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Abstract—A new algorithm is developed for solving the maximum
entropy (ME) image reconstruction problem. The problem is reduced
to solving a system of ordinary differential equations with appropriate
initial values. The choice of initial values closely relates to the satisfac-
tion of constraints, and we show how initial values are determined. The
algorithm does not involve any optimization method. Instead of search-
ing in the (n + 1)-dimensional space as required for most ME algo-
rithms, our approach relies on solving a one-dimensional search along
a well-defined and easily mastered path. Moreover, an efficient algo-
rithm is developed to handle the search. The computer reconstruction
verifies the theory.

[. INTRODUCTION

HE success of maximum entropy methods in image

reconstruction and spectrum estimation [1]-[9] has
encouraged researchers in designing more efficient algo-
rithms. In this paper, a basically new algorithm is devel-
oped for the maximum entropy reconstruction. The prob-
lem of maximum entropy reconstruction is reduced to
solving a system of differential equations with easily ob-
tained initial values. Most of the maximum entropy lit-
erature attacks the problem by some kind of optimization
technique. The algorithm proposed here does not involve
any optimization. It does not require search in an (n +
1)-dimensional space. which is required by most optimi-
zation techniques used in finding a maximum entropy so-
lution. Here n represents the number of pixels in the im-
age to be reconstructed. Instead, it performs a search along
a path in the (n + I)-dimensional space which is defined
by the initial value problem of differential equations.
Thus. the problem is reduced to a one-dimensional search.
Since n, the number of pixels in the image, may be very
large, the complexity of maximum entropy reconstruction
is greatly reduced by this method. A similar idea could be
used in spectrum estimation.

In Section II of this paper, the basic concepts for the
maximum entropy reconstruction technique are given.
This part includes the derivation of a system of differen-
tial equations defining a branch of solutions over which
the one-dimensional search is performed. The section
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concludes with an analysis of the existence interval for A,
the search parameter. Section 1II deals mainly with the
problem of selecting initial values so that the constraints
imposed on the original formulation of the problem can
be satisfied. A more comprehensive analysis of this sub-
ject is carried out in Section IV. The algorithm for solving
the system of differential equations for the maximum en-
tropy reconstruction problem is outlined in Section V.
Section VI deals with the problem of adjusting a param-
eter in order to satisfy the constraint on the total image
intensity embedded in the original problem formulation.
In Section VII, experiments in image reconstruction using
the algorithm outlined in Section V are described and re-
sults are presented. Conclusions follow in Section VIII.

II. MaxiMmuM ENTROPY, STATIONARY POINT
EoQuaTiON, AND DIFFERENTIAL EQUATIONS
Let the required reconstructed image have pixel values
represented by positive numbers fi, - -+, f, which are to
be determined, and on which the entropy

H

— 2 p;log pi p;

i=1

Hipp *** 5 pu &

ﬁ/Zf,.i:I,"',n (1)
=1

is defined. The entropy depends only on the distribution
of gray levels in the image and not on the total intensity
Li-1 f-

Let the observed image data be given by

n
L .
af, = L] Ay + ¢ J = Lo )
i
where the ¢;'s represent independent zero mean, o; vari-
ance noise terms. We define

-

Ofy, "+ f) = %;‘;I 11’0‘% (g';l Aifi — d_,)
= L(Af — ) diag [1/o7. - - + . Uoy)
(Af — d)
= dl4f — dl3. (3)
where A :\ [Al;,],”_”.fé [fl- T '.ﬁi]T‘ d :\ 1d|‘ T

d,)’. and D = diag [l/07. . /o). Typical least
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squares approaches would try to determine those values

Si» =+ . f, which minimize Q(f;, - - - . f,). Rather than
do this, we seek those f;, -+ + , f, which maximize en-
tropy subject to the constraint

QUfis =+ o fi) = mi2. )

The motivation for this constraint comes about from the
central limit theorem (see [10]) which states that with the
probability one

m

lim 1/m 2 e}lo} = 1.

m = oo J=1
Thus, provided that m is large, we would expect the true
value of fy, -+ -, f, to satisfy (4). The condition Q =
m/2 now determines the set of feasible images f which
passes the given statistical test for consistency with the
actual image data {d|, * - - , d,,}.

Although any of the feasible images is acceptable as a
reconstruction, the maximum entropy criterion selects that
particular f which has the least configurational informa-
tion, i.e., the one where the pixel values are least sepa-
rated. Hence, it can be looked upon as a smoothing cri-
terion. Of all reconstructions which approximately fit the
actual data {d,, * * - , d,,}, the solutions of higher entropy
thus represent more ‘‘disorder,”’ they are more ‘‘proba-
ble,”” *‘less predictable,’” they ‘‘assume less,”” and they
are more ‘‘natural’’ according to Shannon’s interpretation
of entropy as an information measure.

