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Probabilistic relaxation has been the basis of one of the popular cooperative processing
mechanisms used in image analysis. It has been a mechanism whose theory has not been well
understood. In this paper, some general conditional independence conditions are stated which
give probabilistic relaxation the interpretation that each iteration computes the conditional
probability of each local label given a new context which is the context of the previous iteration
enlarged by one neighborhood width. This interpretation implies that relaxation iterations must
only continue until the conditional independence assumptions no longer hold, or until the
entire context is taken into account, whichever comes first.

1. INTRODUCTION AND REVIEW

In image analysis there have been numerous papers on the effective use of
cooperative processing through the mechanism of probabilistic relaxation. The idea
was first introduced by Rosenfeld, er a/ [4]. In cooperative processing, neighboring
information positively or negatively reinforces the weights for each local unit of
information, depending on the compatibility of the neighboring information with the
local information. After each relaxation iteration, the resulting values are more
consistent with the prior knowledge of information dependencies and global context.
The next paragraph describes the original Rosenfeld et al. formulation.

Let {1,..., I'} be the set of units and N(7) be the set of neighbors for unit i. Each
unit i has a weight function associated with it which specifies the strength of label x,
for unit i. By P(x,, t) we denote the strength of label x, for unit i after iteration ¢.
The initial weight functions P(x;, 0) are typically determined by some local measure-
ment process on unit i and are normed to be nonnegative and sum to 1.

For any unit j, a neighbor of unit i/, we denote by r;;(x, y) the compatibility of
unit ; having label x and unit j having label y. The compatibility coefficients have
magnitude less than 1; —1 < r;;(x, y) < | and satisfy —1 < E-GN(‘-)Z}‘ri}.(x, »y< 1

g
The original relaxation iterations described by Rosenfeld er al. [4] have the form

P(x;,t)|1+ y erj(xis }Q)P(J’j,f)
e N(i
P(x, 1+ 1) = S (1)
LPlzs )14+ ¥ Erdz. i)B{y.1)
3 JENG)

It is quickly seen that the conditions on the compatibility coefficients, combined
with the fact that the weight functions are normed like probabilities, imply that
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Eieniyry i (%, y)P(y, 1) < 1. Hence the resulting weight function will be nonnega-
tive and sum to 1.

Zucker and Mohammed [6] suggested rewriting and modifying the relaxation in
such a way that the compatibility coefficients had the meaning of conditional
probabilities; they rewrote r, (x, y) as P,;(x|y) with the interpretation that P, (x, y)
is the conditional probability that unit i takes the label x, given that unit j takes the
label y. Of course it is required that P;;(x|y) = 0 and

EPU(XU’) =

The modified probabilistic relaxation equation takes the form

(xint) TT 2P (xi1y) P(5.1)

JENW) y,
P(x;, 1+ 1) = EPGen) T1 T2, () POy ) ?
JEN() y,

This form is certainly more suggestive of a probability interpretation for P(x;,, t).
Whatever the interpretation might be, however, it is not immediately apparent from
the relaxation equation.

In either of these forms, the relaxation iteration was considered useful regardless
of the number of times it had been previously iterated. The reason is that after each
iteration the weights or probabilitics were thought to be more consistent with prior
expectations of neighboring label dependencies. Thus, the question of whether the
iterations converge arose naturally, as did the question about the meaning of the
fixed point. Aspects of these questions were answered by Zucker, er al. [5], and
Haralick et al. [1].

Peleg [3] attempted to give a more solid meaning to the question about what the
probabilities were in a modified Zucker relaxation. He suggested that the Zucker
compatibility coefficients r;; should take the form

P."j(xi! J’f,n)

r,j(x,': yj) - m

and that the probabilities P(x,, t) were really just estimates that the unit i took the
label x given that the previous estimate for this probability was P(x;,, t — 1). The
justification given for this interpretation was based in part on a probability der-
ivation with some conditional independence assumptions followed by some ap-
proximations. Section 4 gives a detailed discussion of the problems with the Peleg
interpretation. Kirby [2] also gives an analysis of the Peleg relaxation equation; the
product rule equation he gives is similar to the one we develop here but the
interpretation is different.
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In our notation, the relaxation equation which Peleg gives is
P(XI,I)ZP(X |I) (xux )
P(x,t+1)= Z C;

JEN(i) ¥ ZP Z”f)zP(Jﬁa ) U‘(st ,VJ)

(3)

where the ¢;; are weights which are nonnegative and which, for each index i, sum on
the j index to 1.

