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Abstract—A wire frame object consists of a set of three dimensional arcs, each arc being a sequence of conics
and line segments lying in the same plane, with different arcs being allowed to lic on different planes. Given a
picture taken by a camera focusing on one wire frame object, we show how to determine what the object is
and where it is situated relative to the camera when the camera viewing parameters are unknown.

To accomplish the object identification, we begin with a segmented picture. Then we construct a ray from
the lens to each point on the boundary of every region. For each region, the collection of its associated rays is
a cone. We show that by constructing cones, the two-dimensional to three-dimensional matching problem is
transformed into an equivalent three-dimensional to three-dimensional matching problem.

This matching problem is expressed as a nonlinear optimization search procedure on the 6 camera viewing
parameters: the 3 translation parameters and the 3 rotation parameters. A solution is found when a viewing
position and optical axis is determined which is consistent with the world knowledge we have of possible

curves and the observed image data.

Wire frame object
matching

Object identification  Arc

1. INTRODUCTION

The problem of recognizing three-dimensional objects
from their two-dimensional perspective projections is
an important one in scene analysis. Here we treat a
subset of this problem, namely the identification of a
wire frame object from its two-dimensional perspective
projection taken from an image produced by a camera.

Given for each wire frame object is the set of its
three-dimensional arcs, each arc being a sequence of
conic or line segments lying in the same plane.
Different arcs may lie on different planes. The observed
two-dimensional picture consists of a perspective
projection of some wire frame object from the set of
given wire frame objects. OQur problem is to determine
which wire frame object from the given set of wire
frame objects produces the perspective projections
recorded in the observed digitized image.!)

As shown in Fig. 1, the camera is situated at a space
point (X1, Y1, Z1), which we will call the center of
projection. To allow for an arbitrary viewing direction,
we rotate the camera coordinate systems. The pan
angle 6 is the first rotation, which is around the original
z-axis. The tilt angle ¢ is the second rotation, which is
around the new x-axis. The swing angle 1 is the third
rotation, which is around the new y-axis. These
rotations are shown in detail in Fig. 2. The image plane
(perspective projection plane) lies F units of distance in
front of the lens. The image plane is always per-
pendicular to the optical axis of the camera lens. In

Two-dimensional matching  Three-dimensional

order to solve the wire frame identification problem,
we must determine a set of camera viewing parameters
(X1, Y1, Z1, 6, ¢, ) which when applied to the
identified wire frame object produces the observed
image.

Fig. 1. The geometric relation between the camera and

reference frame. @ is the rotation around the Z axis. ¢ is the

rotation around the new X! axis. ¥ is the rotation around the

new Y!-axis and is set to zero here. (X, Y,, Z,) is the camera

lens position, (X!, Y*, Z') the rotated axes and F the position
of the image phase in front of the lens.
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Fig. 2. The correspondence between the camera-oriented

coordinate system and the object-oriented coordinate system.

The pan angle is called 6, the tilt angle is called ¢ and the
swing angle is called y.

The shape matching procedure discussed in the next
section uses numerical nonlinear optimization to find
the solution viewing parameter vector (X1, Y1, Z1, 6,
¢, ) of the digitized image. The time complexity of this
approach depends on the number of curve segments
coming from all the objects in the given set and the time
needed to perform the optimization for the arcs in the
image. Details can be found in Section 2.

The optimization procedures and precise formu-
lation of the problem are discussed in Section 3.
Experimental results are given in Section 3.4. Some
geometric facts, like a straight line is mapped to a
straight line under perspective projection, are dis-
cussed and proved in the appendix.

2. THE MATCHING PROCEDURE

Each object consists of a set of three-dimensional arc
primitives, each of which is a sequence of conic (ellipse,
parabola, hyperbola) segments and/or line segments
lying in the same plane. Different primitives may lie on
different planes. The primitives are represented as a set
of equations, for example x> + y> = 1 and z = 1
represents a circle in the three-dimensional world
using a pre-chosen object-oriented coordinate system.
Similarly, the intersection of four half planes: 0 < x <
2and 0 < z < 2, with y coordinates equal to 1
represents a square of area 4.

The two-dimensional image consists of a perspective
projection of one of the wire frame objects from a given
set. Given such a perspective projection, we need to
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Region 3

Region | Region 2

Fig. 3. Two curves crossing each other forming 4 arcs, 4, B, C
and D, and three regions.

determine: (1) on what plane in the three-dimensional
world do each of the arcs in the image lie; (2) what
functional form each of the three-dimensional arcs
has; (3) what are the values of the camera viewing
parameters. We assume that the actual distance be-
tween the center of the lens and the image plane is
known because the focus is fixed and we also assume
that the size of the digitized image is known.

The problem can be classified as a two-dimensional
to three-dimensional planar curve matching problem
with uncertainty on the viewing parameters and the
identification of the wire frame object. Since the main
concern here is to present the matching techniques, we
will assume that we have a perfectly segmented picture
consisting of several different simple arcs, each arc
being represented as a string of connected pixels.
Without loss of generality, we take the center of the
digitized image to have coordinates (0, 0) and let half of
the width of the image be a unit length in the Z-axis
and half of the length of the image be a unit length in
the X -axis. The coordinates of each pixel on the arc can
then be determined on this basis.