Formally we are to maximize the entropy H(p,, - * - ,
p,) given the constraints Q(f,, -+ , f,) = m/2 and
Ll fi = t(r > 0). We introduce the second constraint for
two reasons. One is that the total intensity has a status
different from individual pixel values. It does not contrib-
ute to the shape of the gray tone intensity surface of the
image f. For the second reason, we must look to the
equality

H(pla SR =pn) =~ H(,fl» Tt sfl-f)/;f; - log >l:}f;a

where H(fi, -+ , f) = =L, f log f.. Introducing the
second constraint L; fi = t, we obtain a linear relation
between H(f, - - - ., f,) and H(p,, - -+ , p,) enabling us

to treat H(f, * - - , f,) instead of H(p,, * - - , p,), the
first one being much more tractable. Anyway, this con-
straint is not very strict, and it may be varied to obtain
any required total intensity.

From the relation between H(p,, - - - , p,) and H(f},

*+, fu), it is easily seen that the following three prob-
lems are equivalent to each other.

Problem 1:

max H(P;, T, pr:)

subject to Q = m/2, Zﬁ =i I
Problem 2:

max H(fI! T 9j;l)

subject to Q = m/2, 2. f; = 1.
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Problem 3:

max

H(fi, - f) + #Z;f; = N(fin v 1f,,)‘
subject to Q = m/2, 2. f, = 1.

Instead of solving problem 3, we solve the following
problem.
Problem 4:

max [H(fl, R AR uzf]ﬁ = NO(fi, vﬁ,)’

subject to Q = m/2.

- In problem 4, the total intensity is treated like ‘‘a free
boundary condition.”” No specific value is assigned to it
in advance. In fact, problem 4 is a very rcasonable for-
mulation of the maximum entropy image reconstruction.
If f¥, - - -, fFis a solution of problem 4, then it is also
a solution of problems 1, 2, and 3 with r = I, f *. Usually
we are satisfied with the solution of problem 4. If not, we
could adjust the parameter u so that the solution of prob-
lem 4 has the required total intensity (see Section VI).

In the following, we first consider the unconstrained
maximization problem related to problem 4.

Problem 5:

max [H(ﬁ, ™ 1 Ik _F Ef =5 O s 2 ) [
Let

SOl N 2 HAL - L f)
+ w2 fi = NS L S, (5)
Then problem 5 is to find maximal points of J( f}, - -+,

s #s N). The function J(f, p, N) is defined and continu-
ous in the closed domain E, where E = {(f;, * * - ,J): f
>0,i=1,-+,n;. When A = 0, the continuous func-
tion J has a unique maximal point which is finite since J
tends to minus infinity as || f|| = oo and is strictly con-
cave, the latter is due to the negative definiteness of its
Jacobian, V2J:

Vi = —diag [l/f,, - . 1/f,] — NA'DA < 0. (6)

As known, if the maximal point f° is an inner point,
i.c., f* € E, then the following stationary point equation
holds:

VJ = —[logf, - log [y
+ (u — Dh — NADAF —d)y =0, (1)
where for abbreviation b = [I, - - -, l]fx,,.

Conversely, if VJ equals zero at a point f € E as \ =
0, then f° must be a maximal point, as easily seen from
(6).

In the following, we will prove that (7) is always solv-
able in Eas A = 0. Thus, problem 5 is actually equivalent
to (7) as A = 0. The solution of (7) gives that unique
maximal point required by problem 5 as A = 0.
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To prove that (7) is always (uniquely) solvable as A =
0, all we need is to find such a path f(A; p) in E, defined
for0 < A < oo, that the gradient VJ is identically equal
to zero along it:

VIfA wip, ) =0, 0 <A< oo, (8)
It is clear that (8) is equivalent to the following (9) and
(10):

d

ll

0,0 = A < oo, 9

VJ(f(O; w); 1, 0) = 0. (10

It is also clear that (9) is equivalent to the following dif-
ferential equations for f(A; ) (by working out the deriv-
ative (d/d\) VJ):

4

V(S5 e N o VO(f), 0= A<, (1)
and (10) directly gives f(0; u) as
fO; p) = exp (p — DA, (12)

where h equals [1, - - -, l]fx,,.

Thus, the stationary point equation is always (uniquely)
solvable in E as A = 0 if the following Cauchy problem
of differential equations defines a solution curve in E for
0= X< oo

a _
d\
flx=0 = exp (u — Dh.

Vi vQ

(13)

This is proved in Theorem 1 of the Appendix. Having
shown that the unconstrained maximization, problem 5,
has the form of (13), we are ready to consider the variety
of computing schemes available to solve it.

To solve the maximum entropy image reconstruction
problem, the only thing left is to select suitable initial
conditions for the Cauchy problem (13), in order for the
constraint 0 = m/2 to be reached by the solution curve.
For this we need to know more about the solution curve
of (13). We discuss this in the next section.

