INSIGHT: A DATAFLOW LANGUAGE FOR
PROGRAMMING VISION ALGORITHMS IN A
RECONFIGURABLE COMPUTATIONAL NETWORK

LINDA G. SHAPIRO

Department of Electrical Engineering, FT-10
University of Washington
Seattle, WA 98195, USA

ROBERT M. HARALICK

Department of Electrical Engineering, FT-10
University of Washingion
Seattle, WA 98195, USA

and

MICHAEL J. GOULISH

Department of Computer Scienice
Michigan State University
East Lansing, MI 48824, USA

Received 15 October 1986
Revised 18 February 1987

Machine vision systems used in industrial applications must execute their algorithms in
real time to perform such tasks as inspecting a wire bond or guiding a robot to install a part
on a car body moving along a conveyer. The real time speed is achieved by employing
simple-minded algorithms and by designing parallel architectures and parallel algorithms
for some tasks. The majority of the work on parallel architectures has been limited to
architectures that support image processing, but not mid- or high-level vision. In order for
more complex vision algorithms to execute in real time. a more flexible architecture is
needed.

Our conceptual approach to the problem is a reconfigurable computational network.
Each configuration of the network implements an algorithm or class of algorithms. A
high-level language expresses the algorithms in a relational form that can be easily
translated to the specification for a configuration. The language must be able to encode
low-, mid-, and high-level vision algorithms and to efficiently handle not only pixel data,
but also higher level structures. In this paper we describe a dataflow language called
INSIGHT, which we have designed to meet these needs, and give several examples of
parallel machine vision algorithms expressed in the language.

Keywords: Vision hardware; Dataflow language; Reconfigurable computational network.

INTRODUCTION

The main difference between industrial machine vision and general computer
vision research is that the industrial applications must run in real time. Real time

335

International Journal of Pattern Recognition and Artificial Intelligence Vol. 1 No. 3 & 4 (1987) 335-350

© World Scientific Publishing Company

336 L.G. SHAPIRO, R. M. HARALICK and M.J. GOULISH

execution is achieved either by employing very simple-minded algorithms or by
designing algorithms that can make use of parallel architectures. The parallel
machines that have been designed for vision are mainly pipeline machines and
cellular array machines'. The pipeline machines consists of a sequence of stages.
The pixels of an image pass sequentially through each of the stages where they may
be delayed or may become one of the operands of the operation performed by that
stage. If there are n stages, then n operations at a time can be performed in parallel.

A cellular array machine consists of an interconnected array of processors. A
subimage enters the array machine, one pixel per processor and neighborhood
operations are performed on all the pixels in parallel. Again the amount of
parallelism depends on the number of processors. Both pipeline and array
machines have mainly been used for image processing, not for mid-level or
high-level vision.

In order to execute more complex vision algorithms in real time, a more flexible
parallel architecture is needed. The architecture must be able to handle more than
8 bit integers representing pixels. It should be able to handle a variety of datatypes
representing a number of entities such as region labels and attributes, arc segment
properties, and relational types. It should be able to execute efficiently not just a
few classes of processing operations, but a large variety of vision algorithms. It
must be a multi-instruction, multi-datastream, reconfigurable architecture capable
of operating systolically to maintain efficiency. Its reconfiguration capability must
include connections of processor to processor Or memory L0 processor. (For a
description of a reconfigurable architecture, see Snyder.”

Traditionally, useful algorithms that must run at a high speed have been
translated to a hardware implementation designed to maximize parallelism and
minimize execution time. The translation is done for a small specified set of
algorithms by a skilled hardware engineer. Eventually a machine is produced that
executes only this set of algorithms.

This approach is not feasible for building a vision system that must perform a
variety of different algorithms and should be able to incorporate new algorithms as
they are developed. Here, there must be automatic translation of each algorithm
from a high-level language into an efficient hardware configuration for a machine
that reconfigures itself for each task it is commanded to perform. Such a flexible
machine is called a reconfigurable computational network (RCN), and the type of
language that translates directly into a configuration of the network is called a
dataflow language.

There are a variety of languages for expressing parallel algorithms, beginning
with Concurrent Pascal’. More recently. Hoare' has developed a theory for
communicating sequential processes and a LISP-like language to go with the
theory. Another example is OCCAM’, a rather simple programming language that
allows expression of parallel constructs. In the object-oriented programming
domain are such languages as Orient® and Concurrent PROLOG". While all these
languages feature parallelism, none lends itself to the one feature we especially

INSIGHT: A DATAFLOW LANGUAGE 337

need—direct translation to a configuration of the RCN.