21. Three-dimensional cones from two-dimensional
projections

To construct the three-dimensional cones, as illus-
trated in Fig. 4, the image arcs have to be identified.
The problem of what to do when distinct arcs touch
must be solved.

To solve this problem, we locate the intersections of
crossing arcs and do a linear or quadratic fit on each
piece (maximal sequence of consecutive boundary
pixels not crossing an intersection). We then merge
some of the pieces on the basis of the similarity of the
fitting coefficients. For example, suppose the three-
dimensional world consists of 2 circles, one in front of
the other. The perspective projection image looks like
Fig. 3. Each region is bounded by a piecewise smooth
arc. Each bounding arc is split into new smaller arcs at
the intersections.

We then compute the equation of each arc in the
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Fig. 4. How to construct cones out of the regions on the image.

image. For example, an observed arc will be initially
represented as a sequence of n points stored in two
arrays which contain its image (x, z) coordinates. Then
we perform a quadratic or linear least squares fit of
these points {x’, z'}. This is done by using a singular
value decomposition to determine an X which minim-
izes | AX ||2, subject to the constraint || X | = 1, where
the matrix A depends on the observed data points and
X is the vector of unknown coefficients for the conic.
The solution X is the right singular vector of A
corresponding to the smallest singular value. If the
conic is a circle with equation ax? + bxz + cz® + dx
+ez+f=0then X = (a b,c,def)

(xl]l’ xlzl, (21)2, xl, Zl, 1
p (XZ)Z’ x222, (ZZ)Z, x.’:‘.’ 21, 1
(xn)z’ xnzn’ (zn)2, x", Z", 1

where (x', z') are the » points on the curve. The above
procedure can be set up for general conics, the circle
being a special conic.

After a least-squares fit on the segments between
break points on the example of Fig. 3, there are 4 pieces
A, B, C, D. By comparing their coefficients, we merge 4
with C, and then B with D.

Having identified the arcs on the image, we can
construct their associated cones. The set of all possible
three-dimensional arcs which have the same per-
spective projection on the image as a given image arc
form a cone in three-dimensional space. The next step
is to construet cones and compute their equations. The
cones are constructed by connecting each point of the
image arc with the apex (center of lens). The equations
of these cones are quite easy to compute. We only have
to replace the x, z coordinates in each image arc

equation by (Fx/y), (Fz/y) where F is the distance
between the apex (the lens) and the image plane. For
example, if x2 + z2 = 1 and F = 1 is the equation for
the image arc, the cone equation is (x/y)* + (z/y)* = 1
or, equivalently, x? + z2 = y®. The derivation of the
equation of the cone can be found in Sommerville!®
(also discussed in the Appendix). The relation between
these cones and the image in a camera-oriented
coordinate system is shown in Fig. 4.

When a curve on the image is composed of a
sequence of distinct arc primitives, the cone associated
with the curve can be expressed as the union of
equations of cones spanned by the apex and each
distinct piece of the arc. For example, a triangular cone
will be expressed as the union of cones from its three
plane segments. Suppose the apex is P and the vertices
of the triangle are 4, B, C. From analytic geometry, we
know each point between PA and PB can be expressed
as a linear combination of the two vectors {P, A> and
{P, By, where {P, A designates the vector with origin
Pandend point A. Hence, the planar cone between PA
and PB is expressed as r1 (P, A> + r2 (P, B) withrl
and r2 nonnegative. The cone then consists of all points
(x, y, z) satisfying (x, y, z) € {r1 (P, A> + r2{P,B)} u
{r3(P, A> + r4{P,C>} U{r5{P,B> + r6 {P,C)}for
some rl, ..., r6 which are nonnegative real numbers,

2.2. Matching the image arcs to a three-dimensional arc

Now, suppose we have the equations of the cones.
We know that for each of these cones we must
associate one arc from some object in the set of
possible three-dimensional world objects. The as-
sociated arc must lie entirely in the cone. Otherwise, we
would have an impossible image. Hence, the remaining
problem is how to select arcs from the possible three-
dimensional world objects, those arcs being repre-
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Fig. 5. Polygon cone point correspondences: (Q1, P1), (Q2, P2), (@3, P3).

sented in the object-oriented coordinate system, and fit
them into cones, which are represented in the camera-
oriented coordinate system.

Matching then reduces to a mathematical nonlinear
optimization problem, which is discussed in the next
section. The procedure tries to find one wire frame
object having a possible candidate arc for each arc in
the image. The perspective projection of these can-
didates is exactly the picture we are analyzing. If this
method fails for all objects in the given set of objects in
the world, it implies that the image is of an object notin
the set or that the given picture is impossible to obtain
from one of the given objects. The picture must have
included some perspective projections of some curves
which were not part of any wire frame object.