III. PROPERTIES OF REDUCED SYSTEM OF
DIFFERENTIAL EQUATIONS

In this section we define sets giving the p's for which
a maximum entropy solution satisfying the constraint Q
= m/2 can be found. Naturally we are interested in the
behavior of Q( f(\; p)) along the solution curve. It is easy
to see that

dO(f(\; )

2.5
dx dx

= (VO

= (VO (VI)"'(VQ).

In the following, we prove that Q(f(h\; u)) decreases
strictly monotonically as A increases unless the solution
curve f(A; u) shrinks into a single point exp (p — 1)A.

(14)

As a matter of fact, along the solution curve there are only
two possibilities. Either

SO p) =exp(p — 1Dh and VQ (exp (w — )h) = 0,
(15)

or
VO(fOn ) £ 0, 0 <\ < oo, (16)

Thus, when f(A\; u) does not shrink into a single point,
the derivative dQ( f(N; u))/d A will always be negative be-
cause of (14) and (16) and (V3)™! < 0. As for (15) and
(16), we can proceed as follows.

Suppose there exists a point f* = f(A\*; u) along the
solution curve such that

VO(f* = 0. (In

Then f(\; p) will coincide with the solution curve defined
by the following Cauchy problem due to the uniqueness
of the solution to

af
Vi = =voQ,

dn (18)
Sla=ne = >

However, the solution curve of (18) obviously is a single
point f* due to (17) and the initial condition in (18). Thus,
it holds

fOvp)=7* 0= N< oo, (19)

Now it is not hard to see that (15) is valid since f(0; w)
= exp (u— 1)h. Thus, we have proved the following.
Theorem 3.1: The derivative dQ( f(\; pw))/d\ is always
negative unless VQ (exp (p — 1h)) = 0.
In order for the solution curve f(A; p) to satisfy the
constraint @ = m/2, only those u’s need to be considered
which satisfy either

Q (exp (u — L)h) = m/2. (20)

or
Q (exp (u — 1)h) > m/2 and VQ (exp (p — Dh) # 0.
(21)

If (20) holds, then exp (u — 1) h solves problem 4. Oth-
erwise, we need to select suitable u’s by means of (21)
and then compute f(A; ) by means of (13).

Let the sets U, V, and W be defined as follows:

U= {p: Qexp (u— k) = m/2}, (22)
V= {u Q(exp(— )h) > mi2}, (23)
W= {u: VO (exp (u — Dh) # 0}. (24)

From the previous discussion, it is clear that only those
u's which belong to U or ¥ N W can produce meaningful
results.

IV. CompuTING SeETS U, V, anD W

In this section we will further investigate the sets U, V,
and W, in order to determine initial value u for which a
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maximum entropy solution satisfying the constraint can
be found.

For abbreviation we let

a=exp(p—1)
- n n T
r= Z Ali/gla T, Z Ami’lam:| ’
i=1 i=1
§ = [d]/(f], T, dm"gm]'r- (25)
Then a direct computation yields
Q(ah) = ac® + ba + c, (26)
where three coefficients a, b, c are as follows:
a = 4rl?,
b= _(r, S)e
c = Ll @7

By using the Schwartz inequality, it is easily verified that
b* = dac. We will prove that the expectation E{c} =
mi2. Let L; A;; f; = g;. Then

& = %_‘ ; (gj + Ej)Z/U—?

=4 ? gjlo} + ; gejloar + 1 %‘/ ejlal, (28)

and
E{c} = %JE gl + mi2 = m/2, (29)
E{c} =m/2 & ¥j, g = 0. (30)

Furthermore, we can prove the fol]owing theorem.
Theorem 4.1: Assume that 1/m? L. 1gjz/oj — (0. Then
w1th probablhty one, 1/mI;ge;i/o} - 0, and 1/m(c —
gf/a )y = 1 whenm — oo.
Proof: Let U; = ge; /or Then the U;'s are 1ndepen-
dently dlstrlbuted with zero mean and variance g*/o;". Let
= 1/m IjL, U,. It is then easily seen that E{X,,,} =0,
and lim Var{X,,,} lim E{X%} = lim (1/m") L;g;*/of* =
0, m — oo, by assumption. Hence, by Chebychev’s
inequality [10, p. 151], X,, — O with probability one
when m — oo, which proves the ﬁrst part of the theo-
rem. Note that 1/m(c — 3 Ejgjz/a} ) = im Eez/aj + 1/m
Ejgjej/aj . The term 1/m Le; /U_,. approaches 1 (m — oo)
with probability one by the central limit theorem, as men-
tioned before. Combining this fact with 1/m Ejgjej/ojz -
0(m — o) With probablllty one we have with probability
one l/m(c — % Egjz/c ) = 1 (m = ). Thus for large
m, c can rather safely be replaced by m/2 + 3 & gf/qr (=
m/2). Hence, in the sequel we assume ¢ 2 m/2. Q.E.D.
Using theorem 4.1 and assuming sz = 02 for all j, we
can for large m derive a simple expression for the signal-
to-noise ratio (S/N):
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(SIN) & 2 g;—/z e?
J J

= (Z dj'-’—m02>/(ma'~’) = 2 djz/(moz) - L
J J

Now using the assumption ¢ = m/2, we are able (o
compute sets U, V, and W. We are interested in obtaining
a nonempty U or the intersection set ¥V M W when U =
o.

