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An optimization approach to automatic sensor and light source
positioning for a machine vision task, where geometric measure-
ment and/or object verification is important, is discussed. The
goal of the vision task is assumed to be specified in terms of
measurements related to edges. The optimal sensor and light
source positions are defined in such a way that when the sensor
and light source are placed in the optimal positions, we can obtain
a picture which produces the minimum variance for the required
measurement. Experiments show that the uncertainty in the edge
point position is inversely proportional to the contrast across the
edge. Using a variant of the Torrance-Sparrow model that takes
into account the polarization of the light, the contrasts across
edges are computed and used to estimate the variance of the
required 2D measurement. An optimization procedure employing
mathematical programming techniques uses this information to
determine the best positions for the light source and sensor in
order to perform the required measurement. A series of experi-
ments was conducted to demonstrate the feasibility of our optimi-
zation approach. The optimal positions computed by the program
were found to be the best ones in the real experiments. Further-
more, the correlation coefficient between : the expected vari-
ance and the variance computed from the real pictures was
0.768. © 1995 Academic Press, Inc.

1. INTRODUCTION

A typical computer vision system can be decomposed
functionally into three subsystems: the image acquisition
subsystem, the image processing subsystem, and the im-
age understanding subsystem. The image acquisition sub-
system is responsible for providing pictures to the image
processing subsystem, which analyzes pictures and gen-
erates low-level information, such as edges and regions,
in order for the image understanding subsystem to pro-
duce an inference relative to a scene description or object
mensuration.

A vision system’s performance depends on the image
quality which is affected directly by iliumination. To ob-
tain the best result, the object must be illuminated in such
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a way that distinctions between object surfaces are as
clear as possible. Although researchers set up the image
acquisition environment as best they can, until recently
lighting devices have been regarded as passive compo-
nents in machine vision research. There have been very
few efforts to select or to optimally position lighting de-
vices [2, 4, 20]. If illumination is controlled in an active
way, better quality images can be obtained without fur-
ther investment. It is less costly to produce high-quality
images by controlling the light source than to develop
complex image processing algorithms for low-quality im-
ages.

There has been some work done on sensor and illumi-
nation planning. Pentland studied how a mobile robot can
obtain depth information using depth of field {21]. Kroto-
kov studied the relationship between lens focusing and
depth of field [21]. Krotokov studied the relationship be-
tween lens focusing and depth of field [16]. Both of these
were related to lens selection. Ikeuchi concentrated on
view class classification rather than on camera and illumi-
nation control [12, 13]. Shirai and Tsuji were two of the
first researchers who took advantage of controlled illumi-
nation in extracting line drawings from images of 3D ob-
jects [23]. Their idea was to remove shadow effects by
controlling illumination directions. Cowan and Kovesi
studied automatic determination of sensor location {4],
and their approach is to formulate a constraint satisfac-
tion problem. V1O (vision illumination object) developed
by Niepold and Sakane may be the first system that con-
sidered camera, illumination, and features simulta-
neously [19]. Yi et al. proposed a heuristic optimality
criteria in terms of edge visibility for the optimal sensor
and light source position and demonstrated that the opti-
mization approach is feasible and can be solved by math-
ematical programming techniques [27].

In this paper, we will describe an illumination control
system called ICE (illumination control expert) that de-
termines the optimal sensor and light source position for
a given vision task. A vision task is specified by an object
model that includes photometric properties, as well as
geometric properties of the target object and the required
measurements. We consider only 2D measurements that
can be determined after the positions of certain feature
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points are detected. The distance between two corner
points and the angle made by two lines are typical exam-
ples. To compute the distance between two points, the
two endpoints must be determined. To compute the angle
made by two lines, three points must be determined. A
point may be the intersection of two lines, the center of a
circle, or the center of an ellipse. Lines, circles, and el-
lipses are determined from edge points in 2D images.
Uncertainties in the positions of edge points are propa-
gated all the way to the measurement. Our approach to
solve this illumination problem is to formulate an optimi-
zation problem in terms of variance of the requirement
measurement and take advantage of mathematical pro-
gramming techniques.

ICE automatically finds the optimal sensor and light
source positions, producing an image from which the
measurement data can be obtained with the minimum
uncertainty. The following must be known: geometry of
the object, photometric properties of the object, object
edges involved in the given task, measurement type, and
light source type. The light source is assumed to be a
point light source, and no area light sources are sup-
ported. The background must be dark enough to distin-
guish the object clearly from the background. No sec-
ondary reflection or ambient light is considered. The
reflectance coefficient must be known in advance, and it
should be uniform over a given surface of the given ob-
ject. The object edges must be able to be represented by
the PADL object description language [11], and no arbi-
trary curves are supported.

ICE would be useful in an inspection task, where a
geometric model of the object is available, and the task is
to inspect manufactured instances of the object to ensure
that they are not misshapen or flawed. This paper de-
scribes the ICE system and the theory behind it. We
begin by defining the illumination model that is used to
predict the intensity values of image points. The intensity
of an image point is dependent on the reflectivity of the
corresponding point on the object, the optical devices,
and the lighting.

2. ILLUMINATION MODEL

We assume that all surfaces of an object have the same
photometric properties, and thus they have the same bi-
directional reflectance function (BDRF). We also assume
that the incident light is polarized and employ the illumi-
nation model developed by Yi et al. [9, 26].