In this note, we use a derivation having some similarities to the Peleg derivation
and show that, with some appropriate conditional independence assumptions, each
succeeding iteration of the relaxation equation produces a conditional probability
that a unit takes a label given the context which is one neighborhood width larger
than the unit’s context at the previous iteration. With this meaning, the question
about convergence is irrelevant. The iterations can continue until the entire context
is taken into account. Further iterations than this will no longer create interpreta-
tions of conditional probability of the label given the entire context. This meaning
also explains a behavior sometimes noticed in relaxation experiments: the emerging
probabilities sometimes appear to be getting better for the first few iterations, after
which they appear to get worse. In these instances, what is happening is that the
required conditional independence assumptions are getting further and further away
from a good modeling of reality. The error introduced eventually overtakes the
benefit produced by the larger context and the probabilities get worse.

Section 2 makes this interpretation of probabilistic relaxation precise and Section
3 states the conditional probability assumptions and shows that these assumptions
lead to the interpretation given in Section 2.

2. AN INTERPRETATION OF PROBABILISTIC RELAXATION

In this section we develop an interpretation for the relaxation equation

P(q,,f) l_[ ZP(QJJ) aq;)

P(g,t+1)= EP ;af) El;l{)zp(qj, yris.q;) (4)
where
P(q;.q,)
r;‘j(qﬂqj) (—PM})

Our interpretation states that P(g;, t) is the conditional probability that unit
takes label g; given the rth level context. Furthermore, the context at each iteration
grows by an entire neighborhood width surrounding the previous level context.

To make these remarks precise, we will have to make a change in the notation in
which the context is explicitly written. Context means the units and their corre-
sponding measurements where the units come from some general neighborhood.
Initially a measurement is made of each unit. We denote by d, the measurement
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made of unit i. This is its immediate context. The neighborhood context for unit 7 is
the measurement d, plus all the measurements of units in the neighborhood of unit i.
The next larger context for unit i is measurement d; plus all the measurements of
units in the neighborhood of unit i plus all the measurements of units in the
neighborhood of the neighbors of unit i. The global context consists of all the units
..., L

We denote by Z,(¢) the units in the ¢ th level context for unit / and by N(/) the set
of neighbors for unit i. The Z,(1) = {i}. The units in the successive level contexts can
be defined iteratively by Z,(r + 1) = {j|for some k € Z (1), j € N(k)).

The purpose of the probabilistic relaxation is to compute, for each unit 7 and label
g,, the conditional probability P(g,|d,,..., d;), where it is understood that a
subscript 7 on a label or measurement designates that the label or measurement is
for unit n. Thus P(g,) designates a generally different probability value than P(g5).
even if g, = g;. A more complete notation would write P,(q,) for P(g,). We use the
shorter notation to avoid writing unnecessarily complex expressions.

We will need to write conditional probabilities such as P(g,|d,,..., d;). but only
where the condition is on measurements for some arbitrary subset S of units whose
names are not explicitly known. We denote this kind of conditional probability by
P(q|d;: k € S). Thus if §=1(1,3,67, we write P(gld;: k& S§) for
P(q,\d,, d5, dg, d,). Likewise, if T = (2,3,4) we write P(q,: n € T|d,: k € §) for
P(qy. 43, 44ldy, d3, dg, d).

In this notation, the relaxation begins with P(g,|d,: k € Z,(1)) and terminates
with the probabilities P(g,|d,: k € {1,..., I}). Letting

r (q q )= P(GH"QI’N)
it P(g,) P(g,)

we have the interpretation for relaxation equation (4):
P(gld,: k€ Z(1+1))
P(gld,: k € Z,(t)) I1 EP(Qﬂdk3 ke Zj(f))’"fj(%a q;)

JEN() g,

- ! G
ZP(mdk:kez,-(r)),1;[(_)EP(qj|dk:deZ,(z))r,-,-(rf.q,)
t FENL g,

3. BASIS FOR THE INTERPRETATION

In this section, we state the two conditional probability assumptions which make
relaxation equation (5) a valid equation. The assumptions are

I} P(g:.9;)
P(q,=qkkaN(f))=%N—mT (6)
P(d,: k€ Z(t + 1lg,, g,: k € N(i))
= aP(dy: k€ Z,(1)lg) T1 P(dy: ke Z(0)lg,). (7

JEN()
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To understand how these generalized conditional independence assumptions may
even be realistic, let us consider a one-dimensional example.