Computing the set U = {u:Q (exp (u—1)h) = m/2}
we have the following.

Case I: a > 0,b" — da(c —m/2) 2 0,b < O

{1 +log [(— b + VB = 4a(c — m/2))IQa)},
c>m/2
{1 + log (—b/a)},

Case 2: a > 0, b* — 4a(c — m/2) >
{(=00, @)}

In all other cases, U = ¢, an empty set. The second
case occurs very rarely. In general, U is empty or has one
or two elements. This corresponds to no equientropy so-
lution or one (or two) equientropy solution(s) for problem
4, respectively.

Computing the set ¥ = {u: O (exp (u — 1)h) > m/2}
when U = ¢ we have the following.

c =ml2.

0,6>0: V=

Case 1: a > 0and b* — 4a(c ~m/2) < 0: V = {(—oo
®)}.

Case 2: a > 0, b —4da(c —m/2) 2 0,b>0: V =
{(—o0, )}.

Case3: a=0(=b=0)andc > m/2: V = {(—x,
®)}.

Hence, V¥V = {{—o0, =)} when U = ¢.

Computing the set W = {u:VQ(exp (0 — 1)h) # 0},
we can rewrite W = {u:exp (u — 1)A"DAh # A'Dd}. It
is clear that W equals {(—o0, )} unless the (n X 1)-
vector A"Dd has the same direction as the (n X 1)-vector
A"DAh. The exceptive case occurs very rarely. Thus, in
general, W = {(—o0, )}.

In summary, there are only two possibilities in general.
Either U is not empty, and thus, the problem 4 has at most
two equientropy solutions. Or ¥ N W = {(— o0, o)}, and
thus, for any p there holds

0 (exp (u — Dh) > =,

2 (31)

VO (exp (u — 1Dh) = 0. (32)
As known from theorem 3.1 (32) assures
g(gz—\—’@ 0 as\ >0, 33)

where remember: f(A;x) is the unique solution of (13).

Intuitively, from (31), we would like to choose such a
p that O (exp (x — 1)h) is as close to m/2 as possible.
When —b/2a > 0, we can simply choose

u =1+ log (=b/2a),
because of [(d/da) O(ah)], = —ppna = 0.

(34)
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From (27) it is apparent that the condition, —b/2a >
0, is equivalent to (r, s) > 0. Notice that d; and f; are
related by

n

d= 2 Aifi+e j=1 35)

o, m,

where all f; are nonnegative, and the matrix (A;), x m T€P-
resents the blurring operation which occurred in the im-
aging processes, the latter implies 4; = O in most prac-
tical cases. Thus, (7, s5) > 0 will hold whenever the noise

is not too large.

V. ALGORITHM FOR SOLVING DIFFERENTIAL EQUATIONS

In this section, the algorithm for solving (13) is pre-
sented. As mentioned in the Introduction, we do a search
along the solution curve by varying the parameter A, start-
ing with Ay = 0. A satisfactory solution is found when
Q (f(\:p))/(m/2) is sufficiently near 1. For each A, a large
system of linear equations must be solved. This is done
by making extensive use of the properties of the coeffi-
cient matrix and applying the Gauss-Seidel algorithm [11]
which is an iterative technique providing fast conver-
gence.

Suppose that the set U is empty, i.e., problem 4 has no
equientropy solution, and moreover, an appropriate u has
been chosen from the intersection set ¥V N W. From (13)
we have the following discretized iterative equations:

fO=exp (- Dh,
k>0
(F* + MA DAY = )
= —(vs1 — WADUAF — ),
where F* = diag [1/fi*, + - -, WL, Xg= 0, 80l Keyy
> A, When all [N, —M/ are small enough, f* will
approximate f(\;; p) very well. Equation (36) can be re-
written as follows:
f*=expu— Dh,
k= 0:
(F* + NADAY !
= (N — Ma VADAFY + h + (\yy — N)A'Dd.

(36)

(37

This is a large linear system of equations. Fortunately,
the coefficient matrix (F* + \.4'DA) is positive definite
and symmetric. The Gauss-Seidel iterative scheme (see
[11]) is used to solve (37) efficiently.