3. THE OPTIMIZATION PROCEDURE

At this point, the object image of the wire frame
object has been represented as a collection of arcs from
which cones have been constructed. The problem
whose solution we describe in this section is: find a
wire frame object from the given set so that by an
appropriate position and viewing direction of the
camera, the wire frame object has one arc for each cone
constructed out of the image. Each object arc must lie
in the cone and in front of the image plane and project
to an observed image arc. As we can see, by construct-
ing these cones, the two-dimensional to three-

dimensional curve matching problem is transformed
into an equivalent three-dimensional cone to three-
dimensional curve matching problem, which we solve
as a nonlinear optimization problem. Once a (X1, Y1,
Z1, 8, ¢, ) is found which works for an object in the
given set, the match is found as well.

There are two possible kinds of nonlinear optimi-
zations. Section 3.1 discusses the case when the
optimization is based on point correspondences. This
case arises when we can identify three or more vertices
on the three-dimensional object and three or more on
the image. The point correspondences are not known
and the optimization must solve for them. This is also
the case that Roberts'® and others have worked on.
Watson and Ehrich® and Cohen®’ have applied more
advanced minimization techniques to solve this prob-
lem. Section 3.2 discusses the case when there are no
exact point correspondences; rather, what we hy-
pothesize is that some three-dimensional object arcs
are mapped to some arcs in the image. For example, we
hypothesize that an ellipse on the object has been
mapped to an ellipse on the image and part of a
parabola on the object has been mapped to part of a
hyperbola on the image.

3.1. Solving the vertex correspondence problem

First suppose we have a polygon cone with 3 edges.
After such a cone is constructed, we have to determine
the point correspondences, like those illustrated in.
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Fig. 5. Once we have a correspondence, we can
determine the camera viewing parameters consistent
with the correspondence.

Let T = (TY), 1 <i <3, 1 <j < 4, be the
perspective projection matrix in a homogeneous coor-
dinate system. The entries of the matrix depend on the
6 camera viewing parameters. Let PLi = 1,2,..., M be
the vertices of the object polygon expressed in homo-
geneous coordinatesand Q%,i = 1,..., M be the vertices
of the image polygon, also expressed in homogeneous
coordinates. The relationship between P' and Q' is
given by the perspective transformation T; T: P = Q'
where P' = (x, y,z, 1) and Q' = (x*, z*, *) and where
the transpose of a vector V is denoted by V'. The
problem is: determine a permutation J,, J,, ..., J,, of
1, 2, 3, ..., M which satisfies the vertices connection
constraint (which prohibits certain types of matching
because they are not consistent with the geometry, an
example of which is shown later) and determine the
camera viewing parameters {X1, Y1, Z1, 6, ¢, ¢
which minimize

2ITF =07,
over all perspective projection matrices T and per-
mutations {J, J,, ..., Jpt of {1,2, .., M}. || ||, is the
Euchidean norm of a vector.

When we have more than three point correspon-
dences, the system becomes an overly determined

system. It is thus possible to use a least squares method
to find the solution which minimizes the residual sum.

Unfortunately, the least squares problem to solve for’

the camera parameters is a highly nonlinear problem
due to the trigonometric dependencies of the entries on
the viewing parameters. We handle this problem by
solving for each entry of T independently and without
any reference to the trigonometric dependence by
setting up an overconstrained linear system whose
solution is simply obtained by singular value

decomposition.
T11 T12 T13 T14 Xi xri
T31 T32 T33 T34 yi y’i
T?.l T22 T23 T24 % zi —_ Z!i
0 0 0 1 1 1
To solve for the entries of the first row
xl yl. zl 1 Tl]_ xrl
x2 ¥ 22 1|+ | T2)= |x?
x3 y3 23 1 :T13 xJEI
xh oy g i T4 x4
1
| .
Xyt 1 X"

A similar result can be derived for (T2, T22, T?3, T24)
and (T3, 732, T33, T34).

Having a value for each entry of T, we then
determine if there exist viewing parameters (X1, Y1,
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Z1, 8, ¢, ) which produce, via the trigonometric
dependencies, the values we already have for the entries
of T and which, therefore, make T a perspective
transformation. This latter part of translating the
matrix entries of T to the viewing parameters is not
trivial.

To find viewing parameters {X1, Y1, Z1, 6, ¢, y>
which minimize

2 | N i 5

where ] <i <3and1 =< <4 and
S = cosycos — sin i sin ¢ sin 6,

f*? = cos i sin @ + sin ¥ sin ¢ cos 6,

S1¥ = —sinycos ¢,

f*' = sinycos @ + cos iy sin ¢ sin 8,
J** =sinysinf — cos  sin ¢ cos 8,
J*? = cos i cos @,

f3 = —cos¢sinf,

/3% = cos ¢ cos b,

[P =sing,

Y= XU - Yt -z,
[ = X1 — Y12 -z,
S = XU YR Z1F%,
we use the program ‘LMDIF1’ in MINPACK, a

package developed by the Argonne National Labo-
ratory.®® The algorithm employed by this program isa
version of the Levenberg—Marquardt algorithm.!” The
Levenberg-Marquardt algorithm is a combination of
the method of steepest descent (gradient search) and
the classical Gauss-Newton method for nenlinear
least squares problems. Itis essentially steepest descent
when the initial guess is far from the minimum point.
Thus its global behavior is good and its ultimate
convergence rate to the minimum point is also good.
The method uses only first derivative information, yet
typically has superlinear convergence.