Let the units be {1,..., I} and the neighborhood of unit i be its immediate
predecessor and successor: N(i) = (i — 1,i + 1}. Then (6) becomes

P(q;_ :4:) P (s 4141)
P(Qiflv qJ‘ﬁ qu) = l P((]) +

= P(QH—]'Q!)P(%‘IQI—l)P(qr'k1)‘

In this form we immediately recognize (6) as a Markov dependence assumption on
neighboring labels. For context level 1 + 1 = 2, eq. (7) becomes

P(di—le di,di|gi- 1 Gis QE+1) = a‘P(diij)P(difIlqi—])P(di+1|qr'+I)'

In virtually all signal and image processing situations this is true with proportion-
ality constant & = 1. The assumption simply states that, conditioned on all the units’
labels, the measurements made on the units are independent (the no memory
channel assumption) and that the measurements depend solely on the true label of
the unit being measured (the local measurement process assumption). For context
level 1 + 1 = 3, Eq. (7) becomes

Pld, qutly 3 dis disrs Bl 15 Gs G4 1)
= aP(d."----l’ d;, di+llqi)P(dz’*2= di_y, d;fq,‘ﬂ)P(dn diiys d.‘+2|‘?i+1)-

This generalized conditional independence assumption is not typically used and one
may begin to think about its validity in practice. It is probably safe to state that for
low level contexts (7 + 1 < 3) the assumption is good. For higher level contexts
(r + 1 = 4), it is probably beginning to be at slight variance with reality. And the
larger the context is beyond (¢ + 1 = 4), the less we can expect the assumption to
match reality. This implies that the relaxation is good for the first few iterations,
after which the error of the assumptions begins to start dominating the result.

To see how (6) and (7) lead to (5), consider the conditional probability that unit i
takes label g;, given its level 7 + 1 context. By definition of conditional probability,

P(g.,dg;keZ(t+ 1))
P(d;kezZ(t+1))
Y ZP(q!, gk €N(i),d,: ke zZ(t+1))

JEN(I) g,

P(gld,: ke zZ(t+ 1)) =

Pld:ke Z(t+1))

2 XP(dp ke Z(t+ 1)g. g ke NGE)P(g, q,: k € N(i))
_JENG) g
B P(dy: ke Z(1+ 1)) v i)
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Upon using (6) and (7), by substituting into (8) there results
aP(d;: k € Zi(1)lg,)
P(d; ke zZ(1+ 1)P(g,)"!

x ¥ X II [P(d:kez(t)g,)P(q: q.)]-

JENG) @, nENG)
(9)

Pgldy: k € Z,(1 + 1)) =

Again using the definition of conditional probability, we may rewrite (9) as
P(gld,;: k€ Z,(t+ 1))
aP(d: ke z(1)) Tl P(d;:ke Z,(1))
neN(i)

- P(dy ke Z(1+ 1)) Plald: k€ Z,(1))

x ¥ X Il

JEN() q; "EN()

P(g,ldy: k € Z,(1)) (10)

P(QH‘?:J) ]
P(gq)P(q,) |

The sums of products in (10) can be simplified. The products contain terms, each
of which depends simply on n. All other variables involved are constant with respect
to sums and product. Hence

P(QI’QM) :|

d.keZ —_—

,.E%,.,%nﬂm[f’(%'* = %) 3 0)P(a,)

P(Qw‘lu)
= P d:keZ — . 11
AL 2| Pladdi ks "(’)P(q,)P(q,,)] (h

Finally, noticing that

LP(gldkeZ(1+1)=1 (12)

q;

we can divide both sides of (10) by the sum in (12). The first term in square brackets
on the right-hand side of (10) is a constant with respect to the summation and,
therefore, cancels in the division. Thus, upon making the substitution of (11) and the
division of (12), there results the relaxation equation