Let N be the unit normal vector to a given surface at a
certain surface point, and let L be the unit vector in the
direction of the light source from the given surface point.
From [26], we know that

1= [ CSOM) dal - LRI + RIS dA,
()
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where C is the lens collection, § is the sensor responsiv-
ity, Q is the spectral distribution function of the illumina-
tion source, Ry is the bidirectional function for the inci-
dent light that is parallely polarized, and R, is the
bidirectional function for the incident light that is perpen-
dicularly polarized. From [26], we also know that

R
R,

= SKp“ + (1 — )Ry,
= SKpH + (1 - S)Rd,

where

DG
a(N-L)N - V)

Ry and R, are reflectance coefficients for the specular
reflection, and Ry is the reflectance coefficient for diffu-
sion. D is a surface roughness distribution function, and
G is the geometric attenuation factor. The surface rough-
ness D is assumed to have a Beckmann distribution and is
given by

tan g’

~ m? cos* g *P <_ ( m

where m is a constant and 8 is a variable. If H is the unit
vector that bisects the angle between L and V, then

L+V

ﬁ = .
IZ + V|

Thus G can be written as

G = min 1, 20 XY V) 28 AN D)}
V-H L-H

From [26], we also know that

a*+ b2 — 2acos + cos? Y
a’> + b* + 2a cos ¢ + cos? y’

pL(Y) =

_ a® + b* — 2a sin ¢ tan Y + sin? Y cos?
Pik) = p. () a’> + b + 2a sin  tan ¢ + sin?  tan? ¢’

where ¢ is the incidence angle, and a and b are quantities
related to the incidence angle s, the refractive index n,
and the extinction coefficient k of the material. They are

_ \/\/c2 + 4n’k? + ¢
= 5 i

_ \/\/cz + 4dn’k: - ¢
= 5 ,
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where
¢ =n?— k¥ — sin? .

In fact, pj and p, are dependent on the wave length A of
the incident light because the refractive index and extinc-
tion coefficients are dependent on the wave length, and
the Fresnel equations are good for the monochromatic
wave,

3. ERROR PROPAGATION IN VISION TASKS

Suppose the distance between two corner points in a
2D image is to be measured. To measure the distance, the
positions of the points must be determined. Since the true
positions are usually not known, they must be estimated
from the given data. Because a corner point is an inter-
section of two nonparallel lines, to determine the position
of the corner point, the lines that pass through the corner
point must be detected. A line can be determined by fit-
ting edge points which are supposed to be on that line.
There are many ways to fit a line to points. Least-squares
line fitting is widely used for this purpose. To find the
line, its edge points must be detected. Since images have
numerous sources of error, the edge points produced by a
typical edge operator are not necessarily true edges. This
means that there are uncertainties in the edge point posi-
tions. Since lines are estimated by fitting noisy edges, the
parameters of the fitted lines also have uncertainties com-
ing from the uncertainties of the edge point positions. A
corner point can be determined by finding the intersec-
tion point of the two fitted lines. Therefore, the position
of the corner point has uncertainty that comes from the
uncertainties of the fitted line parameters. Finally, since
the distance between the two corner points is computed
using their positions, the measured distance has uncer-
tainties of the two corner point positions.

Haralick analyzed how edge point position uncertainty
is propagated to the fitted line parameter uncertainty [8].
In his analysis, the noise is assumed to come from an
independent and identical distribution. Yi et al. [25, 28]
generalized Haralick’s derivation for the case that the
noise comes from an independent, but nonidentical distri-
bution. The validity of these derivations have been
proved by experiments. Error propagation was thor-
oughly analyzed, and the relationship between the vari-
ances of edge point positions and the expected variance
of the measurement was derived. The least-squares prin-
ciple was applied for line, circle, and ellipse fitting. In this
paper, we employ those results.

3.1. Noise Model

Let (x;, y;) be the true, but unknown, coordinates of the
ith edge point and (£;, ¥;) be a noisy observation of (x;, y;).
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Our model for (£;, y)) is

fi=xi+ &, Vi=yitm,

where the random perturbations £; and n); are assumed to
be independently distributed with mean 0 and variance o'}
and to come from a distribution which is an even func-
tion. Hence,

E[¢) = E[ni] = 0,
VI£i] = Vind = of

Eregy = {70 1
it 0 otherwise’
Elmen ] ot ifi=j
i 0 otherwise
and
E[ni] = 0.
3.2. Variances of Least-Squares Estimates of

Line Parameters

Consider a situation in which points (x;, y), i =
1, ..., 1, are assumed to lie on an unknown straight
line, and the problem is to determine the parameters of
the line. Then suppose each point (x;, y;) satisfies the
model

axit By +y=0 i=1...,1 (2)
where a2 + 82 = 1. Since our noise model is not i.i.d. and
all o are known a priori, we define weighted mean and
weighted variance instead of arithmetic mean or vari-

ance. Let the weight be w; = 1/a?, and define

1< 1<
ﬂx‘_wg‘,l WX, ﬂy‘—W; WiVi,
2 1< 2 1 d
x = = i = p, =5 wilyi — 2,
o W.-§=:1W(x ), ol W; (yi — )

9
&
il

1 1
ng wiln — wd(yi — 1),
where

. o _I1-1
W=>w, W= — W

i=1
Then, from [25], we know that the variances and covari-
ances of the line parameters are
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V(a) = BT,

V(B) = aT,

Ve = (w2 ui-yt o) TH
Cov(d, B) = —aBT,
Cov(d, 7) = B(~u:B + mya)T, 3)
Cov(B, ¥) = a(pB — tyo)T,

where

lr o+ W
T:EX__E,V___I._._ @)

W(a?l + o)
3.3. Variance of Corner Point Position and Distance
Between Points

As derived in [25] the variance of the intersection point
(r, c) of two straight lines a;x + 8,y + y; = 0 and axx +

B2y +¥2=10is

I

A~ 2 A A LAY
V() = @By = B’ [BiE[(&;r + Bic + V1)l
+ BIE[(Gar + Bac + 9241,
o 1 2 e 4 .\
V() = @B —wBy [ezEl(&ir + Bic + ¥4
+ aiE[(dyr + BzC + v,
. a 1 . . .
Cov(#, ¢) = @B = mB ) [—ayBE[(ayr + Bic + v1)7]
= ;B E[(&r + B2c + 72, S)
where

E[(@r + fc + 901 = P2V(&) + c2V(B) + V()
+ 2rc Cov(d, B8) + 2r Cov(d, ¥)
+ 2¢ Cov(,é, ¥).