3.2. Solving the arc correspondence problem

In this optimization problem there is no exact point
correspondence. We only know one arc is mapped to
another arc. The actual point correspondence for these
curves cannot be found until the transformation T is
obtained. This is also the most important case, so we
shall elaborate on it in detail.

Suppose we have n arcs E', E?, ..., E" in the image
after segmentation and merging. Let us also assume
that there exist m three-dimensional arcs E"!, E"?, ...,
E"™in a wire frame object. Assumingn < m, our aim is
to find the perspective transformation T and the n
curves E', E'?, .. E" from E"!, E", ..., E'™ of the wire
frame object that minimizes the sum

Z; | TE* — E*|.
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The norm indicates the integral of the squared error
function over the range of the three-dimensional curve.

We can see that a brute force approach to this
problem is of complexity m!/(m — n)! optimization
time to find T. The actual complexity will be lower
because certain geometric constraints, like the face
connection topology, exist. The optimization time to
find a T is proportional to (¥ + 1)(V? + PV?2), where
V' is the number of degrees of freedom (i.e. the 6 camera
parameters) and P is the number of points used to
represent the three-dimensional curves. Details can be
found in More.'®

A better way to solve this problem is to find a T
which minimizes | TE" — E'|| + |TE? — E?| and
then use this T to determine whether the sum

M s 1
3 | TE" - &)

is small enough.

The reason we choose two arcs here is to make the
solution unique. From Rogers and Adams,® we know
six non-coplanar point correspondences determine a
unique camera viewing parameter solution ; by choos-
ing two non-coplanar arcs we can have six or more
such point correspondences.

The second part is done by applying T to E* (i = 3,

.., m) to obtain a ‘template’. Then, we match this
template against the image to compute the error. If the
match reports a small error, we report success. Other-
wise, we will try the next pair of three-dimensional
arcs. If all the three-dimensional arcs have been tried
and no acceptable solution is found, we reject this
object and repeat the whole procedure for a different
three-dimensional arc pair of a different object.

The complexity of this algorithm is m(m — 1)
[optimization time + computation time required to
compute the product of T and points on curve i (i = 3,
..., m) and check the consistency].

Now, let us examine how we compute | TE™ — E! ||
+ |TE™* — E?| even if we have no point cor-
respondences. We know that the 3-D planar arc E"
can be represented by fi(x, y, z) = Oand h;x + myy +
mz + k; = 0. Its 2-D perspective projection E!
satisfies g, (x, F, z) = 0, where F is a known constant,
Wedefine T = (T, T?, T3%, where each T'is a row
vector. If E'* is mapped to E', then we have
g(T'P/T3P, F, T*P/T*P) = 0, where P = (x, y, z, 1)
is a point vector in the homogeneous coordinate
system and P lies on E'!, ie. fi(x, y, z) = 0.

Suppose 3-D planar arc E'? is represented by
fax, y,2) = Oand hyx + myy + nyz + k, = 0 and
its perspective projection satisfies g,(x, F, z) = 0.

We wish to determine a perspective transformation
T to minimize

J' g.(T*P/T?P, F, T>P/T*P)?
PeE"!

& J g,(T*P/T3P, F, T*P/T3P)>.
PeE’2
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In other words, we want to compute the error sum over
the whole three-dimensional arc if T is given.

In the polygon case, since each line on a plane can be
represented by ax + bz + ¢ = 0, we can replace each
polygon by a product of a(i)x + b(i)z + ¢ (i) = 0. So,
we have

glx, F, z) = [ (a()x + b(i)z + c(i)) = 0.

Then we can apply the above method to the polygen
cones, even if we do not know the specific order of the
point correspondences.

This product approach can be used to derive a better
initial guess when the guess is far off. It suffers the
drawback that it tends to converge to some local
minimum points. Hence, we use the arc to arc cor-
respondence to set up the matching problem and only
use this product technique to derive a better initial
guess.

If we want to include the camera focal length F asan
unknown, then we have to pick another arc which does
not lie on the planes that contain E'! or E'?. This is to
make sure that we can determine all seven degrees of
freedom. Focal distance is related to the scale factor of
objects (or pictures).

3.3. Solution algorithm summary

1. Choose an object.

2. On the image, choose a pair of arcs E' and E’.

3. Go through all pairs of object arcs Cm, Cn. For each
Cm, Cn find the six viewing parameters (x, y, z, a, b, c)
which minimize the sum

|TCm — EY|| + | TCn — E¥||

(x, , 2z, a, b, ¢).

