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Linear manifold clustering in high dimensional spaces by stochastic search
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Abstract

Classical clustering algorithms are based on the concept that a cluster center is a single point. Clusters which are not compact around a
single point are not candidates for classical clustering approaches. In this paper we present a new clustering paradigm in which the cluster
center is a linear manifold. Clusters are groups of points compact around a linear manifold. A linear manifold of dimension 0 is a point.
So clustering around a center point is a special case of linear manifold clustering. Linear manifold clustering (LMCLUS) identifies subsets
of the data which are embedded in arbitrary oriented lower dimensional linear manifolds. Minimal subsets of points are repeatedly sampled
to construct trial linear manifolds of various dimensions. Histograms of the distances of the points to each trial manifold are computed. The
sampling corresponding to the histogram having the best separation between a mode near zero and the rest is selected and the data points
are partitioned on the basis of the best separation. The repeated sampling then continues recursively on each block of the partitioned data. A
broad evaluation of some 100 experiments over real and synthetic data sets demonstrates the general superiority of this algorithm over any of
the competing algorithms in terms of accuracy and computation time. Its expected computational time is linearly proportional to the data set
dimension and data set size. Its accuracy ranges from near 0.90 to 0.99 depending on the experiment and is generally much higher than the
accuracy of the competing clustering algorithms.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Interest in clustering has increased substantially in recent
years due to new areas of application such as data mining of
customer databases, document clustering of web pages, im-
age segmentation in computer vision, and DNA microarray
analysis in bioinformatics. The problem of clustering can be
loosely defined as the partitioning of a set of points in a multidi-
mensional space into groups called clusters such that the points
in each group are in some sense similar to one another. Finding
these clusters is important because their points correspond to
observations of different classes of objects that may have been
previously unknown. A second kind of latent information that
may be of interest are correlations in a data set. A correlation is
a linear dependency between two or more features (attributes)
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of the data set. Knowing about the existence of a relationship
between features may enable us to learn hidden causalities, for
example: the influence of the age of a patient and the dose rate
of medication on the length of his disease; in recommendation
systems for target marketing where groups of customers with
similar behavior need to be detected, one searches for positive
correlations; in gene expression analysis correlations express
the fact that two genes may be coregulated.

Due to recent technological advances in data collection many
applications of clustering are now characterized by high dimen-
sional data which poses two challenges. First, the presence of
non-information carrying features has the potential of eliminat-
ing any clustering tendency and mislead the clustering algo-
rithm by masking clusters in noisy or irrelevant data. Second
is the so called ‘curse of dimensionality’, which suggests that
points tend to become equidistant from one another as dimen-
sion increases [1], and therefore learning structure in high di-
mensional spaces by distance measures that utilize the full set
of dimensions becomes increasingly difficult.
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Conventional clustering algorithms such as K-Means [2],
and DBSCAN [3] are “full-dimensional” in the sense that
they give equal relevance to all dimensions, and therefore are
likely to fail when applied to high dimensional data, particu-
larly when some of the data dimensions are irrelevant. Initial
attempts to tackle this problem involved different types of
dimensionality reduction techniques such as feature selection
and feature transformation techniques as preprocessing steps.
Feature selection attempts to discover the most relevant at-
tributes, while feature transformation techniques such as prin-
ciple component analysis (PCA) transform the original space
into a lower dimensional space. While effective in reducing the
dimensionality of the data, these methods are limited in that
they can only be applied to the data set as a whole, and there-
fore are only capable of detecting structure which is expressed
in the data as a whole. However, since different clusters may
exist in different subsets of the features, removing dimensions
globally is likely to incur a loss of crucial information. Thus,
only methods that localize the search for relevant features
cluster by cluster are likely to succeed.

An important advance in this area was the introduction of
subspace clustering. Subspace clustering is considered an ex-
tension to traditional clustering and feature selection techniques
[4], in that it attempts to find different clusters embedded in
different subspaces of the same data set. A subspace cluster
consists of a subset of points and a corresponding subset of
attributes, such that these points form a dense region in a sub-
space defined by the set of corresponding attributes. Most sub-
space clustering methods such as CLIQUE [5], MAFIA [6],
and PROCLUS [7] are restricted to finding clusters in sub-
spaces spanned by some subset of the original measurement
features. However, examination of real data often shows that
points tend to get aligned along arbitrarily oriented subspaces,
which are merely instances of linear manifolds.1 ORCLUS [8]
the most relevant algorithm to the problem of linear manifold
clustering is an extension to PROCLUS which allows clusters
to exist in arbitrarily oriented subspaces. It is a K-Means like
algorithm that uses PCA to peel off noisy dimensions and find
projected clusters. Its main drawback like many similar algo-
rithms is that it requires the user to specify the number of clus-
ters and the dimensionality of the subspaces in advance which
makes it impractical for real applications. A potential solu-
tion to the problem of determining the number of clusters in
advance is the use of visual assessment techniques such as
VAT, reVAT, and bigVAT [9]. This family of techniques takes
as input a similarity/distance matrix between all pairs of points,
typically constructed using the L2-norm, and outputs an image
matrix to reveal underlying cluster tendency. However, because
these methods measure similarity in the full space, they are
unlikely, as do the “full-dimensional” clustering algorithms, to
reveal any clustering tendency when the clusters are embedded
in subspaces or linear manifolds, unless the clusters are well
separated.

1 A linear manifold is a translated subspace. A subspace is a subset of
points closed under linear combination.

The model of subspace-clusters may not be adequate to
capture correlations in the data as it only considers the phys-
ical distance between points. A set of points may be located
far away from each other yet induce large correlations among
some subset of features, e.g. a set of points embedded in a
line. The main motivation to explore a more general type of
subspace clustering known as pattern or correlation cluster-
ing came from the need to identify pattern similarities in the
analysis of DNA microarrays. In DNA microarray clustering
the goal is to identify groups of genes (clusters) whose expres-
sion levels rise and fall coherently under a subset of conditions
(features). Among the first to discuss these types of similari-
ties in the context of DNA microarray clustering were Cheng
et al. [10] who introduced the bicluster concept, and Yang et
al. [11] who presented the move-based algorithm FLOC to find
biclusters a.k.a. �-clusters more efficiently. Both of these meth-
ods and other similar ones focus on two forms of coherence
or patterns, the shifting (addition) and amplification (multipli-
cation) patterns which induce positive correlations only. Nega-
tive or correlations induced by a transformation of the original
measurement features are not considered by these methods. In
a recent paper Harpaz and Haralick [12] demonstrated how the
shifting and amplification patterns along with patterns that in-
duce negative or more complex correlations can be generalized
to linear manifolds, making the paradigm of linear manifold
clustering applicable also to the problem of pattern/correlation
clustering.