Finally the variance of the distance between two points
(r1, 1) and (r2, ¢2) is

1 . .
V(d) = g [(n = n)lV(F) + V(R)]

+ (e — *lV(éD + V(E)]

+ 2(ry — r)(cr — c)[Covi#y, ¢1) + Coviry, &I

(6)
4. SOURCE OF MEASUREMENT UNCERTAINTY

In the previous section, we have shown how uncertain-
ties of edge point positions in a 2D image are propagated
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through the 2D measurements. In this section, we will
discuss the nature of the uncertainty of measurement and
how to compute it. From the previous section all the final
measurements have variances related to the following en-
tity T defined by Eq. (4),

T o+ al+ IIW

W(o? + o2)?
where I is the number of edge points, o2 and 0-5 are the
variances of the x and y coordinates of the edges, W is the
sum of the reciprocal of the variances of each edge point
coordinate over all the edges, and W = (I ~ 1)W/I. Thus
the measurement has several sources of uncertainty:
edge point position uncertainty (W and W) and edge visi-
bility (0% + o} and I).

Edge point position in a 2D image is affected by noise,
and there are many different types of noise in images.
Some of these are caused by the image signal, while
others are independent of the signal. Some noise in one
edge point is related to noise in other edge points, but
others are uncorrelated. Examples of commonly encoun-
tered kinds of noise can be found in [22]. Some can be
controlled, but others cannot be controlled. Gray scale
noise due to the sensor and noise due to the surface re-
flection texture are not controllable. Since we use edge
operators and contrast thresholds to detect edge points,
edge point positions have uncertainties depending on the
contrast across the edge and on the characteristics of the
edge operator used. The effect of an edge operator will be
considered constant for all edge points.

To explore the relationships among the standard devia-
tion of the random perturbation of edge position o, the
standard deviation of the additive noise o, and the con-
trast C across an edge, we conducted experiments on
images to empirically determine the relationship. The
facet operator [7, 10] was used to detect edges. Figure 1
shows how the standard deviation of random perturba-
tion of edge point position o was related to the ratio of
the standard deviation of additive noise to contrast in our
experiments. The definition of signal-to-noise ratio,
SNR, comes from information theory

SNR =20 lOgm £ .
O

There is a linear relationship between o and o,/C when
o¢/C < 1 (SNR is high). There is another linear relation-
ship that is different from this when ¢,/C > 1 (SNR is
low). The unit of the standard deviation is the number of
pixel positions, and each point in the plot represents 100
samples. When the SNR is low, the effect of contrast to
the random perturbation of edge position is negligible,
because the noise domainates the signal. Therefore, we
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FIG. 1. Relationship between the standard deviation of the random

perturbation of edge point position o and the ratio of the standard
deviation of additive noise to contrast o./C is illustrated.

are only interested in the case where the SNR is high.
The solid line in the plot is the weighted least-squares fit
of all the points, except the four outliers. This least-
squares fit shows the apparent linear relationship be-
tween o and o./C.

Now we can safely assume that the uncertainty in the
edge point position is inversely proportional to the con-
trast across the edge and is proportional to the uncontrol-
lable noise which is constant for all the edge points. In
other words, the variance of the ith edge point position,

ol is

(7

where k is the constant for edge operator effect, 02 is the
variance of an uncontrollable random additive noise
(measured in units of pixels), and C; is the contrast across
the ith edge. This assumption was validated by a series of
statistical tests described in [25].

5. CONTRAST EVALUATION

Since the uncertainty of the edge point position is in-
versely proportional to the contrast across the edge
point, the computation of contrast across the edge must
be discussed. Contrast is very important, since most in-
tensity-based image processing algorithms use the con-
trast between regions or across regions as their criterion.
Most region-growing algorithms work with average inten-
sity, and most edge-detection algorithms work with local
gradient. In this section, we will define the computation
of the contrast across an edge point.

We use an object coordinate system with a reference
point on the given 3D object as its origin 0. Let [ = (I, I,,
) and ¥ = (v, vy, v;)’ be position vectors of the light and
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sensor, respectively, seen from O. Let S be a 3D object
surface. Then, S can be represented by an implicit sur-
face function f(x, y, z) = 0 or by a parameterized vector
form ¥ = F(£, n) [5]). The unit normal vector to the surface
f(x, ¥, 2) = 0is given by

. vf
N = =%,
V£
where
M W o
Vf—ax1+ayj+azk,
or by
A (0713€) x (3F/am)

l(@7/a&) x (3F/an)||”

Let p be a point on § with coordinates (px, py, p;). Then
the unit vectors L and V, denoting the light and sensor
positions seen from p, are given by

. I-p
L=—2
rd
— (lx — Px> ly — Dy> lz — pz)' (8)
\[(lx - px)2 + (lv - Py)z + (lz - pz)2 '
. G-p
V===
o - Al
(Vs — Px, Uy — Dy, Uy — P2’ 9)

- V@, - p)r+ (v, — p) + (v, — p)*

As in Fig. 2, let S, and §; be adjacent object gurfaces.
Let 7 be a point on the intersection curve. Let M; be the

X

FIG. 2. A cube whose edge length is t is shown. Three of its edges
are aligned along the three coordinate axes.