The norm is computed by integrating over the ranges
of Cm and Cn and the equations of E' and E/. (The
details are described in Section 3.2.) The angle a is the
pan angle 0, b is the tilt angle ¢, ¢ is the swing angle
and (x, y,z) = (X1, Y1, Z1) are the coordinates of the
lens.

4. Each arc correspondence chosen in step 2 induces a
nonlinear constraint mapping on (x, v, z, a, b, c). The
equations are exactly those we have described in
Section 3.2, Input these equations to the MINPACK
routine ‘LMDIF1” and supply an initial guess of
(x.y, 2, a, b, ). If the guess is not too far off, the global
minimum can be obtained. If we specify more con-
straints on (x, y, z, a, b, ¢), it will speed up the
optimization. The minimum number of constraints to
choose is the number of degrees of freedom of the
nonlinear system.

5. Compute T from the solution (x, y, z, a, b, ¢). Apply
T to all remaining object arcs Cu. Compare this
computed image with the original image, by placing
one ‘template’ over another. Determine the error sum
of | TCu — E*||.If it is less than a pre-chosen thresh-
old, we report success and the curves on the image
can be identified as having come from the correspond-
ing object arcs.
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Fig. 6. Two circles on the plane ¥ = 4 used in the first test.

6. If not, change Cm and Crn and loop to step 3.

7. If we run out of curves from the wire frame object,
report no possible solution with this object and try the
next object.

3.4. Results
All experiments used a camera with a focal length

F = 1.In our first experiment, the input image consists
of the perspective projections of two circles on a plane
with the following parameters (X1, Y1, 21,0, ¢, ) =
(0,0,0,0,0, 0) (refer to Fig. 6 for details). We first
compute the equations of these two circles on the
image then follow the process outlined in Section 3.3.
The program finds the solution with an initial guess of

(8,8)

(0,0)

(8)

Fig. 7. Triangle and circle on the plane ¥ = 4 used in the second test.
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Z A=(0,0,0)
B =(0,0,1)
C=(0,1,1)
D =(0,1,0)
E=(1,0,0)
(a) T
F=1(1,0,1)
i é G=(1,1,1)
I1=(1,1,0)
F G
A D — Y
E 1

Fig. 8a. A wire frame cube used in the third experiment.

0494

0268

0065

Fig. 8b. Perspective projection of wire frame cube from Fig. 8a.

(1,1,1,1,1,1). (Remember that angles are measured in
radians.)

In our second experiment, we change one ellipse in
the above test to a triangle (Fig. 7). The triangle is
expressed as a product of the equations of its 3
boundaries. The convergence behavior is about the
same. The point we want to emphasize is that this
approach uses a product of equations to get around
the combinatorial problem involved in the vertex-to-
vertex matching approach that has been used by
Roberts.” Another advantage of this approach is that

it will tolerate the noise introduced in the segmen-
tation procedure. This approach can be used even if we
are unable to find the vertices (corners) in a two-
dimensional image.

In our next experiment, the object is the wire frame
cube of Fig. 8a. The cube has vertices (0,0,0),(0,0,1),
(0,1,1),(0, 1,0),(1,0,0), (1,0, 1), (1, 1, 1) and (1, 1,0).
The camera sits at (—2, 0, —2) and the viewing axis is
{cos (0.5235), 0, sin (0.5235)) (see Fig. 8b). Occlusion is
allowed here, hence we only see 9 edges. The 2 arcs we
choose to start the process are the boundaries of the
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Fig. 9a. A wire framed triangular pyramid used in the last experiment.

(b) 08— 4
<N |
-0.28| 0.25 06

Fig. 9b. Perspective projection of triangular pyramid of Fig. 9a.

two outside larger squares which share a common
edge. The viewing solution is (-2, 0, —2, —1.5708,
0.5235,0). The procedure converges with initial guesses
like (= 1,1, —1, —1.57,0.5235,0),(—1,0.2, —1, — 1.4,
0.5,0.01)and (—1.5,0.1, — 1.7, —1.4, 0.5, 0). This test
shows that we can extend the matching technique to
identify objects.

Now, suppose we do not hypothesize the right arc
correspondences to start the matching procedure. For
example, if we switch the two faces (arcs) used in the
above experiment and start with a ‘close’ initial guess,
like (=2, 0, —2, —1.57, 0.5235, 0), the procedure
converges to a local minimum point (0, 0, *, —1.57,
1.113, 0) which projects the cube to a quadrilateral.
This local minimum has a small error because one face
of the cube has been mapped to the line X = 0. We

then change our three-dimensional candidate to a
pyramid and choose two triangular faces of it to start
the matching and the procedure converges to infinity,
i.e. we have (X1, Y1, Z1) becoming larger and larger,
which means we have the camera moving further away
from the two faces.