Dasgupta [13] presents two important results related to ran-
dom projections which have implications to clustering in high
dimensional spaces. These results show that it is possible to
project high dimensional data into substantially lower dimen-
sions while still retaining the approximate level of separation
between clusters. Exploiting these results Haralick et al. [14]
presented a hierarchical projection pursuit clustering (HPPC)
algorithm that repeatedly bi-partitions a data set by searching
for separations in 1D projections of the data. The output of
HPPC is a decision tree whose nodes store a projection and a
separating threshold, and whose leaves represent the clusters.

In this paper we present a new clustering paradigm in which
the cluster center is linear manifold. Clusters are groups of
points compact around a linear manifold. A linear manifold of
dimension zero is a point. So clustering around a center point is
a special case of linear manifold clustering. A linear manifold
of dimension one is a line. Clusters may be oriented around
a line when the random perturbation affecting the process that
produces the data of the cluster has a covariance matrix of rank
one. A linear manifold of dimension two is a plane. Clusters
may be oriented around a plane when the random perturbation
affecting the process that produces the data of the cluster has
a covariance matrix of rank two.

The remainder of the paper is organized as follows: In
Section 2 we formalize the linear manifold cluster model.
Based on this model, we present in Section 3 the algorithm-
LMCLUS, followed in Section 4 by an asymptotic time com-
plexity analysis. In Section 5 we present a broad evaluation
of LMCLUS applied on synthetic and real data sets, and in
Section 6 we conclude the paper giving hints on future work.
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2. The linear manifold cluster model

A linear manifold is a subspace that may have been trans-
lated away from the origin. A subspace is a special case of a
linear manifold that contains the origin. Geometrically, a 1D
manifold can be visualized as a line embedded in the space, a
2D manifold as a plane, and a 0D manifold as a point. Classical
clustering algorithms such as K-Means assume that each clus-
ter is associated with 0D manifold (a point typically the cluster
center), and therefore omit the possibility that a cluster may
have a non-zero dimensional linear manifold associated with
it. For the sake of completeness we give a formal definition of
a linear manifold.

Definition 1 (Linear manifold). L is a linear manifold of vector
space V if and only if for some subspace S of V and translation
t ∈ V , L={x ∈ V | for some s ∈ S, x = t + s}. The dimension
of L is the dimension of S, and if the dimension of L is one
less than the dimension of V then L is called a hyperplane. A
linear manifold L is rectangularly bounded if and only if for
some translation t and bounding vectors aL and aH , L = {x ∈
V | for some s ∈ S, aL �s�aH , x = t + s}. A rectangularly
bounded linear manifold has finite extent and is localized with
center t + (aL + aH )/2. In the case that aL = −aH , its center
is the translation t.

The linear manifold cluster model has the following
properties: the points in each cluster are embedded in a lower
dimensional linear manifold of finite extent. The intrinsic di-
mensionality of the cluster is the dimensionality of the linear
manifold. The manifold is arbitrarily oriented. The points in the
cluster induce a correlation among two or more attributes (or a
linear transformation of the original attributes) of the data set.
In the orthogonal complement space to the manifold the points
form a compact densely populated region. More formally let
D be a set of d-dimensional points, C ⊆ D be the subset of
points that belong to a cluster, x be a d × 1 vector representing
some point in C, b1, . . . , bd be a set of orthonormal vectors
that span a d-dimensional space, B be a d × k matrix whose
k columns are a subset of the vectors b1, . . . , bd , and B be a
d × d − k matrix whose columns are the remaining vectors.

Definition 2 (Linear manifold cluster model). Let � be some
point in Rd , � be a zero mean k × 1
random vector whose entries are i.i.d. U(−R/2, +R/2) where
R is the range of the data, and � be a zero mean d − k × 1
random vector with small variance independent of �. Then
each x ∈ C, a linear manifold cluster is modeled by,

x = � + B� + B�. (1)

The idea is that each point in a cluster lies close to a k-
dimensional linear manifold of finite extent, which is defined
by �, a translation vector, the space spanned by the columns of
B, and the range parameter R. Since

E[x] = E[� + B� + B�] = � + BE[�] + BE[�]
= � + 0 + 0 = �
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Fig. 1. Sample data set of three non-overlapping clusters, each of which
is embedded in a different linear manifold of one (C3) or two dimensions
(C1, C2).

the cluster mean is �. On the manifold the points are assumed
to be uniformly distributed in each direction (the k column
vectors of B) according to U(−R/2, +R/2). However this as-
sumption is not binding, and the uniform distribution can be
replaced by any other distribution with symmetric support. It
is in this manifold that the cluster is embedded, and, therefore,
the intrinsic dimensionality of the cluster will be k. What char-
acterizes this type of cluster is the third component that models
a small random error associated with each point on the mani-
fold. The idea is that each point may be perturbed in directions
that are orthogonal to the subspace spanned by the columns of
B, that is the subspace defined by the d − k columns of B. We
model this behavior by requiring that � be a (d − k) × 1 ran-
dom vector, normally distributed according to N(0, �), where
the largest eigenvalue of � is much smaller than R, the range
of the data. Otherwise the signal cannot be distinguished from
the noise. In addition since the variance along each dimension
orthogonal to the manifold is now much smaller than the range
R of the manifold, the points are likely to form a compact and
densely populated region that can be used to cluster the data.
The concept of the error term can be visualized by a 1D mani-
fold which transforms from a line into a thin cylinder after the
addition of an error term.