OPTIMAL SENSOR AND LIGHT SOURCE POSITIONING

unit vector perpendicular to both N ,and §; N S; and on
the surface S, for j = 1, 2. Let p; be a point on S; located
at a distance {; away from 7 along M;. Explicitly,

Pr=F+ LM, pr=F+ LM,

Assume that {; and {, are very small, and therefore p,
and p, are close to each other. The contrast at an edge
point 7 is defined as the 3D contrast, the difference of the
intensity of the reflected light between two small patches
with centers at p; and p>. We do consider perspective
effects, since the error between 2D contrast and 3D con-
trast is believed to be reasonably bounded by a small
value. The position vectors of the light source L; and the
sensor V; at each j, can be represented in terms of /, &,
and p; using Eqs. (8) and (9).

Assume that the effects of lens collection C and the
sensor responsibility § are negligible, and the incident
light is monochromatic with wavelength . Let J/ be the
incident light and J” be the reflected light. Let R! and R?
be the bidirectional reflectance functions of two surfaces.
Then the contrast between the two small patches can be
computed as

I3 = 3 = [Ny - LRI+ RIS

= N LyR{J| + RLJD). (10)

6. THE VIEWING SPACE

Since we know how to compute the contrast across an
edge and what the edge visibility means, we are ready to
compute the uncertainty of the measurement. To com-
pute the measurement uncertainty, we must know the
positions of sensor and light source. In ICE, the sensor is
assumed to always point to an object reference point, and
the sensor and the light sources are placed on the surface
of a sphere with its center at the origin of the object
coordinate system. We will call this sphere a reference
sphere. The radius of the reference sphere is assumed to
be large enough to contain the whole object. Any point on
the surface of the reference sphere can be referenced by
two angles, one measured from the north pole and the
other from the arbitrarily chosen reference line along the
equator (see Fig. 3). The viewing space is defined as the
set of all points on the surface of the reference sphere.

Every point on the surface is an element of the viewing
space. However, the viewing space is a contiguous space
and has an infinite number of elements. How can we
approximate the contiguous viewing space by a discrete
space? There are many alternatives as in [13, 14, 19]. We
chose to approximate the viewing space in such a way
that the distance between any neighboring two points in
the viewing space is approximately the same. In sum-
mary,
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FIG. 3. A reference sphere is shown. The origin of the object coor-
dinate system is placed at the center of the reference sphere. A point on
the surface of the reference sphere is referenced by two angles: (i, ¢).

* The polar angle i is divided every 1°.

* When ¢ = 90°, the azimuth angle ¢ is divided into 360
intervals.

« When ¢ = 0° or 180° the azimuth angle ¢ is not
divided at all.

« Otherwise, the azimuth angles are divided in such a
way that the solid angles each surface patch subtends are
approximately equal.

As shown in Fig. 4, the solid angle a surface patch
subtends is

dw = sin ¢ di de.

z

FIG. 4. The viewing space is approximated in such a way that the
distance between any neighboring two points in the viewing space is
approximately the same. In other words, dy do sin  is approximately
constant.
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(0,0)

(1,0)  (L,1) (1,6)

(2,0 (2,1) (2,12)

(90,0)  (90,1) (90, 359)
(178,0) (178,1) (178,12)
(179,0) (179,1) (179,6)
(180,0)

FIG. 5. Points in the discrete viewing space VS.

Since dy is constant for all ¥, dw is dependent only on
sin ¥ dé, and we want to keep the arc length sin ¢ d¢
constant for all possible . When the polar angle of ¢ is
fixed, the length of the perimeter of the cross-sectional
circle is 27 sin 3. In order to keep the arc length sin ¢ d¢
constant for all possible s, 360 sin s intervals are needed
to divide azimuth angle ¢. In other words, the polar angle
is divided into 1° intervals and the azimuth angle is di-
vided into (1/sin ¥)° intervals. Thus the discrete viewing
space VS is defined by

VS = {(i,j)msis 180,
[360 sin <1—§6 i) J}

where i and j are integers. An element (i, j) of the discrete
viewing space represents a point on the surface of the
referential sphere whose spherical coordinate is

JL(- -J_)
180 \" sin i/

when i ¥ 0, 180. If i = 0 or i = 180, j must be zero. The
element (0, 0) of the discrete viewing space corresponds
to the north pole, and the element (180, 0) corresponds to
the south pole. There are

0=j

1A

90
2 > [360 sin ] — 360 + 1 = 41,348
y=0

view points in VS; one of the enumerations of VS is
shown in Fig. 5.

7. TASK SPECIFICATION

The tasks we consider are measurements of entities in
a 2D image. To obtain the measurement data, features
such as vertices, edges, faces, or holes, which are in-
volved in the measurement task in the 2D image, must be
detected. The required measurements can be specified in
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terms of these features. Since the measurements we con-
sider can always be determined when the point positions
involved are known, and those points are either vertices
or the centers of holes which can be obtained using neigh-
boring edge information, the requirements for the vision
task can be stated in terms of the object edges.

Let E be the set of all edges of the given object. A
required edge list, denoted by REL, is a set whose ele-
ments are subsets of E. An element of a REL is a set of
object edges that we want to appear in the image at the
same time. For instance, suppose we want to measure
the distance between vertex v; and vertex vg of the block
shown in Fig. 6. To measure the required distance, it
must be possible to determine the positions of the two
vertices vy and vg. Since the three edges, e,, e4, and ey
define the vertex v;, at least two of the three edges must
be shown in the image. Similarly, to determine the posi-
tion of the vertex vg, two of edges e, €7, and e, must
appear in the image. The required edge list REL for this
example is