The last experiment is a projection of a triangular
pyramid which has two triangles in the image, de-
scribed in Figs. 9a and 9b. The viewing parameters are
0, —4, 0,0, 0, 0) and the vertices of the pyramid are
0,0, 0),(3,2,4), (1, 1, 0) and (—2, 4, 0). It converges
with initial guesses (5, —3, 5, 0, 0, 0), (0.9, —3.05,
-01,02,0,0),(0, —9,0,0,0,0), (0, —3.5,0,0.2, 0.2,
0.2) and (0, —0.3, 0, 0, 0, 0). We then switch the two
faces or change the two faces (triangles) to two squares
and the procedure either converges to infinity or



616

converges to a local minimum point with rather large
error norm.

Finally, we point out that this procedure uses an
edge-to-edge matching approach instead of a point-to-
point approach to find the camera position and
matching error. The first two experiments show that
the matching works for conics. The last two experi-
ments show that we can extend this technique to
identify objects in the real world if we have an
acceptable model of the objects.

The optimizing procedure is iterative. Like most
iterative methods, if we have a bad initial guess, the
method will in general diverge or converge to a local
minimum point.

4. CONCLUSION

The construction of three-dimensional cones from a
two-dimensional perspective projection really is a
transformation which transforms the two-dimensional
to three-dimensional matching problem into a three-
dimensional to three-dimensional matching problem.
We showed how to find proper curves (faces of wire
frame models) which lie on some cones, then put all
these correspondences together to compute the view-
ing parameter vector (X1, Y1, Z1, 8, ¢, ) by using
nonlinear optimization.

It does turn out that polygon cones are easier to
solve than conics, because straight lines are first degree
equations, while conics are second degree equations.
By lemma 4 of the Appendix, it seems proper to say
that we can extend the three-dimensional world to N-
ics (equations of N-th degree planar curves). Further
work is needed.

‘We also point out that one of our approaches uses a
product of equations of the edges of the face of an
object to get around the combinatorial problem in the
vertex-to-vertex matching approach used by Rob-
erts.”®) Another advantage of doing so is that it will
tolerate the noise introduced in the segmentation
procedure. This approach can be used even if we are
unable to find the vertices (corners) in the image.

Our recent work has concentrated on applying this
proposed technique to a planar surfaced model. Each
object in the model is a solid consisting of planar faces.
We will allow more than three faces to meet at one
vertex. Curved surfaced objects may also be allowed,
but the difficulties involved in processing hidden lines
are considerable.
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APPENDIX
Definition of a cone

From Sommerville’s Analytic Geometry of Three Dimen-
sions,'” we know that a general equation of a cone of the
second order is

fx, v, 2) = ax? + by* + cz® + 2fyz + 2gxz + 2hxy = 0.

If we had a cone with vertex (xg, yo, zo) and knew that its
projection on the z = 0 plane is

g(x, y) = ax* + by* + 2hxy + 2gx + 2 +e =0,
then we have the equation of the cone
Fix', v, w') = ax'® + by'? + 2hx'y’
+ 2gx'w + 2fi'w + ew'? = 0,

where X' = zox — x5z, ¥ = 2y — Yoz, 2’ = zow — wyz and
wp is a constant which makes (x,, vy, Zo, Wo) a homogeneous
coordinate of (x,, vy, zy), or in nonhomogeneous coordinates,

{z0)*g(x, ¥) — zoz(xD(F)/(Dx,) + yD(F)/(Dyg)

+ D(F)/(Dwy)) + z%g(xq, yo) = 0.

The projecting cone of a planar curve can be defined as the
set of all lines which connects (xq, o, z,), the camera lens
coordinates, and (x, y, z), which is any point in the planar
curve.

From theorem 7-3 of Hummel's Vector Geometry,® the
discriminant of a quadratic equation f(x, y) = ax* + bxy +
ey? + dx + ey + f = 0is DISC = b? — 4ac. If DISC is less
than zero then the function is an ellipse. If DISC is equal to
zero then the function is a parabola, If DISC is greater than
zero then the function is a hyperbola, excluding those
degenerate cases.

Lemma 1. Ellipses are mapped into ellipses.

Proof. An ellipse (including a circle) can, by perspective
projection, become an ellipse or parabola or hyperbola and
vice versa. These facts can be found in Hilbert’s Geometry and
Imagination"® Basically, the proofs given there are
geometrical ; we shall present an algebraic proof in lemma 3.

Under perspective transformation (ie. projection with a
fixed center), in general, a closed curve will project to a closed
curve, an open curve to an open curve. We will consider some
degenerate cases later. Note here that the image plane of the
camera is always perpendicular to the optical axis of the lens.

If a plane cuts through a projection cone, its intersection
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will be an ellipse or a parabola or a hyperbola depending on
the angle « between the plane and the axis of the projecting

cone.
If it is greater than the angle of the projecting cone, it is an

ellipse. If they are equal, we have a parabola. If there is no
intersection with the axis or the angle is smaller, we have a
hyperbola. The angle of the cone is defined as the angle
between the axis and any generating line of the cone. We
assume that we have a quadratic cone here.

In our application, we know o = 90° and f is always less
than 90°. So, when we have an ellipse in the lower cone (it is
equivalent to say it comes from the boundary of some
objects), we are guaranteed we will see an ellipse in the photo
if the object is not occluded by others.