Traditional “full-space” clustering algorithms take k=0, and
therefore assume that each point in a cluster can be modeled
by x=�+B� where B is simply the identity matrix. Subspace
clustering algorithms focus their clustering effort on the space
spanned by the column vectors of B, and when restricted to axis
parallel subspaces, they assume both B and B contain columns
of the identity matrix.

Fig. 1 is an example of data set modeled by Eq. (1). The
data set contains three non-overlapping clusters C1, C2, C3 each
consisting of 1000 points. C1, C2 which are almost planar and
parallel to each other are embedded in 2D linear manifolds.
Their points are uniformly distributed in the manifold and they
include a small error term in the space complementary to the
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manifold. Similarly, C3 an elongated line-like cluster, is em-
bedded in a 1D linear manifold with an error element in the
2D space complementary to the manifold.

3. The algorithm

LMCLUS can be viewed as a hierarchical-divisive cluster-
ing procedure. It executes three levels of iteration (Fig. 2), and
expects three inputs: K, an upper limit on the dimension of
the linear manifolds in which we believe clusters may be em-
bedded; S, a sampling level parameter used to determine the
number of trial linear manifolds of a given dimensionality that
will be examined in order to reveal the best possible parti-
tioning of a given set of points; �, a sensitivity or “goodness
of separation” threshold, which is used to determine whether
or not a partitioning should take place based on a trial linear
manifold.

At the highest level of iteration the algorithm monitors the
size of the data which is being partitioned. When no data is left
to be partitioned the algorithm terminates. The second level of
iteration causes the algorithm to iterate over a range of man-
ifold dimensionalities, commencing with 1D manifolds, and
terminating with K-dimensional manifolds, where K is an in-
put parameter. For each linear manifold dimension the algo-
rithm enters the third level of iteration, in which FindSeparation
(Fig. 3) is invoked in an attempt to reveal separations among
subsets of the data and to determine whether some of the points
are embedded in linear manifolds. The idea behind FindSepa-
ration is to successively sample points that can define a linear
manifold of a given dimension, and select the linear manifold
that is closest to a substantial number of points. This subset of
closest points will typically correspond to a cluster. The prox-
imity of the input data points to the manifold is captured by
a distance histogram. If the manifold indeed has some subset
of points near it, then the distance histogram will have a mix-
ture of two distributions. One of the distributions has a mode
near zero and is the distribution of distances of points belong-
ing to a cluster. The other distribution is the distribution of the
remaining points. The problem of separating the cluster points
from the rest is then cast into a histogram thresholding problem.
Upon termination FindSeparation returns four values �—which
is a measure of the “goodness” of the separation, 	—a proxim-
ity threshold that is computed from the histogram and is used
to split the data into two groups, 
—the basis of the manifold
which exposes the separation, and �—a point on the manifold
representing its origin. When � exceeds the value of the input
sensitivity threshold parameter �, indicating that a worthy sep-
aration has been found, then the data set is split according to 	.
This split corresponds to the partitioning of all the points which
are located close enough to the just determined manifold, i.e.
all points that potentially belong to a given cluster, and those
that belong to other clusters. In addition the dimension of the
manifold which revealed the separation is recorded by assign-
ing its value to LmDim. The third iteration continues reapply-
ing FindSeparation in an attempt to further partition the cluster
which may consist of sub-clusters, until the selected data points
cannot be further separated. At this point the algorithm will

retract to the second level of iteration in an attempt to partition
the cluster in higher dimensions, a process which will continue
until the dimension limit K is reached. When K is reached we
have a subset of the points that cannot be partitioned any more,
and declare that a cluster is found. This cluster is labeled and
added to the set of found clusters along with its dimension-
ality recorded by LmDim. The algorithm then retracts to the
first level of iteration and is reapplied on the remaining set of
points until no more points are left to be partitioned, detect-
ing one cluster at a time. We note that if outliers exist then the
last cluster/partition that is found will contain this set of points.
By definition outliers do not belong to any cluster and, there-
fore, will remain the last group of points to be associated to
any other group. Since they are unlikely to form any clusters
the algorithm will not be able to partition them, and they will
therefore be all grouped together.

3.1. Finding separations

Let D, C, B, B, and � be as defined in Section 2. The distance
of a point y in D to a linear manifold defined by � and the
column vectors of B is given by

‖(I − BBT)(y − �)‖ = ‖BB
T
(y − �)‖. (2)

As mentioned earlier in Section 2 the points of C are likely
to form a compact and dense region in the space orthogonal
to the manifold in which they are embedded. Therefore, by
projecting D into the space spanned by the column vectors of
B and executing some form of clustering in the reduced space
it is possible to identify and separate C from the rest of the
data. However, Eq. (2) shows that the distance of a point to the
cluster center in the reduced space is equivalent to the distance
of a point to the linear manifold. Thus, rather than clustering in
the reduced space it is also possible to measure distances from
the manifold and collect all the points that lie in the vicinity
of this manifold, essentially executing 1D clustering. Since we
are interested in estimating B, and because we are interested
in detecting one cluster at a time, and since 1D clustering is
typically faster than clustering in higher dimensions, we choose
to take this path.

Lemma 1. ‖(I−BBT)(y−�)‖=√‖(y−�)‖2−‖BT(y−�)‖2.

Proof. Let z = y − �,

‖(I − BBT)z‖2 = ‖z − BBTz‖2

= (z − BBTz)T(z − BBTz)

= zTz − 2zTBBTz − zT(BBT)2z

= zTz − zTBBTz

(BBT is idempotent so (BBT)2 = BBT)

= ‖z‖2 − ‖BTz‖2. �

Lemma 1 provides us a much more efficient way of com-
puting the distance of a point to a manifold. If d is the
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Fig. 2. The clustering algorithm.

Fig. 3. Detecting separations among clusters embedded in lower dimensionality linear manifolds.

dimension of the data, then computing the distance using
Lemma 1 gives us a speedup of O(d), which for high di-
mensional data becomes a significant factor. To simplify the
computation even further we choose to use the squared dis-
tance rather than the distance, henceforth we will use the term
“distance” to mean the squared distance.