Let P represent the matrix (F* + N, ATDA). Let b rep-
resent the vector (27, — }\H])ATDAf" + h + (A1 —
}\k)ATDd. Further, let x be the (k + 1)st estimatefk *1 of
fOv1: p). For m > | we have the following Gauss-
Seidel iterative equations for solving Px = b:

b

_ Z P 1_(::1-”
JE

my

1
i T 5 it A »
P“_ L y-J

{b- = FL P "
S P

i=1, "+, n (38)
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It is proved (see [11]) that the convergence and the limit
point are independent of the choice of x©. Thus,
lim x™ = f¥*'. We choose x'© = f¥ since f**' should
be near to f* when [N, — M| is small. This choice of
x© greatly speeds up the convergence of (38). Experi-
ments indicate that in most cases only one iteration for
each k is enough to obtain FEHl from f*. In that case, we
have

k41

Fi = |:bs *j;jpnjffﬂ

, n.

1
— — fk
By jgi Puf"}’

] =1y 0w 39)
In the sequel we let
L= A"DA;
p = A'Dd,
g = Lf*,
Then from (37) it follows
k= 0:(FF + MDY = QN = Mesn)8”
il + (s — Nl

; i .
1 gt = (2 - ——;\:1>8A

L[f*{— AT i f;“]T

¥

I -

-
+ (2 g )p.
(xk )”

The initial values fo, go, g! for (41)-(42) are as follows:

k=0,1,2, . (40)

(41)

k =

+

(42)

fO = exp(u — D)h,
n n T
80 = Lf0 = exp(p — 1)\ 2 Ly, -+, Zl LmJ .
Q=1 i=
gl o Lfl

(43)

Thus, (43), which involves matrix calculations, is used to
find g°, g', and the recursive formula (42) involving only
vector calculations is used for g*, k = 2.

Finally, we summarize this section by giving the fol-
lowing algorithm for solving the maximum entropy image
reconstruction problem, which can be easily imple-
mented.

Step 1: If U # ¢ and p € U. then there is an equien-
tropy solution f* = exp(p — 1)h. Stop.

Step 2: Choose an appropriate p € ¥ N W such that
Q(exp(p — 1)h) is as small as possible.

Step 3: Setk = 0, N\, = 0, f* = exp(p — Dh. gt =
Lf¥, and Q% = Q(fY).

Step 4: If |Q¥/(m/2) — 1| < e, then stop. Here € is a
prescribed small positive number.

Step 5: Solve (37) for f**' by using Gauss-Seidel it-
erative scheme (38).
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Step 6: Compute Q**' = Q(f*™).

Step 7: If k is large enough, stop.

Step 8: If |Q**'/(m/2) ~ 1| = e, then stop.

Step 9: If k = 1, then compute g**' by (42), else
k+1 _ Lfk+ l.

Step 10: If Q**' > m/2, then set A > 0, else set
6N < 0.

Step 11: Setk =k + 1, ANy = Moy + OA.

Step 12: Go to step 5.

In the experiments we consider only cases where the
blurring given by the matrix A can be represented as a
convolution between the undegraded image and a (rect-
angular) mask. By making full use of the fact that just
very few of the elements in the matrix L are nonzero for
moderate mask sizes, it has been possible to construct a
fast algorithm without resorting to Fourier transforms. If
the blurring happens in the imaging processes, then the
mask is usually small. For very large masks, however,
the situation is different, and the possibility of time sav-
ings by use of Fourier transforms should be investigated.
Equation (37) is, however, not convolution form, so im-
plementation of Fourier transforms is not straightforward.

g

VI. ADJUSTING g TO GET THE REQUIRED TOTAL
INTENSITY

Assume that the set U is empty and we have parameters
po and Ap such that g = 0 and |Q( f(Ng; o))/ (m/2) — 1]
< e. We are to look for a differentiable curve A = A(p)
passing through (ug, Ap), along which the Q-values,
Q(f(A(u); p)), are constant. In this case, adjusting the
parameter p will not affect the satisfaction of the con-
straint |Q/(m/2) — 1| < e. Now along the required curve
we should have two relations:

dO(f(Mp); W) _
dp
VI(fF(Mp); w); 1 Mp)) =0,

the latter because f(A(u); u) is the stationary point of the
function J( f; u, A(u)) as known before.
From (45) it is easy to derive that

0, (44)

(43)

dFON);
dn
Lo d_(#) VO(f(Nw; W) = 0
m

or

SN B _ w270 r ) w)]”!