The language that is needed must allow the expression of vision algorithms in a
form that can be easily translated to an architectural configuration for both pixel
pushing and higher level vision data structure processing. Hardware programming
languages and graph description languages are at too low a level. The interesting
thing about the data flow in a systolic network is that a high level specification of
the configuration of the network is a specification of the program the network is
executing. This is different from Von Neumann architectures in which a
specification of the architecture tells nothing about what program is executing. The
low level specification of a network is a graph having labeled arcs and nodes and
has nothing about it which is sequential or procedural. Likewise, a high level
specification need not be sequential or procedural. A high level specification of a
network is just a specification of the relations which hold in the network. So
specification of the configuration of a systolic network amounts to specifying
relations. Since the speé-i\t'ication is the program which the network executes, the
language used to program a systolic network is a language of relations. The
language must be naturally non-procedural. From a high level perspective, the
semantics of the language describe the essence of the architecture.

LUCID* is a dataflow language that we feel comes closest to having the features
required in a language for the RCN. INSIGHT is a language in the LUCID family
that we have developed to meet the needs described above. In Section 2 we
describe the reconfigurable network. In Section 3 we describe the INSIGHT
language, and in Section 4 we give some preliminary examples of algorithms
encoded in INSIGHT.

2. RECONFIGURABLE COMPUTATIONAL NETWORK:
IMPORTANT CONCEPTS

The design of a reconfigurable computational network architecture for computer
vision is being done in the opposite order from the design of a traditional machine.
Instead of designing the hardware first and then the languages and software, we are
designing the language first. The exact design of the RCN will depend on
simulation results obtained after encoding a representative set of algorithms.
However, in order to specify the language, there must be some understanding of
the concepts that will be embodied in the architecture.

The operation of the RCN involves the flow of sequences of values through a
network of architectural primitives. More formally, a configuration consists of a set
of processors P and a specification ¢ of the interconnections between the
processors. In this discussion a memory is considered a processor. Each processor p
€ Pis a pair p = (I,, O,) where /, is a named set of input lines and Oy, is a named set
of output lines. Each connection ¢ € C is a quadruple ¢ = (o, py, i, p>) specifying
that output line o of processor pl connects to input line i of processor p2. Since

338 L.G. SHAPIRO, R.M. HARALICK and M.J. GOULISH

different processors may take different amounts of time to process their inputs and
produce their outputs, there must be some conventions that insure a processor will
only execute when it has valid data. For this purpose, there is a state associated
with each data line. A state is a pair of values s = (r,¢) where r is an indication of
readiness and ¢ is an indication of acceptance. Legal values for r are:

1) preactive: the processor that produces the data on this line has not yet
produced any values,

2) active and ready: valid data, ready to be used by the processors that require it,

3) active and not ready: the data on the line is an old value that was already
consumed, but the new value is not yet ready for consumption,

4) postactive: the processor that produces the data on this line has terminated
production; no new values will appear in this execution of the algorithm.

Legal values for g are consumed and unconsumed.

A process can execute when all of its inputs are in the state (active and ready,
unconsumed) and all of its outputs from its previous execution have been consumed
by every process to which they are inputs. The execution of the process takes some
finite amount of time. When the execution is just starting, the output lines are in
the state (active and not ready, unconsumed). During execution, each one
eventually becomes (active and ready, unconsumed). As soon as an output line
reaches this state, it is available to the processes that wish to consume it. It reaches
the state (active and ready, consumed) only when all of its potential consumers
have consumed it.

If at least one input to a process is in state (preactive, *), then all of its outputs
are in state (preactive, *), after its previous outputs have been consumed. If at least
one input to a process is in state (postactive, *), then all of its outputs are in state
(postactive, *) after its previous outputs have been consumed. In general,
INSIGHT programmers do not have to worry about these states; the synchroniza-
tion is taken care of by the hardware.

A sequence is an ordered stream of values that are either input to the RCN or are
produced by one of the processors of the RCN. In either case, the values of the
sequence are associated with a group of data lines. There are two kinds of
conceptual orderings associated with the data lines. The first ordering is based on
the counting of the real time clock. Each group of data lines necessarily has a value
at each real time clock tick. The value of the data line group at the ith clock tick
constitutes the ith element in the real time sequence associated with those lines.
However, in the RCN, it is a processor that puts a value onto a group of data lines.
As described above, a processor generates a new value only when each of its old
output values has been consumed by all of its consumers and when the inputs it
requires are all active and ready. A clock tick occurring when all outputs have been
consumed and all inputs are ready generates a permission tick. The second kind of

INSIGHT: A DATAFLOW LANGUAGE 339

ordering is based on the permission ticks. The value of the data line group at the ith
permission tick is the ith element in the process time sequence associated with those
lines. ;

When thinking logically about an algorithm in terms of sequences of values that
the processors must generate, the INSIGHT programmer generally thinks about
the process time sequence. Only when real time signals to or from an external
device are input to or output from the RCN might the programmer wish to deal
with real time sequences. From the point of view of the RCN hardware, however, it
is the real time sequences that must be handled.