3.1.1. Minimum error thresholding
The problem of separating all the points that lie in the vicin-

ity of a manifold can be cast into the problem of finding a
minimum error threshold that is used to classify points as ei-
ther embedded in the manifold (belonging to C) or not, based
on their distances to the manifold. Kittler and Illingworth [15]
(KI) describe an efficient method for finding the minimum
error threshold. Their method was designed for segmenting
an object from its background in gray scale images using a
gray level histogram of the image. Their method views the
histogram segmentation problem as a two class classifica-
tion problem, where the goal is to minimize the number of
misclassified pixels. Analogous to our problem, the distance
histogram can be viewed as an estimate of the probability den-
sity function of the mixture population comprising of distances
of points belonging to a linear manifold cluster and those that
do not.

The KI procedure is based on the assumption that each com-
ponent of the mixture is normally distributed. To support this
assumption in our case, we note that as a consequence to the
central limit theorem, the distances to the manifold which are
merely sums of random variables will approach distribution-
wise the normal, as the dimension of the space increases. Addi-
tional support was given by Diaconis and Freedman [16], who
showed that most projections of high dimensional data to lower
dimensions will be approximately normal.

Let � be the distance of a point to the manifold, p(�|i) be the
probability density function of the distances of class i, where i ∈
{1, 2}, �i , �i be the mean and standard deviation of distances
in class i, and Pi be the prior of class i. Then because of the
normality assumption

p(�|i) = 1√
2
�i

exp

(
−(� − �i )

2

2�2
i

)
.

Given �i , �i , Pi , and p(�|i) there exists a threshold 	 such that

P1p(�|1) > P2p(�|2) if ��	 and

P1p(�|1) < P2p(�|2) if � > 	,
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where 	 is the Bayes minimum error threshold [17], which can
be found by solving for � the following equation:

P1
1√

2
�1
exp

(
(� − �1)

2

−2�2
1

)
= P2

1√
2
�2

exp

(
(� − �2)

2

−2�2
2

)
.

However, the true values of �i , �i , Pi are usually unknown. KI
propose to obtain these estimates from the distance histogram
h. Suppose that the histogram is thresholded at an arbitrary
threshold t, then we can model the two resulting populations
by a normal density h(�|i, t) with parameters:

Pi(t) =
b∑

�=a

h(�), �i (t) =
∑b

�=a� ∗ h(�)

Pi(t)
,

�2
i (t) =

∑b
�=a(� − �i (t))

2 ∗ h(�)

Pi(t)
,

where a=0 and b=t if i=1, and a=t+1 and b=max(�) if i=2.
Now using the model h(�|i, t) for i ∈ {1, 2}, the conditional
probability of � being correctly classified is given by

p(i|�, t) = h(�|i, t)Pi(t)

h(�)
.

We wish to find the threshold t that maximizes this probability.
Since h(�) is independent of i and t it can be safely ignored.
Furthermore, since the logarithm is a strictly increasing func-
tion, taking the logarithm and multiplying by a constant will
not change the maximizing value. Therefore,

�(�, t) =
(

� − �i (t)

�i (t)

)2

+ 2 log �i (t) − 2 log Pi(t),

can be considered as an alternative index of the correct classi-
fication performance, and the overall performance is given by

J (t) =
∑
�

h(�)�(�, t),

which reflects indirectly the amount of overlap between the
two Gaussian populations. Substituting �i (t), �i (t), Pi(t), and
�(�, t) into J (t) we get

J (t) = 1 + 2(P1(t) log �1(t) + P2(t) log �2(t))

− 2(P1(t) log P1(t) + P2(t) log P2(t)) (3)

and the minimum error threshold selection problem can be
formulated as

	 = arg min
t

J (t).

J (t) can be computed easily and finding its minima is a
relatively simple task as the function is smooth. We note that
the tails of the distribution have been truncated by the thresh-
olding operation and therefore the models h(�|i, t), i ∈ {1, 2}
will be biased estimates of the true mixture components.

Cho et al. [18] proposed an improvement of KI’s criterion func-
tion that corrects the biased variance estimates.

3.2. Sampling linear manifolds

A line, which is a 1D linear manifold, can be defined by
two points, a plane which is a 2D manifold can be defined
using three points. To construct a random k-dimensional linear
manifold by sampling points from the data we need to sample
k + 1 linearly independent points. Let x0, . . . , xk denote these
points. Choosing one of the points, say x0 as the origin, the k
vectors spanning the manifold are given by

yi = xi − x0,

where i =1 . . . k. Assuming each of these sampled points came
from the same cluster, then according to Eq. (1)

yi = xi − x0 = (�0 + B�i + B�i ) − (�0 + B�0 + B�0)

= B(�i − �0) + B(�i − �0).

If the cluster points did not have an error component off the
manifold, i.e. they all lie on the linear manifold, then sampling
any k + 1 points which are linearly independent and belong to
the same cluster would enable us to reconstruct B. So in order
to get a good approximation of B we would like each of the
sampled points to come from the same cluster and to be as close
as possible to the linear manifold. From the above equation we
see that this occurs when

�i − �0 ≈ 0,

resulting in a set of k vectors which are approximately a linear
combination of the original vectors in B. A good indication as
to why this is likely to occur when the sampled points come
from the same cluster, is given by the fact that

E[�i − �0] = 0,

and that normally distributed data (�i − �0 follows a normal
distribution) tends to cluster around its mean. In cases where the
clusters are well separated, the requirement that �i−�0 ≈ 0 can
be relaxed. That is, when the clusters are well separated more
sets of points coming from the same cluster, and not only those
that are relatively close to the manifold will be good candidates
to construct a manifold that will induce a large valley in the
distance histogram that separates the linear manifold cluster
from the remaining points. As a consequence, the problem of
sampling a linear manifold that will enable us to separate a
linear manifold cluster from the rest of the data can be reduced
to the problem of sampling k + 1 points that all come from the
same cluster.