A = {{ez, es}, {e2, eq}, {e4, eo}},
B = {{es, €7}, {€s. €11}, {€7, enth
REL={AUB|A€E A, BeE B}

an

8. OPTIMIZATION PROCEDURE

We have shown how the uncertainty of the edge point
position is propagated all the way to the measurement
and have derived the expected variance of the measure-
ments when the uncertainties of the edge point position
are known. We also described the nature of the edge
point position uncertainty, how to compute contrast
across an edge point, the viewing space, and the vision
task specification and discussed the relationship between

z
Tvg €11 Vg
|
[ €7 €6
e ) S L
s Vs
5 Y
v
Vd
~€
U3 1 V4 €5
Ve
ezl ~ Sy €3
v
v
€, (%]
X

FIG. 6. A block whose sides are of length 1.25, 0.75, and 0.25 is
shown. We want to measure the distance between two vertices v;
and Vg
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procedure Optimize

step cl : for each REL; € REL,
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1. call FindSensorLight{REL;),

2. let the optimal solution for REL; be (v;,1;, V;).

step c2 :
procedure FindSensorLight(REL;)

step r0 : choose the initial sensor position v

step rl :
step r2 : let j := 0.
step r3

step r4 :

return (v,,1,, ;) where V, < V; for all 1.

(0)

1

call FindLight WithFixedSensor{v,(»o), lso), V(0.0)y,
. call FindSensorWithFizedLight(1¥), vU1) v (i+1.3)),

1. if vUtLi) 5 VU9 report error and stop.

2. 1f vf” = v(jH’, return optimal solution (lfj),v‘(j“), V419,

step rb
step ré :

: call F'indLightWithFixedSensor{vng),l$j+1),V(j*l'j+l)).

1. if VU041 5 y(+13) report error and stop.
2. if l,(»j) = IS‘H']), return optimal solution (ISHI),VI(J“),V(i+1.j+1))

step r7 : let j:= j+ 1 and goto step r3.

FIGURE 7

the edge point position uncertainty and the contrast
across the edge.

Now we are ready to answer the question: where
should the sensor and light source be placed in order to
obtain the best image? There may be many different
ways to define the best image; our definition of the best
image is the image from which we obtain the measure-
ment data with the minimum variance.

Figures 7 and 8 show a pseudocode description of our
optimization procedure. The procedure FindLightWith
FixedSensor(v, 1, V) returns the best light position I and
the variance V for fixed sensor position-v. The procedure
FindSensorWithFixedLight(v, 1, V) returns the best sen-
sor position v and the variance V for fixed light position 1.
The variance evaluation module VarianceEvaluate(v, 1,
V) takes the sensor and light source positions, (v, 1), as
input and returns the expected variance V of the required
measurements. Suppose a vision task specification is
given and the REL is known. Then, the perspective pro-
jection of each edge in each element of REL is computed.
From this computation the information about how the
edge points are spatially distributed in the 2D image, i.e.,
Kxs My, (02 + o), is obtained. The 3D transformations
can be found in a standard computer graphics text such
as [18]). The variance of the random perturbations of each
edge point along a given edge, o, and sum of its recipro-

cals, W, are computed using the contrast across the edge
point (Egs. (10) and (7)). Using this information, the vari-
ances of line parameters are obtained (Eq. (3)). The vari-
ance of the intersection point of two edges can now be
computed using Eq. (5). Then Eq. (6) gives the variance
of the measurement between two points.

For a given element of REL, finding the optimal sensor
and light source position involves a highly nonlinear,
four-dimensional search space, since the sensor and the
light source positions are each indexed by two variables:
polar angle and azimuth angle. Since we tesselated the
viewing space into a finite number of positions, the
search space is a discrete four-dimensional space. If the
space is not convex, we cannot always find the global
minimum. However, the experiments described in Sec-
tion 9 assure us that the two-dimensional space, which is
obtained by fixing either the sensor position or the light
source position, is convex, and there is only one global
maximum.

Wendell and Hurter proposed an alternating technique
for a class of mathematical programs in which the vector
variable is partitioned into two independent subvectors
[24]. Let u and v be two such subvectors. Their approach
is to solve the problem for « while keeping v constant and
then solve the problem for v while keeping u as the solu-
tion found in the first step. The roles of «# and v are kept
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procedure FindLight WithFizedSensor(v,1,V)

step s0 : choose the initial light position 1) and let k := 0.
step sl : find the neighbors of 1(*) and let the neighbors be N = {lgk), . ,lgf)}.

step s2 : for each 1 € {I®}(UN, call VarianceEvaluate with v and 1. Let the
expected variances be called V(k),Vl(k), .. .,V,g').

step s3 : if V() ¢ Vj(k) forall j=1,...,m, return I%) and V() a5 1 and V.
step s4 : let 1641 = 1 where V¥ < Vj(k) forallj=1,...,m.
step s5 : let k:= k + 1 and goto step sl.

procedure FindSensorWithFizedLight(v,1, V)

step 10 : choose the initial sensor position v(®) and let & := 0.

step 11 : find the neighbors of v(¥) and let the neighbors be N = {vgk), . ..,vs,’f)}.

step 12 : for each v € {v(®¥} N, call VarianceEvaluate(v,1,V). Let the expected
variances be called V("),Vl(k), R V,slk).

step 13 : if VR < Vj(k) forall j =1,...,m, return v(*) and V(*¥) as v and V.

step 14 : let v(*+1) = v,(,k) where Vp(k) < Vj(k) forallj=1,...,m.
step 15 : let k := k + 1 and goto step 11.

procedure VarianceEvaluate(v,l, V)

step vl : for each e € REL;,

1. for each edge point ¢; € ¢,

(a) evaluate C; (contrast accross ;) using equation 10,

(b) compute o? using equation 7.
2. compute W =3 1/0?, and p, puy, 0% + 02,
3. compute variances of line parameters using equation 3.

step v2 : compute variances of intersection points using equation 5,

step v3

step v4 : return Var(v,l)as V.