The following is the proof. Use the lower ellipse to
construct a cone, then let the image plane cut through the
cone. By definition, we will have an ellipse as the intersection,
because o is greater than f.

Properties of perspective transformations

Most functions we treat in this paper are planar functions.
Recall that a two dimensional function is expressed as f(x, )
= 0 and ax + by + ¢z + d = 0. The perspective transfor-
mation T is the product of rotation and translation and
perspective projection matrix. For the derivation see Rogers
and Adams.®

TII le T13 TM
T= |12, T2 T3 T2
T“, TSZ’ T!S’ T34
x
x=|7
4
1
Xx*
B= |z*
£
TX =8

where X is the three-dimensional coordinates of a pointand B
is the ‘homogeneous’ perspective projection coordinates. If
the coefficient ¢ does not equal 0 in the plane equation, z =
—1/c(d + ax + by).

So,

x*=TYx + T2y + TY3(=1)/c(d + ax + by) + T**
= (T 4 (—a)fcT'3)x
+ (T'2 + (=b)eT?)y + (T + (—d)feT"?)
=alx + bly + cl
2% = Tx + T2y 4 T3(=1)fe(d + ax + by) + T**
= (T** + (—a)fcT*)x
£ (T2 + (=b)cT®)y + (T* + (—d)/cT?)
=a2x + b2y + c2
t* = (T3 + (—a)eT*)x
+ (T2 + (=b)fcT*®)y + (T** + (—d)/cT??)
=a3x + b3y + 3
s = x*/t* = (alx + bly + c1)/(a3x + b3y + ¢3)
t = 2¥/t* = (a2x + b2y + c2)/(adx + b3y + c3)
(s, t)is the coordinate of (x, y, z, 1) in the image plane. Which is

exactly a bilinear (or linear fractional) transformation defined
in Campbell’s Advanced Analytic Geometry.*"

Define.
al bl ¢l
G=1a2 b2 c2
a3 b3 3

PR 17:6-C
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If G # 0, we have
x=(A's + 4% + A}/(C's + C?*t + C?)
y = (B's + B* + B3)/(C's + C% + C?)

where 4', B/, C* (i, j, k, = 1, 2, 3) are the cofactors of gi, bj, ck
respectively in G.

So, the following results can be applied from a two-
dimensional world to a three-dimensional world and vice-
versa.

Lemma 2. Straight lines are mapped to straight lines.

Proof. The curve f(x, y) = 0is ax + by + ¢ = 0.
Substituting x and y by equations derived above, we get

a(A's + A%t + A%) + b(B's + B*1 + B?)
+e(C's+ C?t+ C¥=0.

Rearranging the terms, we get
(ad' + bB' + ¢C')s + (ad® + bB? + cC?)t
+ (a4® + bB® 4 ¢C3) = 0,

which is still an equation of a straight line. The degenerate
case is when we have a line mapped into a point if the line is
parallel to the viewing axis.

Lemma 3. Conics are mapped into conics.

Proof. The equation of the conic section is

F(x, p) = ax® + by + ¢ + 2fy + 2gx + 2hxy = 0.
Substituting x, y in terms of s and ¢ and simplify it, we get
a(A's + A%t + A%)® + b(B's + B*t + B?)?

+ ¢(Cl's + CHt + C*)? 4 2g(A's + A%t + 49)
+ (C's + C*t + C*) + 2f(B's + Bt + B?)
+ (Cls+ C* + C%) + 2h(4's + A%t + 4%)
+ (B's+ B + B*) =0.
Grouping terms with same variables together, we get
sHa(A*)? + b(B')? + o(Ch)? + 29A'C' + 2B C?
+ 2hA'BY) + t2(a(A%) + b(B*)? + c(C2)* + 2gA2C2
+ AB2C? + 2hA%B%)' + 1(a(4%)® + b(B?)? + ¢(C?)?
+ 2g4°C° + B3C® + 2hA°B*) + t{a(24%4%) + b(2B*B?)
+ c(2C3C3) + 29(A3C? + A’C?) + 2f(B*C® + B*C?)
+ 2h(A?B* + A°B?)) + s(a(24'4%) + b(2B'B?) + ¢(2C'C?)
+ 2g(A3C" + A'C?) 4 2f(B*C? + B3CY)
+ 2h(A'B* + APCY) + st(a(2A*A*) + b(2B*B?)
+ c(2C'C?) + 29(A1C? + A2CY) + 2f(BIC? + B2CY)
+ 2h(A'B? + A?B')) =0
which is still a conic.
From Theorem 7-3 of Hummel,"” we can determine which

kind of curve it is by rotating and testing the discriminant.
For equations like

AX*+ BXY+ CY*+ DX + EY+ F =0,
we can eliminate X Y terms by rotating this curve by 8, where
sin (2) = B/./(B? + (C — 4)?)
and
cos (20) = (C — A)y/(B* + (C — 4)%).