Assuming there are S clusters in the data set whose size
is distributed with low variance, then for large data sets the
probability that a sample of k + 1 points all come from the
same cluster is approximately(

1

S

)k

.
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If we want to ensure with probability (1 − �) that at least one
of our random samples of k + 1 points all come from the same
cluster, then we should expect to make at least n selections of
k + 1 points, where

[
1 −

(
1

S

)k
]n

��,

yielding that

n� log �

log(1 − (1/S)k)
. (4)

Therefore, by computing n given �, and S which is an input to
the algorithm we can approximate a lower bound on the number
of samples required, such that with high probability, at least
one of the n samples contains k + 1 points that all come from
the same cluster. Unlike K-Means and ORCLUS, the user input
S does not predetermine the number of clusters LMCLUS will
output. It is a rough estimate of the number of clusters in the
data set, which is only used to compute an initial estimate of
the sample size required to ensure we sample points coming
from the same cluster. It is rather a “gauge” with which we can
tradeoff accuracy with efficiency.

The sample size n grows exponentially with the dimension-
ality of the linear manifold k which is being sampled. Although
LMCLUS is not designed to identify clusters embedded in
linear manifolds of high dimension, it is possible to bound the
sample size from above. Dasgupta and Gupta [19] showed that
using random projections it is possible to project high dimen-
sional data into a low dimension subspace and preserve dis-
tances up to a factor of 1+ � with probability 1/|D|, where |D|
is the size of the data set. This in turn means that by performing
O(|D|) random projections it is possible to find a projection
that will be able to retain a good level of separation between
clusters with high probability. Combining this result with the
sample size computed in Eq. (4) the number of samples N which
will be drawn can be determined by the following heuristic:

N = min(log �/ log(1 − (1/S)k), c|D|), (5)

where c is some constant independent of |D| which can simply
be set to equal one, making |D|—the size of the data being
clustered an alternative sample size approximation. We note
that for small k and large data sets the sample size computed by
Eq. (4) is likely to be much smaller than |D|, and will therefore
be preferred.

Putting it all together, for each sample of points {y1, . . . , yk}
we construct an orthonormal basis B of a linear manifold us-
ing the Gram–Schmidt process. (If the Gram–Schmidt process
indicates that the sampled points are not linearly independent,
a new sample of points is taken.) Then using KI’s method we
compute a threshold 	. Of all possible thresholds correspond-
ing to different linear manifolds which induce different sepa-
rations, we prefer the one which induces the best separation.
The best separation is defined as the separation which induces

{C1, C2, C3}

{C3} {C1,C2}

{C3} {C1,C2}

{C1} {C2}

{C1} {C2}

{C2}

1

2 1

2

2 1

2

Fig. 4. A dendrogram summarizing the clustering process of the sample data
set from Fig. 1. The labels on the arrows specify the dimension of the linear
manifold which was used to separate the clusters.

the largest discriminability given by

discriminability = (�1(	) − �2(	))
2

�1(	)2 + �2(	)2
(6)

and the one which causes the deepest broadest minimum in
KI’s criterion function—J (t). The deepest minimum can be
quantified by computing the difference/depth of the criterion
function evaluated at the minimum 	 and the value evaluated
at the closest local maxima 	′, i.e.

depth = J (	′) − J (	).

The composite measure of the goodness of a separation is then
given by

G = discriminability × depth. (7)

A typical run of the algorithm is illustrated in Figs. 4 and 5 by
a dendrogram which summarizes the clustering process of the
sample data set depicted in Fig. 1, and the corresponding his-
tograms that were used to separate the linear manifold clusters
in this data set. At the beginning of the process the algorithm
searches for 1D linear manifolds in which some clusters may
be embedded. Since cluster C3 is such a cluster it is separated
from C1, C2 using the threshold returned by KI’s procedure,
and the algorithm proceeds by trying to further partition it in
higher dimensions. Since it cannot be further partitioned using
2D manifolds, cluster C3 is declared to be found. The algorithm
then attempts to separate the remaining clusters C1, C2 using
1D manifolds. Since both these clusters are embedded in 2D
linear manifolds the algorithm will fail. However by trying to
separate them using 2D manifolds the algorithm will succeed.
At this point the algorithm will attempt to further partition each
of the clusters C1 and C2, however, since they are inseparable
C1 and C2 are declared to be found, and the algorithm termi-
nates.

4. Complexity analysis

Because LMCLUS uses sampling, complexity analysis of its
running time is not straightforward. As a consequence the fol-
lowing result is only a worst case upper bound on its running
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Fig. 5. Histograms used to separate the clusters from Fig. 1: (a) C3 is separated from C2 and C3 by sampling 1D linear manifolds; (b) C1 is separated from
C2 by sampling 2D linear manifolds; (c) a histogram for which no separation can be found.

time, and does not reflect its performance in practice as demon-
strated by the experiments presented in Section 5.

Lemma 2. The overall worst case time complexity (an upper
bound) of LMCLUS in terms of the size of the data-N, the
dimensionality of the data-D, the largest dimension of the linear
manifolds in which clusters are embedded-K, and the number
of clusters which are detected-C, is O(N2C2K3D).

Proof. The overall complexity of LMCLUS depends the com-
plexity of the FindSeparation procedure, and on the number
of calls to it. Starting with the FindSeparation procedure,
each set of k + 1 points that are sampled in order to con-
struct a k-dimensional manifold must first be transformed to
a set of k orthonormal vectors (FormOrthonormalBasis) by a
Gram–Schmidt process whose complexity is O(k2d), where d
is the dimensionality of the data. Measuring distances to the
manifold amounts to a projection whose complexity is O(kd).
Assuming there are n points in data, the overall complexity
of this step is O(nkd). Making a distances histogram requires
O(n) operations (assigning each distance to a bin). Assuming
the number of bins in the histogram is bound by some con-
stant, then finding the minimum error threshold by Kittler and
Illingworth’s method has complexity O(1) (constant time).
This is because the complexity of this procedure only depends
on the number of bins in the histogram. Each of the steps
described above must be repeated for each linear manifold that
is sampled. Since the number of linear manifolds sampled is
bounded from above by the number of points that are to be
clustered (Eq. (5)), the overall complexity of FindSeparation
is O(nk2d + n2kd + n2 + n).