: compute variance of measurement Var(v,l} using equation 6,

FIGURE 8

alternating until the solution is found. They observed that
this procedure converges to partial optimum solutions. In
general, it does not converge to a local extremum; how-
ever, it can converge to a local extremum in many practi-
cal problems. Experimental results provided in [1, 6, 15,
17] demonstrate the efficiency of such an approach. We
employ Wendell and Hurter’s alternating approach to
find our optimal sensor and light source position.

For each REL; € REL, we find the light source posi-
tion I whose corresponding variance is minimum for a
fixed sensor position v\”. Next, we find the sensor posi-
tion v(" whose corresponding variance is minimum for
the light source position V. We repeat this procedure by
alternating the role of sensor position v and light source
position 1 until the global minimum is found.

Once the optimal sensor and light source positions, v;
and |; for each REL; € REL, are found, we choose the

pair that has the minimum variance as the solution. In
other words, the optimal sensor position V and light
source position & satisfy the condition

Var(V, &) < Var(v;, 1) for all i,

where Var(v, I} denotes the variance of the measurement
when the sensor is at v and the light source is at I. The
solution (V, &) satisfies the minimum variance criterion
as well as the visibility requirement.

9. EXPERIMENTS AND RESULTS

The purpose of these experiments is to demonstrate
that our approach to sensor and light source positioning
is feasible and acceptable for practical use. The experi-
ments consist of two parts.
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i. ICE finds the optimal sensor and light source posi-
tions for the given measurements task. The sensor and
light source positions that ICE found are denoted by V'
and &, respectively.

2. We place the sensor and light source in various non-
optimal positions and take multiple pictures for each set-
ting. We also put the sensor and light source at the opti-
mal positions, sensor at V" and light source at &, and take
multiple pictures. From these pictures, the variance of
the measurement for each setting is estimated. Finally we
check to see if the positions that ICE found are optimal
(according to our criteria) by comparing the estimated
variances of the measurements from the various nonopti-
mal settings to the variance from the optimal setting.

9.1. Partl:ICE

In Taskl the given object is a 1.25 X 0.75 x 0.25 cm
block and three of its sides are aligned along the three
axes of the object coordinate system as shown in Fig. 6.
The required measurement is the distance between the
vertices v; and vs.

Object Model.
S, are

The surface equations for §;, S,, and

fix,y,0=2-025=0,
where 0 = x =1.25,0=y=0.75

flx,y, 2 =x—1.25=0,
where 0 =y < 0.75,0 =2z =0.25

filx,y,2) =y - 075 =0,
where 0 = x = 1.25,0= 2= 0.25

The constants for its photometric properties are as fol-
lows: the fraction of specular reflectance s = 0.1 and the
fraction of diffuse reflectance d = 0.9, diffuse constant
R4 = 1.0, refractive index n = 1.0, extinction coefficient
k = 0.0, surface roughness distribution follows
Beckmann function with m = 0.2. These constants are
from [3]. The light source chosen is an unpolarized point
light source.

Required Edge List. Since we want to measure the
distance between the vertices v; and vg, the required edge
list REL is given by Eq. (11). Namely,

REL = {{eZ! €4, ¢, 67}1 {eZ! €4, €g, ell}’ {els €y, €7, ell}}7
{{ez, es, €7, €9}, {€2, €6, €9, enh {ex, e, e, enl},

{{es, es, €7, eq}, {es, e, €9, en}, {es, €7, €5, entt,
Contrast Evaluation. We chose 100 values of r varying

y from 0.0 to 3.0 in steps of 0.03. Let the contrast at the
ith point on the edge be C;. Then the random perturbation

of the ith edge point position is ko3/C}. o is unknown,
and we chose a reasonable constant: o; = 2.4. Recall that
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the least-squares estimate of & is k2 = 8.697. Hence, the
uncontrollable part of the random perturbation is ko, =
50.0. The contrasts for the other edges in each REL; are
computed similarly.

Variable Evaluation. Details of the variance evalua-
tion procedure for a given edge list and sensor and light
source positions were discussed in Section 8. There are
nine elements in REL and for each element, we evaluate
the variance in the same way. Let REL, = {ey, €7, e9, €/}
All the edges in REL, are straight lines. The variance of
vertex position v;, which is the intersection point of two
edges ¢4 and ey, can now be computed using the variance
of line parameters. The variance of the vertex position v,
which is the intersection point of two edges e; and ey, is
computed similarly. Since we know the variance of two
point positions, the variance of the distance between
these two points can be computed via Eq. (6).

Optimization Procedure. Before attempting to find
the optimal sensor and light source positions simulta-
neously, we examine the search space. First, the sensor
position is fixed at (40°, 41°) in VS, and the variances of
the distance between v, and v for all possible light source
positions in VS are computed.

We employ a drawing scheme for the search space in
such a way that the center of the image is the gravita-
tional center of a region of the search space where the
variance is not infinite. The upper hemisphere of the ref-
erence sphere, whose north pole is at the chosen center,
is projected down to its equator plane. Figure 9 shows the
resulting representation of the search space. The straight
lines represent the new longitudes, and the circles repre-
sent the new latitudes. The vertical line passing through
the center of the picture also passes through the north
pole of the reference sphere. Each pixel corresponds to a
sensor or a light position in the viewing space VS. lts
value represents the variance of the measurement. The
lighter a pixel is, the smaller the variance is.

FIG. 9. The representation of the viewing space VS is illustrated.
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FIG. 10. The search space of Taskl, which measures the distance
between two vertices v, and vg, is illustrated when the sensor is located
at (40°, 41°) in VS. The center is (2°, 224°) in VS coordinates. Each pixel
in the picture corresponds to a light position in the viewing space VS.
Its value represents the variance of the measurement. The lighter a
pixel is, the smaller the variance is. One can see the global minimum
at around the center. Explicitly, the optimal light source position is
4°, 27°).