P(gld;: ke Z,(t+ 1))
P(gld,: ke z(1)) T1 X P(qldy: ke z(0))(P(q.q,)/P(a)P(q;))

JENG) 4,

B ZP(Sildk: ke Zi(t)) l_[ ZP(Q’ﬂdk: k€ Zj(t))(P(Si’q'j)/P(Sf)P(qu)) ‘

s JEN() q,

i

4. THE PELEG DERIVATION

Peleg [3] gives the following derivation as part of his derivation of relaxation
equation (3). He lets P* denote the probability distribution of the labels for unit i at
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the k th iteration. He gives the interpretation that P/ is the probability distribution
of the labels for unit / given the k — Ith iteration distributions for all units
influencing unit i. If units 1 to N influence unit i/, we can explicitly write this
interpretation as

P(Q’;‘|Pk»---»P¢)=pik“(‘h) (13)

and it is with this identification that there is a fundamental problem.
Consider the situation in which only unit j influences unit i. Peleg makes the
conditional independence assumption

P(P¥, PHg;,q;) = P(PXlg,) P(PHg,)

for each k, which is a specialization of the same kind of conditional independence
assumption as in (7). From this it follows that

P(ql‘|Pik)ZP(QAPJ’C)’U(QNQj)
P(q,'|Psk’f:f ) = ZP(51|Pfk)E (tj|ij)".-j(S,-»fj) :

Ky I

Peleg then generalizes to having more than one unit influence unit i by taking an
average of all the pairwise influences. This step does not correspond to any kind of
probability assumption and does not result from any model. It is an unjustified
heuristic and using it does not allow one to claim that the resulting probability
distribution has any kind of meaningful interpretation. Nevertheless, upon using this
averaging idea, Peleg writes

N
P(q|P,..., PE) = ¥ ¢;P(q,|PF, P}) (14)
Jj=1

where we understand that units 1 to N influence unit i and the ¢, are nonnegative
weights which sum to 1 and which may be different for each unit 7 since the set of
units as well as their influences may be different for each different unit ;.

To understand the difficulty in the Peleg interpretation, consider the identification
which Peleg must make to have a relaxation equation. Suppose that before the
k + 1th iteration only unit / influences unit /, and at iteration k£ + 1, units 1 to N
influence unit /. Then, upon making the identifications required to write the
equation

N Pk(ql)zpk(%)’}j(‘]nqj)
Pk“(g;‘) - Z

&
C.
J=1 d ZPk(Sf)EPk(Ij)rU(S:’ rj)
5 I

(15)
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there is the immediate difficulty of

P(qlPf,.... Pf) = P\ (q)) (16)
P(q1Pf) = P*"}(q) (17)
when he really intended to make the identification
Pl |BE,os BE) = P4 g,) (18)
P(41P}) = P*(q,). (19)

The necessity of the identification in (16) arises because of (14) and (15). The
necessity of the identification in (17) arises because of (13). However, the identifica-
tions he really wants are (18) and (19). Identification (18) is the same as (15).
Identification (19) is needed so that the left-hand side of (15) can be plugged into the
right-hand side of (15) for the next iteration. Notice that the difference between (17)
and (19) is that (17) has the superscript k + 1 and (19) has the superscript k. This
difference invalidates the interpretation Peleg gives to (15).

The cause of this difficulty is that the conceptual framework in which Peleg casts
the interpretation is incorrect. What the relaxation equation does in each iteration is
not to update estimates of probability distributions but to increase the conditioning
context of the distributions used to start the relaxation.

5. CONCLUSION

We have shown that with the conditional independence assumptions of (6) and
(7), relaxation equation (5) results. This equation states that the probability of a
label given the (7 + 1)-level context for any unit can be computed from the same
kind of s-level probabilities of the unit and its neighbors. By iterating (5) until the
entire context is taken into account, it becomes possible to compute the probability
that a unit has a label given the entire context.

The relaxation iterations can be continued until the entire context has been taken
into account or until a context level is reached where the conditional independence
assumpltion (7) no longer holds.

The consequence of this explanation of cooperative processing and relaxation is
that we now must begin to determine for each application the precise context level at
which the assumption (7) no longer holds, then iterate to this level and stop.
Determining the level at which to stop is a statistical question which we hope to
answer in a future paper.
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