We now need to determine the number of calls to the Find-
Separation procedure. Assuming the clusters are separable,
then in the worst case each cluster is found at the highest di-
mension which is K, that is, up to dimension K − 1 the data is
inseparable, and at dimension K, a cluster is found only after
repeated calls to FindSeparation that gradually peals off other
clusters one at a time. If there are C clusters in the data, of

approximately the same size, then the overall complexity of
LMCLUS as a function of N, C, K, D is given by

C∑
c=1

[
K−1∑
k=1

cN

C

(
k2D + cNkD

C
+ cN

C
+ 1

)

+
c∑

i=1

iN

C

(
K2D + iNKD

C
+ iN

C
+ 1

)]

= O(N2C2K3D).

This result shows that LMCLUS’s running time is only linear
in the dimensionality of the data and cubic in the dimensionality
of the linear manifolds in which clusters are embedded. Related
methods such as ORCLUS are cubic in the dimensionality of
the data due to the computation of principle components, or like
CLIQUE, exponential in the dimension of subspaces in which
clusters are embedded. We also note that although the worst
case complexity of LMCLUS is quadratic in the number of
points, in practice when the dimension of the linear manifolds
is much smaller than the size of the data set, the sample size
computed by Eq. (5) will be much smaller than size of the data,
resulting in an algorithm whose complexity is only linear in the
size of the data.

5. Empirical evaluation

In this section we present a broad evaluation of LMCLUS
applied on synthetic and real data sets. LMCLUS as well as
three other related methods: DBSCAN a representative of the
full-dimensional clustering methods, ORCLUS a representa-
tive of subspace clustering methods, and HPPC a projection
pursuit based clustering method, were implemented in C + +.
The experiments were performed on a Linux based worksta-
tion with an Intel P4 3.0 GHz CPU and 1 GB of memory. The
aim of the experiment was to evaluate LMCLUS’s performance
in comparison to the other methods with respect to accuracy,
efficiency, scalability and its stability as a stochastic algorithm.
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5.1. Synthetic data generation

Several dozen data sets were generated according to the lin-
ear manifold cluster model specified in Eq. (1). The underlying
idea is to first generate each cluster in an axis parallel manner
centered at the origin, and then randomly translate and rotate
it, where the rotation is used to achieve the effect of an arbi-
trary orientation of the cluster in the space. In addition to the
clusters, noise points are scattered uniformly in the space. Due
to space limitations a detailed description of the synthetic data
generation process is omitted, and the reader is referred to Ref.
[8] which we used as a guideline.

A candidate data set which we aimed at generating was one
in which the clusters were relatively close in some subspace
with minimal overlap, and yet sparse enough in the full space
that canonical clustering algorithms would not be able to detect.
Fig. 1 shows an example of such a data set. The requirement for
minimal overlap is due to the fact that LMCLUS is designed
to identify discrete partitions of the data. We used the cluster
sparsity coefficient [8] as a measure of the relative sparsity of the
generated data sets, and indirectly as a measure of the relative
“hardness” or difficulty a potential data set might present to
a clustering algorithm. This measure ranges in [0, 1], and is
essentially a weighted average of the within cluster variances
divided by the total data variance. More formally, let �i be the
mean of cluster i, � be the mean of the whole data set, Ci be the
set of points in cluster i, D the whole data set, K the number of
clusters in the data set, and x some point in D, then the cluster
sparsity coefficient is defined by

1

K

K∑
i=1

1/|Ci |∑x∈Ci
‖x − �i‖2

1/|D|∑x∈D‖x − �‖2
.

The authors of Ref. [8] note that high values of this measure
indicate that the data set is one on which full-dimensional or
axis parallel subspace clustering would be meaningless. High
values, however, do not only indicate that the data set or clusters
are very sparse but may also suggest a significant overlap among
the clusters. This is because clusters that significantly overlap
are likely to have centers which are close to each other, and
therefore close to the center of the whole data set.

Two families of data sets were generated as part of the eval-
uation. The first having cluster sparsity coefficient in the range
[0.5, 0.6], yielding data sets that we found to be relatively
hard for full-dimensional clustering algorithms, yet with very
small and possibly no cluster overlap. The data set depicted in
Fig. 1 for example has a cluster sparsity coefficient value of
0.54. The second type, which we call star data sets due to their
star like geometry, yielded cluster sparsity coefficient values
close to 0.99. The star data sets were generated so that cluster
centers were relatively close to each other, yet with minimal
overlap.

5.2. LMCLUS parameter setting

LMCLUS requires the setting of three input parameters: K,
an upper limit on the dimension of the linear manifolds in

Table 1
A sample of 15 data sets used to evaluate the “accuracy” of selected clustering
algorithms

Data size Num. of clusters Space dim. Manifold dim.

D1 3000 3 4 2–3
D2 3000 3 20 13–17
D3 30,000 4 30 1–4
D4 6000 3 30 4–12
D5 4000 3 100 2–3
D6 90,000 3 10 1–2
D7 5000 4 10 2–6
D8 10,000 5 50 1–4
D9 80,000 8 30 2–7
D10 5000 5 3 1–2
∗D11 1500 3 3 1
∗D12 1500 3 3 2
∗D13 1500 3 7 3
∗D14 5000 5 20 4
∗D15 4000 4 50 3

The table lists the characteristics of each of the data sets.

which we believe clusters may be embedded; S, a sampling level
parameter which based on the heuristic outlined in Section 3.2
we suggest setting to a rough estimate of number of clusters
that might exist in the data set; �, a sensitivity or “goodness
of separation” threshold, which the higher it is set the more
coarse the clustering will be, and the lower it is set the finer
(more and smaller clusters) the clustering will be. The first
two input parameters are fairly intuitive and easy to set. For
� we have yet to find a general approach, and similar to other
methods, we suggest setting by experimenting with different
values. Nonetheless, we found that not many trials are required
until a reasonable clustering is obtained. Moreover, we found
that when clusters are well separated setting � = 1.0 will yield
good results and anything higher than 1.0 will only return the
same results. I.e. � = 1.0 can be thought of as a threshold for
the case of well separated clusters. When clusters are closer to
each other or tend to overlap the value of � must be decreased.
Based on many observations and experiments with data sets
having clusters that are relatively close, we suggest setting � in
the range [0.4, 0.5]. Any clustering obtained by setting � < 0.4
indicates significant cluster overlap.