The optimal light source position is (11°, 52°) when the
sensor is at (40°, 41°). Figures 10 and 11 illustrate the
search space when the light source is fixed at (4°, 27°).
Now the light source position is fixed at (4°, 27°) in VS,
and ICE finds the optimal sensor position. Figures 12 and
13 illustrate the search space when the light source is
fixed at (4°, 27°). As one can see, the search space is very
flat, and there is little variation in the expected measure-
ment variances. After two more iterations, ICE finds the
optimal sensor and light source positions. Table 1 traces
ICE’s search.

9.2. ICE vs Real

Part II of the experiment consists of the comparison of
the measurement variances from ICE and the analysis of
error in the real images. The purpose of this experiment
is to demonstrate that the optimal position that ICE

TABLE 1
Iteration Fixed Found Variance
1 Sensor at (40°, 41°) Light at (4°, 27°) 0.1023
2 Light at (4°, 27°) Sensor at (32°, 140°) 0.0960
3 Sensor at (32°, 140°)  Light at (14°, 303°) 0.0703
4 Light at (14°, 303°) Sensor at (32°, 140°) 0.0703

Note. ICE’s Search Sequence for Taskl is Traced When the Required
Edge List is REL,; = {e,, €5, €7, €11}

YI, HARALICK, AND SHAPIRO

FIG. 11. A 3D plot of the picture which represents the search space
of Taskl when the sensor is located at (40°, 41°) in VS is illustrated. An
inverted picture is used for this plot so that the maximum of this plot
corresponds to the minimum of the original picture. It clearly shows
that there is one and only one global minimum in the search space when
the sensor is at the fixed location.

found is really the optimal position. To do this, a total of
160 real pictures are taken. The variances of the measure-
ments are estimated from the real pictures and compared
with the variances that ICE found.

FIG. 12. The search space of Taskl, which measures the distance
between two vertices v; and v,, is illustrated when the light source is
located at (4°, 27°) in VS. The center is (0°, 49°) in VS coordinates. Each
pixel in the picture corresponds to a sensor in the viewing space VS. Its
value represents the variance of the measurement. The lighter a pixel is,
the smaller the variance is. The optimal sensor position is (32°, 140°).
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FIG. 13.
of Taskl when the light source is located at (4°, 27°) in VS is illustrated.
An inverted picture is used for this plot so that the maximum of this plot
corresponds to the minimum of the original picture.

A 3D plot of the picture which represents the search space

Experimental Protocol. The reference sphere is as-
sumed to have a radius of 100 cm. Since ICE assumes
that the object lies along the reference frame and one of
its vertices is at the origin of the reference frame, the
northern hemisphere is sufficient for the viewing space.
The setting is done in a dark room whose floor is carpeted
in black. The floor is assumed to be the xy plane of the
reference frame, and the object is placed on the floor.
The object used in this experiment is a 12.5 X 7.5 x 2.5-
cm sponge block. This sponge has more diffuse reflection
than specular reflection, and the reflectance coefficients
approximately match the parameters used for Taskl in
Part 1.

Four sensor positions, including the optimal position,
are chosen in the viewing space. For each sensor posi-
tion, four light source positions, including the optimal
position, are selected. The chosen positions are shown in
Table 2. To place the sensor and light source in the desig-
nated place, we use plastic rulers to locate the correct
position.

For each combination of four sensor and four light
source positions, five pictures are taken on a Machine
Vision International Genesis 2000 vision system. The
point light source is simulated by mounting a 250-watt
tungsten halogen projector lamp on a Pro-light P1-10,
manufactured by Lowel-Light Manufacturing Inc.,
whose reflectors are coated in black. For the sensor, we
use a CCD camera whose spatial resolution is 384 x 491
and gray scale is 0 to 255. The Genesis 2000 automatically
changes the spatial image resolution to 480 x 512. The
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TABLE 2
Sensor Light source
Polar angle Azimuth angle Polar angle Azimuth angle
30° 90° 15° 270°
60° 210°
45° 270°
30° 330°
30° 135° 15° 315°
60° 255°
45° 315°
30° 15°
45° 225° 15° 45°
30° 345°
60° 45°
45° 105°
60° 315° 60° 75°
30° 135°
45° 195°

Note. The chosen positions of sensor and light source for taking real
images are shown.

spatial resolution of each picture is reduced to 240 x 256
by chopping off the background.

The best one of five images of the objects involved in
Task1 for each sensor and light source setting is chosen
for illustration. Figures 14, 16, 18, and 20 show the im-
ages of the object involved in Taskl which are obtained

FIG. 14. The four real images of the 12.5 x 7.5 X 2.5-cm sponge
block when the sensor is at (30°, 90°) is shown. The light source position
of each image is as follows: top left (15°, 270°), top right (60°, 210°),
bottom left (45°, 270°), bottom right (30°, 330°).
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FIG. 15. The four edge images of the 12.5 X 7.5 X 2.5-¢cm sponge
block when the sensor is at (30°, 90°) is shown. The light source position
of each image is as follows: top left (15°, 270°), top right (60°, 210°),
bottom left (45°, 270°), bottom right (30°, 330°).

when the sensor and light source are placed in the chosen
positions. Figures 15, 17, 19, and 21 show edges ex-
tracted from each of those real images using GIPSY rou-
tines. The processings of each image produced four pairs
of (8, p), each representing one of the four side lines of
the top rectangle of the given object, where 6 is the rota-
tional angle with respect to the column, and p is the Eu-
clidean distance from the image origin, which is at the