dp.
[d_?:i;_u) VO(f(Mu); w)) — h]- (46)
Under the assumption U = ¢, we have that
VW= {(-%», ®)},
which imples that
VO (exp(p — 1)h) # 0. @7
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As stated before, (47) implies that
VO(f(Mu); w)) = 0 everywhere. (48)
From (44) we have
df (N pn);
[VO(F(Mw); u))]Tf—(% =0. (49
Combining (47)-(49) together, we obtain
Tro2 -1
A\ _ _IVOITVAI'h 56

dp  [VOI' IV 'IVOr

where the differentiable curve passes through (pg, Ag),
i.e., )\(JU.D) = )\0.
Then, multiplying both sides of (46) by h, it follows

d 21 fi(Nw); w)
dp

= VY 7'vQ + ‘;—7‘ — BV 'R
M

_ (vor'Iviy ey
(VOI'IV) 'V Q)

- B[V A

(D

Finally, we obtain the following Cauchy problem of (n +
2) differential equations for adjusting u to get the required
total intensity:

dfi(p); dN
If( ;u) K _ dN(p) VOl — h.
4 dp

d\w) _ VOV 'h
dp  [VOI'IVVJ]IT'[VOI

(Vi)

dZFOWR (worvi)e

o k. — KT[ViI " A,
dp (voI v [vVOl V]
fh;:ug =f(}\0v ,U‘.()),
)\|u=p0 = }\U’
Eif,-h:m = h'f(No. po)- (52)

The iterative scheme for solving(52) is as follows.
Given: po, Mo, f* = f(Noi po) fo = h'f".

k = 0:
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VAP o NI = 19
= Nex1 = VOO — (e — mdh,
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Fig. 2. Input images: 1-5.

VII. EXPERIMENTS

Three source images were used in the experiments. The
first one (Fig. 1) is a picture of a girl. The size is 128 X
128 pixels, and the resolution in gray level is 8 bits. Five
different degraded images were produced from this im-
age. These images, which are input images for the algo-
rithm, will be referred to as images 1-5. Images 1 and 2
were created by first convolving the source image with a
5 X 5 mask with all elements equal to unity. Random
noise with zero mean and standard deviations of 4 and 40,
respectively, was added to the blurred image. This corre-
sponds to the signal-to-noise ratio (S/N) of 1000 and 10,
respectively, for the resulting images. To get a stronger
blurring, this source image was convolved with a 7 X 7
mask with the center 5 X 5 elements all equal to zero and
the 24 border elements equal to unity. Noise with zero
mean and standard deviations of 4 and 40, respectively,
was added to the blurred image to produce images 3 and
4. To test the ability of the algorithm to reconstruct an
image when we have incomplete measurements, image 5
was created. It is identical to image 1, but the gray level
is known for only every tenth pixel. This is, for conve-
nience, done in a regular manner producing the line pat-
tern which can be seen in Fig. 2 where the five input im-
ages are shown. Data for these images are listed in Table
I

The second source image [Fig. 3(a)] contains text and

TABLE I
INPUT IMAGES CREATED FROM GIRL SOURCE IMAGE

Standard Deviation

Image  Size of Mask of Noise (S/N)  Sample Interval
Image 1 3K 4.0 1000 1
Image 2 5 X3 40.0 10 1
Image 3 7x7 4.0 1000 1
Image 4 7 x7 40.0 10 1
Image 5 5x5 5.0 1000 10
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Fig. 4. Checkerboard image. (a) Source image. (b) Degraded input image.

has size 480 columns by 100 lines. It was blurred by a 7
X 7 Gaussian filter with standard deviation of 5. Noise
with standard deviation of 4 was added to produce the
input image shown in Fig. 3(b). The third source image
[Fig. 4(a)] is a 128 X 128 checkerboard image. The cor-
responding input image was produced by the same deg-
radation process as was applied to the text image.

As stated by (36), the initial guess for the solution vec-
tor fis f® = «h, where @ = exp (g — 1) and h = [,
«++, 1]7,1. For fastest possible convergence, « is cho-
sen so that Q(«) is smallest possible (provided U = ¢),
that is, we choose « so that dQ(c, - - - , a)/do = 0 [see
(34)].

For each reconstruction, the algorithm was run until the
resulting @ was sufficiently near Q = m/2 (m is the num-
ber of data points, i.e., pixels). The number of iterations
for each A\ and step size in N, 6A = |A ., — Ay| were
determined empirically, and the chosen values represent
a reasonable, but in no way the best, choice. The optimal
choice of 6\ also varies strongly with noise level. The
basic policy we use to control the step size in our exper-
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TABLE 11
DATA FOR RECONSTRUCTION OF GIRL IMAGE