3. THE INSIGHT LANGUAGE

In this section we describe the major features of INSIGHT. We do not attempt to
define the syntax and semantics of every INSIGHT construct; that belongs in a
programmer’s guide. Instead, we explain the major constructs and give some
examples that illustrate the flavor of the language. The one feature of INSIGHT
that is most important to its intended use as a language for the RCN is its use of
relationships rather than statements or commands. An INSIGHT programmer
merely specifies all the relationships that must hold among data elements. He does
not have to explicitly state what can be done in parallel or what cannot. He does not
have to explicitly pass messages or utilize synchronization primitives. He specifies
relationally what the algorithm should achieve and the translator takes care of the
rest.

3.1. Programs, Activities, and Functions

INSIGHT programs specify relationships among sequences that will translate to
relationships among architectural primitives of the RCN. A program is a sequence
of configurations of the RCN designed to achieve some goal. The arguments of a
program are supplied by and its results must be received by entities outside the
RCN such as frame buffers, other external memories, and CRTs. In the simplest
case, a program maps to a single configuration of the RCN that can produce the
desired results. If the available hardware is not sufficient, then the program maps to
several configurations called activities, each of which write temporary results to
memories and which, when performed sequentially, produce the desired results.
INSIGHT programs are modular, they may invoke INSIGHT functions to perform
subtasks. An INSIGHT function translates to a subgraph of the configured
hardware that is useful in one or more parts of the total algorithm. It is, however,
closer to the usual concept of a macro than a function in a procedural language,
since a new copy of the subgraph must be included wherever the results of the
function are needed. This allows all such copies of the function to operate in

parallel. The following simple example illustrates the program and the function in
INSIGHT.

340 L.G. SHAPIRO, R.M. HARALICK and M.J. GOULISH

program add-and-mult (a[0:99], b[0:99], c[0:99], d[0:99]: integer memory)
result [0:99]: integer memory

where
function add (x1, x2: integer sequence): integer sequence
where
add = x1 + x2;
end;
declare sa,sb,sc,sd, 11,12, index: integer sequence;
relations

index = 0 fby index + 1 until index == 99
sa = a[index];
sb = b[index];
s¢ = c[index];
sd = d[index];
t1 = add(sa,sb);
2 = add(sc,sd);
result[index] = ¢1 * 2;
endwhere;

The inputs to the program are four separate integer memories named 4, b, ¢, and
d, which can be thought of as vector arrays, of 100 elements each. The output is a
single integer memory called result. The purpose of the program is to produce the
equivalent of the procedural code

fori = 0 to 99
result[i] = (a[i] + b[i]) * (c[i] + d[i])

using an architectural configuration that performs the two adds in parallel. Add,
which was written as a function just to illustrate what functions look like, takes in
two sequences x1 and x2 of integers and outputs a single sequence of integers.
Because add has only one output sequence, we don’t have to give its output a
separate name; the variable name add refers to the output sequence. The program
add-and-mult generates a sequence called index of the integer values from 0 to 99
using the fby operation, which will be defined in Table 1. It uses this sequence of
index values to address all five memories in parallel. The values that are indexed in
memories a, b, ¢, and d become elements of the sequences sa, sb, sc, and sd.
Pairwise elements of sa and sb are added together to produce temporary result
sequence 1. In parallel, pairwise elements of sc and sd are added to produce
temporary result sequence r2. Pairwise elements of sequences ¢ and 2 are
multiplied together to form an unnamed sequence which is routed back into the
output memory, result. Figure 1 illustrates the architectural configuration
generated for program add-and-mult. The program could be expressed more
concisely as:

INSIGHT: A DATAFLOW LANGUAGE 341

a b c d result
0
[] [] L J L] []
[[] L [3 []
™ @ ® ® e
99
read read read read write

— ll—'ﬂ JI"’I 1|—'1] R |
mar

mdr [

| L h] { 1 L |
sa sb sC sd
index
© rl 2
foy

Fig. 1. This illustrates the configuration that would be produced for program add-and-mult.

program add-and-mult (a[0:99], 5[0:99], ¢[0:99], d[0:99]: interger memory)
result[0:99]: integer memory
where
declare index: integer sequence;
relations
index = 0 fby index + 1 until index == 99,
result[index] = (a[index]+b[index])*(c[index]+d[index]);
endwhere;

3.2. Memories and Data Structures

A memory is a random access storage device that is external to, but accessible by
the RCN. The purpose of a memory is to store results produced by one INSIGHT
program or activity and used by another. Memories are assumed to have only one
port, so that only one element of a single memory can be accessed at a time. The
following example illustrates the use of memories in a histogram program.