Lemma 4. N-ics are mapped into N-ics.

Proof. N-ics are planar curves which are polynominals of
N-th degree in x and y. Following the proof of Lemma 3, we
see immediately that N-ics are mapped into N-ics because the
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order of the polynomial is preserved. The degenerate cases
arise when the plane of the curve is parallel to the viewing axis,
then the curve is mapped into a straight line.

A N-ics is f(x, y) = 0, where
flx, y)=3Ydxy, i+j<N.

Substituting x, y in both sides and multiplying both sides
by (C's + C?*t + C3)¥, we can see the highest term is still to
the N-th power. So, we have N-ics mapped to N-ics, in
general.

Heuristics

Lemma 5. Suppose we have a quadratic equation ax? + ¢y?
+ dx + ey + f = 0, the eccentricity a/c (or c/a) is
independent of d, e, f.

Proof. Complete the squares of x and y. We get

a(x + df2/a)* + c(y + e/2/c) = d*/(4/a) + e*/(4/c) — f(x +
dj(2a))*f(k/a) + (y + e/(2c))*/(k/e) = 1, where k = d*/(4/a)
+ e*/(4/c) — f.

Defining eccentricity as major axis length/minor axis length,
we have major/minor = (kfa)/(k/c) = afc or ¢/a if the major
axis lies on the y axis.

If a or ¢ is 0, which happens when we have a parabola, y? =
4px (or x* = 4py), we can derive similar constraints for p.

Lemma 6. If two conics on a cone lie on planes which are
parallel, if the top one has equation ax + by + ¢z = d and
Ax* 4 Bxz + Cz? 4+ Dx + Ez + F = 0, then, the lower one
will have equation ax + by + cz = d + kand Ax*> + Bxz +
Cz? 4+ D'x + E'z + F' = 0.Since 4, B, C in the two equations
are the same, they both have the same eccentricity.

Proof. Suppose the equation of the cone is Ax* + Bxz +
Cz*Dxz + Ezy + Fy* = 0. Parallel planes implies that their
equations are ax + by + cz =dandax + by +cz=d + k
or,equivalently,y = Ix + mz + nandy = Ix + mz + n + k.
Substituting in y, we get

x¥A4 + Dl + FI?) + x2(B + Dm + El + 2FIm)

+ zYC + Em + Fm?) + x(Dn + 2Fl) + z(En + 2Fm)
+ Fn? =0

and

x*A + DI + FI?) + xz(B + Dm + El + 2FIm)

+ z}C + Em + Fm?) + x(D(n + k) + 2Fl)

+ 2(E(n + k) + 2Fm) 4 F(n + k)® = 0.

The coefficients of x?, xz, z* are the same in the above
equations, so we have the same shape, the same eccentricity
by lemma 5.

Lemma 7. Eccentricity constraint of a curve on a quadratic

cone is an eighth order polynominal in the plane normals 1, n:
F(l,n) = 0.

Proof. Substituting y = k/m — Ix/m — nz/m into the cone
equation defined in lemma 6, we get

x*(A — Dlfm) + xz(B — Dnjm — Eljm + F2limn/m)
+ 2X(C — Enfm + F(n/m)*) 4+ x(Dk{m — 2Fl/mk'm)
+ 2(Ekjm — 2Fnjmk/m) + F(k/m)* = 0.
Use a'x? + blxz + ¢'z* + dlx + ez + f! = 0 to
represent the above equation. Rotating the curve to eliminate

the xz term, and carrying out the coordinate transformation,
we get coefficients of

x2 = al(1/2 + 1/2(c* — a"), (B + (¢ — a))

+ BB + (& — D)

+el(1/2 = (e = a")2/ (B + (€ — ah)),
coefficients of

P =c(1/2 + 172" — a) (B + (¢ — a')2)
—B'B2 /(B + (' — a')?)

+al(1/2 — (¢ — a2 /(B + (" — a))).

Applying lemma 5 and assuming the ratio is r we get this
equation of F(I, m, n) as

(1 + 7)2B* + 4rd® — 4(1 + r?)AC + 4rC?

+ i+ 2BOH AL P AE=40(2CE)

+ I/ A 2ED T AL 400D+ 4r(-24D)
+ Infm*V +r)24BF+(1+r)22 DE- 4(1 +r) DE
- 12}1/m3(1+"2(_4r5+4(1+r1)FE

+ nPlfmPA T NA-ED A0+ FD

+ Il/mi“ +r)2E2-4(1 +r3)CF+ar D1+ 4r(2AF)
+ 2 jmA NPT AL AR+ 42 420
+ I /m3(4r(—2DF))

+ n®/m>(dr(— 2EF))

+ */m*(4rF?)

+ n*/m*(4rF?)

+ Izn2/m4(1+r)zpzf4“+,z”.-z,

=0,

Recalling thatm = +., (1 — I* — n?), if we substitute it in
both sides, rearrange terms and square both sides, we will
have an eighth order polynominal in [ and n. So, the search on
I, m, n is still one-dimensional if this constraint is true.
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