Image K SN 1.9 A-Final @-Initial Q-Final m/2 € CPU
Image 1 1 0.2 0.2 0.2 769041 52588 1.36
Image 1 6 0.2 0.4 1.4 769041 10340 0.262 10.15
Image 1 12 0.2 0.4 3.8 769041 8381 8192 0.023 20.10
Image 2 1 4.0 4.0 4.0 15970 13539 1.36
Image 2 b 4.0 4.0 20.0 15970 8875 0.083 8.40
Image 2 9 4.0 4.0 36.0 15970 8379 8192 0.023 15.05
Image 3 I 0.2 0.3 0.2 643424 73208 2.50
Image 3 6 0.2 0.4 1.6 643424 11845 0.446 18.10
Image 3 10 0.25 0.5 4.0 643424 8423 8192 0.028 30.15
Image 4 1 4.0 4.0 4.0 14715 12814 2.50
Image 4 4 4.0 4.0 16.0 14715 9473 0.156 12.40
Image 4 8 4.0 4.0 32.0 14715 8412 8192 0.027 24.00
Image 5 1 0.5 0.5 0.5 77151 47400 1.45
Image 5 8 0.5 1.0 5.5 77151 3777 3.606 14.30
Image 5 15 0.5 1.0 12.5 77151 825 820 0.006 26.20

Fig. 5. Results for image 1. Image 1 (upper left), | step in A (upper right),
6 steps (lower left), and final result after 12 steps (lower right).

iments is: if the relative reduction in Q in one step is be-
low a user specified limit, the step size is doubled for the
next step. This can save a lot of time compared to keeping
6\ constant for a whole search. Indeed, in some cases, it
is quite necessary in order to be able to reach a solution
in a reasonable time. One Gauss-Seidel iteration was
enough to obtain f** ! from f¥ with satisfactory accuracy
as mentioned before.

Table II gives an overview of some of the experiments
run for the five input images generated from the girl source
image. K is the number of steps. 6\ is initial step size in
A, and 8); is the final step size. Q-initial is the initial Q-
value computed from the flat (constant) image which is
the starting image. m represents the number of observed
data. e = | O-final — (m/2)|/(m/2.) CPU is the CPU time
in minutes and seconds.

The corresponding images are shown in Figs. 5-9 for
images 1-5. The upper left image is the input image, up-
per right is the result after one step in A, lower left is the
intermediate result, and at the lower right the final result
is shown.

Table III shows some of the experimental data for the
text image and checkerboard image. The corresponding

Fig. 6. Results for image 2. Image 2 (upper left). | step in A (upper right),
5 steps (lower left) and final result after 9 steps (lower right).

Fig. 7. Results for image 3. Image 3 (upper left), luswp in A (upper right),
6 steps (lower left), and final result after 10 steps (lower right).

reconstructed images are shown in Figs. 10 and 11, re-
spectively.

The overall results indicate a very good performance in
reconstruction of blurred images even in cases where we
have very few measurements. The performance in recon-
struction of extremely noisy images seems to be a little
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TABLE III
RECONSTRUCTION DATA FOR TEXT AND CHECKERBOARD IMAGE
Image K A, A A-Final Q-Initial @-Final mi2 € CPU
Text 22 0.50 256.0 768.5 827968 24574 24000 0.024 3.13.00
Check 6 0.25 0.5 2.0 1935043 50248 3.133 18.00
Check 25 0.25 32768.0 98308.0 1935043 9297 8192 0.135 1.15.00

Fig. 8. Results for image 4. Image 4 (upper left), 1 step in A (upper right),
4 steps (lower left), and final result after 8 steps (lower right).

Fig. 9. Results for image 5. Image 5 (upper left), 1 step in A (upper right),
8 steps (lower left), and final result after 15 steps (lower right).
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Fig. 10. Reconstruction of text image. (a) Input image. (b) Final result
after 22 steps in A.
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(a) (b)
Fig. 11. Reconstruction of checkerboard image. (..) After 6 steps in \. (b)
Final result after 25 steps.

poorer. The experiments indicate that the algorithm runs
better in deblurring than in noise removal. In fact, if no
noise was present, it is possible (in principle at least) to
obtain a perfect reconstruction (which in this case is a
pure deconvolution or deblurring). In practice, however,
noise is always present, and even very small amounts of
noise could cause the reconstructed data to fluctuate some.
The present algorithm, however, applies noise statistics
[see (4)], which probably is the best way (statistically
speaking) of dealing with the noise.

Figs. 5-9 indicate that in many cases it is not necessary
to search all the way until Q reaches Q-final. The final
results are not very much different from the intermediate
results also displayed in the same figures. Thus, accepting
the intermediate results as the final reconstruction, a lot
of CPU time can be saved. As seen, the final results in
Table II have their e-values less than 0.018 and the inter-
mediate results have their e-values larger than 0.083.
Therefore, letting e = 0.1 in the algorithm might give a
reasonable stopping condition.

Table II reveals the importance of varying the step size
6A. The initial step size cannot be increased significantly
from its present values, so a constant step size would in
many cases make practical applications impossible.

The checkerboard image was the only case where the
result did not undisputedly improve with the number of
iterations. The average contrast between black and white
squares did increase, but pixel values for the two regions
are overlapping after 25 iterations (see Fig. 11), whereas
this was not the case for just 6 iterations with a final A of
only 2.0 (shown in the same figure).