5.3. Accuracy

From a pool of dozens of synthetic data sets on which LM-
CLUS was applied, a representative sample of 15 was selected
for illustrative purposes. Their characteristics are summarized
in Table 1, where the star data sets are marked with a star (‘∗’).
As a measure of accuracy we used cluster purity [20] operating
on a confusion matrix. Confusion matrices are used to indicate
how well the output clusters match with the input clusters, also
referred to as “ground truth” in a supervised environment. The
(i, j) entry of the matrix specifies the number of points belong-
ing to output cluster labeled i, which were generated as part of
input cluster labeled j. Ideally, when the clustering algorithm
performs well, there should be a single dominant entry in each
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Table 2
Accuracy and running times (in hours, minutes and seconds) comparison

LMCLUS ORCLUS DBSCAN HPPC

D1 0.95 0:0:08 0.80 0:0:22 0.34 0:0:9 0.72 0:0:51
D2 0.98 0:0:33 0.59 0:2:18 0.65 0:0:36 0.97 0:1:39
D3 1.00 0:15:38 0.65 1:5:30 1.00 1:31:52 0.99 0:1:32
D4 0.99 0:9:22 0.98 0:8:20 0.66 0:3:49 0.97 0:0:12
D5 1.00 0:0:20 0.88 0:54:30 0.65 0:5:24 0.99 0:3:54
D6 0.99 0:0:29 1.00 0:29:02 0.67 4:58:49 1.00 0:1:23
D7 0.99 0:2:05 0.99 0:2:41 0.74 0:0:54 0.96 0:0:35
D8 0.99 0:1:42 0.63 1:33:52 1.00 0:17:00 0.99 0:3:43
D9 0.99 3:12:46 0.96 13:30:30 1.00 10:51:15 0.99 0:4:57
D10 0.86 0:0:48 0.68 0:0:45 0.59 0:0:5 0.78 0:0:33
∗D11 0.98 0:0:01 0.99 0:0:10 0.43 0:0:02 0.33 0:0:52
∗D12 0.97 0:0:02 0.99 0:0:11 0.34 0:0:02 0.33 0:0:26
∗D13 0.97 0:0:05 0.99 0:0:17 0.33 0:0:04 0.33 0:0:34
∗D14 0.99 0:5:46 1.00 0:10:42 0.21 0:1:39 0.20 0:1:30
∗D15 0.99 0:9:14 1.00 0:25:52 0.25 0:2:34 0.25 0:3:20

Each algorithm was applied on a sample of 15 data sets whose characteristics are listed in Table 1.

row that establishes a match of an output cluster to an input
cluster. Cluster purity is then used to quantify this match and
the overall quality of the clustering which we refer to as accu-
racy. Let K be the number of output clusters, |D| the size of the
data set, |Ci | the size of output cluster i, and |Cij | the number
of points output cluster i and input cluster j have in common.
Then the purity of cluster Ci is defined as

Purity(Ci) = 1

|Ci | max
j

(|Cij |)

and overall purity or what we refer to as the overall accuracy
of the clustering as

Purity =
K∑

i=1

|Ci |
|D| purity(Ci) = 1

|D|
K∑

i=1

max
j

(|Cij |),

which is essentially a weighted sum of individual cluster puri-
ties.

Table 2 summarizes the overall accuracy, along with the
amount of time required by each algorithm we tested to clus-
ter the sample of 15 data sets. Apart from DBSCAN, each of
the other algorithms, due to their stochastic nature, were run
several times and their averages were recorded. The results de-
picted in Table 2 clearly demonstrate LMCLUS’s superiority
over the other clustering algorithms. LMCLUS was the only
algorithm able to cluster with over 0.85 accuracy of all the 15
data sets. ORCLUS ranked second, was able to cluster accu-
rately 10 of the 15 data sets. HPPC ranked third, clustered ac-
curately 8 of the 15 data sets. DBSCAN ranked last, was able
to cluster accurately only three of the data sets. The inability of
DBSCAN to cluster these data sets is no surprise for clustering
algorithms that utilize distance metrics in the full space to clus-
ter subspace or linear manifold clusters. Only LMCLUS and
ORCLUS were able to handle the star clusters. In some cases
ORCLUS slightly outperformed LMCLUS by a small margin.
The fact that HPPC was not able to cluster the star data sets also
comes as no surprise. This is because as a projection pursuit

algorithm HPPC searches for “interesting”-separations reveal-
ing 1D projections, and any 1D projection of these type of data
sets, due to the star like arrangement of clusters in the space,
will only reveal “uninteresting” unimodal distributions of pro-
jections that cannot be used to separate the data. In terms of
running time, LMCLUS ranked second to HPPC. The remark-
able low running times of HPPC can be attributed to the fact
that it uses a stochastic “genetic” approach to select interesting
1D projections using a constant number of “generations”, mak-
ing it scale linearly with the size and dimensionality of the data.
Nonetheless LMCLUS runs faster than the other algorithms on
seven of the 15 data sets, and when compared to ORCLUS and
DBSCAN only, demonstrates a significant gain in efficiency,
especially when applied on large or high dimensional data sets.

