;  p )  exists and 
uniquely solves (1 1 ) .  

Finally, we notice that 

V 2 J ( f ( t ;  p); p ,  1) < 0 

= ( V Q ) ' ( v * J ) - ' ( V Q )  5 0. 
dt 
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Thus, along the solution curvef(t; p)  (t 2 0), the constraint sat- 
isfaction function Q( f ( t ;  p)) will monotonically decrease to MIN 
as t + 00 and hence qualify to be the energy function of the system 
(12). This concludes that the system (12), i.e., the basis of MEIR 
algorithm, is of the Lyapunov type. 

IV. FURTHER RESEARCH A N D  CONCLUSIONS 

Some subjects of further research are as follows 

1) Assume ej’s are i.i.d., ej - 31. (0, U*) with unknown U’. How 

2) Assume ej’s are i.i.d. 
should the MEIR problem be formulated? 

ej - (1 - E ) X ( O ,  U’) + ch(ej)  

where U, E ,  h ( a )  unknown. How should the MEIR problem be for- 
mulated? 

In this correspondence, we proved the existence and uniqueness 
of the solution to the MEIR problem and derived the fast conver- 
gence of the previously proposed MEIR algorithm. For a detailed 

exposition of the maximum entropy principle in image recovery 
and related references, please refer to [SI. 
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