The experiments were run on a VAX-11/780 computer.
Data for the experiments as well as CPU time consumed
are listed in Tables II and III. Although the general prob-
Iem complexity is the square of the number of pixels, the
computational complexity can in many cases (for in-
stance, when the degradation matrix has a simple convo-
lution form) be reduced to being linear in the number of
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pixels. This is confirmed through experiments on a 256
X 256 image. CPU time is, for many applications, cru-
cial. Taking into account the size of the problem, the CPU
times listed in Tables II and III are very satisfactory. It
is, however, evident that this time can be reduced even
more if a better technique for finding an optimal or near
optimal 6\ for each step in the search along the path is
developed.

VIII. CoNCLUSIONS

The theoretical analysis in previcus sections indicates
that the maximum entropy image reconstruction is deter-
mined by a 1-D path, which is defined by a system of
differential equations, i.e., (13), with easily obtained ini-
tial condition (— b/2a)h, where a = 3|r|%, b = —(r, 5),

=11, -+, 117, and r, s are given in (25). Along the
path, the Q-value is monotonically decreasing to reach at
the satisfaction of the statistical constraint equation, i.e.,
Q0 = m/2.

The experiments run so far indicate that choosing e =
0.1 as the stopping condition of the algorithm, i.e., |Q(f 5
— (m/2)|/(m/2) < 0.1, gives quality reconstructions and
thus is appropriate. This suggests accepting intermediate
results as the final reconstruction, as mentioned before.
As a result, a lot of CPU time is saved; and actual CPU
time is less than or at least compatible with other tech-
niques (e.g., see [8] which uses optimization technique
quite efficiently and considerately). To save more CPU
time, a more efficient procedure is needed to control the
step size in each iteration. Although the step-size problem
has been widely studied in the area of numerical analysis
(e.g., see [12]), it seems that some modifications are nec-
essary in order to apply some existing results in our al-
gorithm. We are now working on the problem.

A final assessment of the algorithm must wait for this
work to be fulfilled. However, the experiments have ver-
ified the theory and indicated that the algorithm presented
in this paper is a very prospective tool in image recon-
struction. In the most general case, this reconstruction will
require either an enormous storage capacity (the matrix L
= A"DA has n’ elements, where n is the number of pixels
in the image), or a substantial amount of CPU time (if all
elements of L have to be computed every time they are
used). However, in many practical applications, simpli-
fications are possible and the reconstruction can be done
at a reasonable cost in CPU time without requiring exces-
sive storage capacity.

APPENDIX

Theorem 1: A unique solution curve f(A; p) is defined
in Efor0 < N\ < oo by the following Cauchy problem of
differential equations:

qa _
dn
flazo = exp (u — Dh.

Vi - VO,

(A-1)
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Proof: Since the coefficient matrix V2J is negative
definite and both V2J and VQ are analytic in E, (A-1)
does define a unique solution curve f(A; p) in E for 0 <
A < «, where « is some positive number or plus infinity.
Thus, all we need now is to prove that the solution curve
could be extended whenever o < oo.

Suppose o < oo. We are to prove that first of all the
solution curve f(A; w) tends to a point f*¢E as A ap-
proaches « from below, and the limit point f* satisfies the
stationary point equation (7), and then the solution curve
f(N; u) is extended beyond « by the solution curve of the
following Cauchy problem:

Vi - g = VQ,

Fla=o =J% (A-2)

Along the solution curve f(A; u), we have
VIO wiweN) =0, 0= N<oa  (A3)

Premultiplying (A-3) with FT(N; ) yields

f9l = =2ifilogf+ (u— 1) 2f
~ NTA'DAYf + NfA'Dd = 0,

0= A< aq, (A-4)

where, for abbreviation, the arguments in f(A; u) are
dropped. Equation (A-4) indicates that the norm || f(X;
w)|l must be bounded as A = o — 0. Otherwise, f'V.J
would go to minus infinity because of f "(A"™DA)f = 0 and
—Zfilogfi+ (u— DIfi + NM'4'"Dd » —o. The
boundedness || f(X; p)|| assures that each component fi(\;
r) has a positive lower bound as A = o — 0. Otherwise,
the corresponding component of VJ would go to oo, as
easily seen from (7). Therefore, not only the entire solu-
tion curve, but also its limit point(s) as N = & — 0 belong
to E. Now it is clear that each limit point will satisfy (7),
and hence, coincide with that unique maximal point of J
at «. If we denote the unique limit point by f*, then
(A-2) does define a unique solution curve in E for some
small interval (o« — 8§, a + 8) with « — & = 0 which
coincides with the maximal point path of J as Ae(a — &,
o + 8). Hence, the solution curve given by (A-2) coin-
cides with f(A; u) as Ae(a — 8, o) and extends f(A; p)
beyond «. Q.E.D.
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