5.4. Scalability

Scalability was assessed in terms of the size and dimension-
ality of the data. In the first set of tests, we fixed the num-
ber of dimensions at 10, and the number of clusters to 3, each
of same size, and embedded in a 3D manifold. We then in-
creased the number of points from 1000 to 1,000,000. In the
second set of tests we fixed the number of points and clus-
ters as before, but increased the number of dimensions in the
data set from 10 to 120. As before, LMCLUS and ORCLUS
were run several times on each data set, reporting the averages.
Figs. 6 and 7 are plots of the running time for the two sets of
tests. Although LMCLUS’s asymptotic time complexity indi-
cates that it is quadratic in the size of the data, these set of tests
confirm our suggestion from Section 4 that in practice LM-
CLUS will scale much better. Fig. 6(a) shows that in practice,
for data sets with a small number of clusters which are embed-
ded in low dimensionality manifolds, LMCLUS like ORCLUS
scales linearly with the size of the data. We note, however, that
as the dimensionality of the cluster manifolds increases, perfor-
mance will degrade. Fig. 7(a) validates our analytical complex-
ity analysis that LMCLUS, like DBSCAN, will scale linearly
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Fig. 6. Scalability, running time vs. data size: (a) LMCLUS’s scalability; (b) LMCLUS’s scalability relative to ORCLUS and DBSCAN.
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Fig. 7. Scalability, running time vs. dimensionality of the data: (a) LMCLUS’s scalability; (b) LMCLUS’s scalability relative to ORCLUS and DBSCAN.

with the dimensionality of the data set. Combined together, lin-
earity in both the size and dimensionality of the data set makes
LMCLUS one of the fastest algorithms in its class, and far su-
perior to ORCLUS and DBSCAN in terms of running time as
depicted by Figs. 6(b) and 7(b).

5.5. Stability

A stochastic algorithm such as LMCLUS will produce results
that differ with each run depending on the random number
generator’s seed. For the stability set of tests we used two data
sets on which LMCLUS was applied 500 times, and for each

run we recorded the accuracy. The first data set, was the sample
data depicted in Fig. 1. We chose this data set because of the
relative proximity of its clusters, which in turn requires the
sampled manifolds to be fairly accurate approximations of the
true manifolds in which the clusters are embedded. The second
data set was a star type data set consisting of 3000 points in a
10D space, with four clusters embedded in 3D manifolds. The
same set of tests were also applied on ORCLUS. The results
of this experiment are shown in Table 3. For each data set we
measured the mean, median and standard deviation (stdev.) of
the algorithm’s accuracy. The table shows that LMCLUS is
able to maintain high accuracy. Applied on the first data set
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Table 3
Stability of an algorithm in terms of accuracy

LMCLUS ORCLUS

1st data set
Mean 0.991 0.921
Median 0.999 0.955
Stdev. 0.047 0.1056

2nd data set
Mean 0.974 0.993
Median 0.974 0.995
Stdev. 0.000053 0.000049

LMCLUS was able to maintain an average of 0.991 accuracy
with only 4 runs which yielded below 0.50 accuracy. Whereas
ORCLUS had an average of 0.921 with more than 20 runs below
0.50 accuracy as indicated by the larger standard deviation.
Applied on the second data set both algorithms maintained
high accuracy, but ORCLUS performed slightly better, a result
consistent with the accuracy experiments in Section 5.3 where
ORCLUS slightly outperformed LMCLUS on the star type data
sets.

5.6. Real data

5.6.1. Time series clustering and classification
Multivariate time series classification has become increas-

ingly important due to new applications in biomedical signal
analysis, DNA microarray analysis, and datamining in tempo-
ral databases. We applied LMCLUS on a data set obtained
from the UCI KDD Archive [21] consisting of 600 points with
60 attributes each, divided into six different classes: decreas-
ing trend, cyclic, normal, upward shift, increasing trend, and
downward shift. The donors of this data set claim that this is a
good data set to test time series clustering because Euclidean
distance measures will not be able to achieve good accuracy.
Setting �=0.4 (the sensitivity input parameter) LMCLUS was
able to achieve 0.87 accuracy by discovering eight clusters all
embedded in 1D linear manifolds, where the cyclic class was
divided into three clusters, and where most of the misclassi-
fied points came from the decreasing trend class. ORCLUS
was only able to achieve 0.50 accuracy, while DBSCAN with
extensive tuning of its parameters yielded 0.68 accuracy, and
HPPC 0.64 accuracy.

5.6.2. Handwritten digit recognition
A second real data experiment consisted of preprocessed

handwritten digit bitmaps obtained from the UCI Machine
Learning Repository [22]. A 32 × 32 bitmap representing each
digit was divided into non-overlapping 4 × 4 blocks, and the
number of “on” pixels in each block was counted. The reduced
8 × 8 matrix was then converted into a 64-dimensional feature
vector whose entries contained integers in the range [0, 16].
We then partitioned this data set of 3823 feature vectors into
two smaller sets of even and odd digits. Applied on the set
of even digits LMCLUS was able to achieve an average of
0.95 accuracy, discovering five clusters all embedded in one

and 2D manifolds. DBSCAN was able to achieve 0.82 accu-
racy, while ORCLUS achieved 0.85, and HPPC achieved 0.50
accuracy. Applied on the set of odd digits LMCLUS achieved
an average of 0.82 accuracy, discovering seven clusters (two
clusters for each of the digits 1 and 9) all embedded in one
and 2D manifolds. DBSCAN achieved 0.58 accuracy, whereas
ORCLUS achieved 0.83, and HPPC achieved 0.93 accuracy.
We set � = 0.4 for both data sets as input to LMCLUS. We
note that the donors of this data set reported they were able
to achieve an average of 0.97 classification accuracy by using
a supervised K-nearest neighbors classification scheme, with a
Euclidean distance metric.

6. Conclusion

A new clustering paradigm which is based on the concept
of linear manifolds was presented in this paper. Unlike con-
ventional cluster models a linear manifold cluster is a set of
points compact around a linear manifold. The linear manifold
cluster model presented in this paper can be viewed as a gener-
alization of other more recent models such as the subspace and
pattern cluster models. In addition linear manifolds are able to
capture correlations in the data, making the concept of linear
manifold clustering applicable to a wide range of applications.
An efficient stochastic algorithm called LMCLUS for detecting
groups of points embedded in low dimensionality linear mani-
folds was presented. The algorithm was evaluated on real and
synthetic data sets and shown to outperform three competing
methods in terms of accuracy and computation time. The algo-
rithm scales well with the size and dimensionality of the data,
but not with the dimensionality of the linear manifolds in which
clusters are embedded. We believe that clusters embedded in
higher dimensionality linear manifolds need to be treated dif-
ferently and plan to investigate possible approaches in future
work. Likewise we plan to extend the concept of linear mani-
fold clustering to non-linear manifolds.
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