FIG. 16. The four edge images of the 12.5 x 7.5 X 2.5-cm sponge
block when the sensor is at (30°, 135°) is shown. The light source posi-
tion of each image is as follows: top left (15°, 315°), top right (60°, 255°),
bottom left (45°, 315°), bottom right (30°, 15°).
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FIG. 17. The four edge images of the 12.5 x 7.5 x 2.5-cm sponge
block when the sensor is at (30°, 135°) is shown. The light source posi-
tion of each image is as follows: top left (15°, 315°), top right (60°, 255°),
bottom left (45°, 315°), bottom right (30°, 15°).

lower left corner. We compute the intersection points of
each two of the four lines, and the distance between the
two intersection points. For each sensor and light source
setting, we had five real images and, therefore, five com-
puted distance values. Since we did not know the true
distance between the two intersection points, or vertices,
the sample mean is used as the estimate of the true dis-
tance. Using this sample mean, the sample variance is

FIG. 18.
block when the sensor is at (45°, 225°) is shown. The light source posi-
tion of each image is as follows: top left (15°, 45°), top right (30°, 345°),
bottom left (60°, 45°), bottom right (45°, 105°).

The four real images of the 12.5 x 7.5 x 2.5-cm sponge
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FIG. 19. The four edge images of the 12.5 x 7.5 X 2.5-cm sponge
block when the sensor is at (45°, 225°) is shown. The light source posi-
tion of each image is as follows: top left (15°, 45°), top right (30°, 345°),
bottom left (60°, 45°), bottom right (45°, 105°).

computed and is illustrated in Table 3. Two different
threshold values, 12.0 and 10.0, were used in edge detec-
tion to see if the threshold affects the variance.
Although there are some discrepancies due to the small
sample size, the two values, the variance from ICE and
the variance computed from the real images, correlate.
Due to the unknown noise, edge lines are either broken

TABLE 3
Variance Variance from Variance from
Sensor Light from real pictures real pictures
at at ICE threshold = 12.0 threshold = 10.0
(30°, 90°) (15°,270°) 0.079 0.386 0.386
30°, 90°)  (60°, 210°)  0.352 0.101 0.101
(30°, 90°) (45°,270°)  0.157 0.096 0.096
(30°, 90 (30°, 330°) 0.094 0.091 0.085
(30°, 135°) (15°, 315°)  0.070 0.010 0.010
(30°, 135%) (60°, 255°)  0.595 0.348 0.324
(30°, 135°) (45°,315°) 0.133 0.190 0.196
(30°, 135%) (30°, 15 0.084 0.969 1.911
(45°, 225°) (15°, 45°) 0.120 0.717 1.557
(45°, 225°) (30°, 345°) 0.164 N/A N/A
(45°, 225°) (60°, 45°) 0.423 N/A N/A
(45°, 225°) (45°,105°)  0.283 N/A N/A
(60°, 315°) (15°, 135°)  0.099 N/A N/A
(60°, 315°) (60°, 75%) 0.323 4.352 4.973
60°, 315°) (30°, 135 0.189 N/A N/A
(60°, 315°) (45°,195°) 0.148 1.401 1.312

Note. Variances that ICE computes and variances from the real im-
ages are compared when the given task is Taskl. * denotes the optimal
position.
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FIG. 20. The four real images of the 12.5 x 7.5 X 2.5-cm sponge
block when the sensor is at (60°, 315°) is shown. The light source posi-
tion of each image is as follows: top left (15°, 135°), top right (60°, 75°),
bottom left (30°, 135°), bottom right (45°, 195°).

or totally lost in most settings when the sensor is placed
at (45°, 225°) or at (60°, 315°). Since the parameters of the
image processing operations were fixed, and also our
sample size was not large enough, we did not succeed in
estimating the variance for those settings precisely. How-
ever, the correlation coefficient between the variance
that ICE produced and the variance that was computed
from the real images is 0.768, which means they correlate
reasonably well. Most importantly, the variance from the

N
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FIG. 21. The four edge images of the 12.5 X 7.5 x 2.5-cm sponge
block when the sensor is at (60°, 315°) is shown. The light source posi-
tion of each image is as follows: top left (15°, 135°), top right (60°, 75°),
bottom left (30°, 135°), bottom right (45°, 195°).
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real picture which was taken at the optimal position is
minimal as ICE expected.

10. CONCLUSION

An optimization approach to automatic sensor and
light source positioning for a machine vision task, where
geometric measurement and/or object verification is im-
portant, was described. The goal of the vision task was
specified in terms of measurements related to edges. The
optimal sensor and light source positions were defined as
the positions which produce an image from which we can
obtain the measurement data with the minimum variance.
To demonstrate that our optimization approach is feasi-
ble and acceptable for practical use, a software system
called ICE has been designed and implemented. A series
of experiments was conducted to show that the positions
that ICE found are really the optimal positions.

The results show that the optimization problem we for-
mulated is nearly a convex problem, and therefore it can
be easily solved by mathematical programming tech-
niques. The positions that ICE found are also the best
positions found in the real experiments. Furthermore, the
correlation coefficient between the variance that ICE ex-
pected and the variance computed from the real images
was 0.768.

There are several directions in which ICE can be ex-
tended. When the goal of the vision task cannot be satis-
fied with a single sensor, multiple sensors may be em-
ployed. Also if the goal of the vision task cannot be met
with a single light source, multiple light sources may be
employed. In both cases, the interaction effect of multi-
ple sensors and multiple light sources must be carefully
analyzed. The reflectance coefficient can be modeled in
such a way that it is not uniform but is of functional form.
The analysis of error propagation for the case of lines,
circles, and ellipses has been done, and it can be ex-
tended further to other general quadratic curves and to
cover noise distributions other than Gaussian noise. This
optimization problem may also be extended to include
other important factors like polarization of light source,
polarization of sensor, and wavelength band of light
source.
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