342 L.G. SHAPIRO, R.M. HARALICK and M.J. GOULISH

program histogram (image[0:511, 0:511]: integer memory)
hist[0:255]: integer memory
where
declare row,rowsub,colsub,bin: integer sequence;
activity initialize
bin = 0 fby bin + 1 until bin == 255;
hist[bin] = 0
endactivity
activity count
row = 0 fby row + 1 until row == 511;
rowsub = row repeat 512;
colsub = row cycle 512;
bin = image[rowsub,colsub];
hist[bin] = hist[bin] + 1;
endactivity
endwhere

In this example, the integer memory image can be a frame buffer, while Aist is just
an ordinary vector array. The first activity generates a sequence of indexes that
address each bin in the histogram and set it to zero. The second activity generates a
second sequence of bin indexes from the gray tone values of the image and
increments each location so addressed by one. Pairs of indexes from sequences
rowsub and colsub are used to address the two-dimensional frame buffer memory.
The sequence rowsub consists of 512 0’s followed by 512 1's followed by 512 2’s,
and so on, generated using the repeat operator. The sequence colsub consists of the
integers 0 through 511, the entire sequence repeated 512 times. The INSIGHT
translator will, of course, translate such two-dimensional references, to valid
addresses in the frame buffer memory.

Memories can be used to store more complex data structures than arrays. In
particular, linked lists can easily be implemented by using two parallel memories,
one for the head of each cell and one for the tail. A list stored in this fashion is
accessed through the generation of a sequence of memory addresses; the first is the
address of the first cell in the list, and the nth comes from the tail field of the
(n-1)st. Corresponding to the sequence of memory addresses is a sequence of data
values that constitute the lisi. Thus, not only can a stream of pixels flow through the
RCN, but also streams of list elements can flow through the network. We expect to
provide primitives for list handling, so that mid and high-level vision will be as
natural in INSIGHT as image processing.

3.3. Sequence Arrays

It will often be the case that the programmer wants to configure part of the RCN
as a pipeline of several stages. We provide the notion of sequence arrays as a

INSIGHT: A DATAFLOW LANGUAGE 343

convenience tool, so that the programmer will not have to repeat any relations that
are the same for each stage. A sequence array is an array of sequences declared as a
translator time entity that expresses a configuration of several sequences that have
some relation to each other. For example, the following INSIGHT code generates
the configuration shown in Fig. 2. The output of each stage is its input plus one,
Instead of having to repeat this relationship three times for three stages, the
repetition is accomplished by the foreach construct.

declare
stage: translator integer;
output[0:3]: integer seqarray;
relations
output[0] = 0;
foreach stage = 1 to 3
output[stage] = output[stage — 1] + 1;
endfor;

In this example, the translator integer stage is used in the translation time foreach
loop that defines the elements of the sequence array. The sequence array itself is
merely a shorthand notation for defining four related sequences. In this case, the
relationship is that the first of the four sequences is the input and the remaining
three are outputs of three stages in a pipeline configuration.

output(0) output(1) output(2) output(3)
5 > > [

Fig. 2. This illustrates an example of a pipeline configuration expressed in INSIGHT with the sequence
array notation,

Sequence arrays can also be used to express sequences whose relationship is
parallel. For example, the following INSIGHT function inputs a sequence of pixels
coming from an image and a vector of four thresholds. It applies the four thresholds
in parallel producing four sequences of pixels representing binary images. The
output is a sequence of integer values, each value corresponding to the sum of the
corresponding pixels of the four binary images.

function threshold-and-sum (image:integer sequence;
thresholds[1:4]: integer memory): integer sequence
where
declare
integer seqarray sum-images[0:4];

344 L.G.SHAPIRO, R M. HARALICK and M.J. GOULISH
binary seqarray thresholded-image[1:4];
translator integer k;
relations
sum-images[0] = 0
foreach k = 1to 4
thresholded-image[k] = if image > thresholds[k]
then 1 else 0 endif;
sum-images[k|] = sum-images[k—1] +
thresholded-image|k];
endfor;
threshold-and-sum = sum-images[4];
endwhere

Table 1. The current process time INSIGHT sequence operators. Operators marked with an asterik (*)

are from LUCID,

Operation

*R = first (X);

R = last (X);

R = previous (X);
*R = next (X);

R = X as long as C;

*R = X as soon as C;

R = X attime Y;
*R=XfoyY;

R = X dby K;

R = X concatby Y;
R = X until C;

*R = X upon C;

Explanation
R will be a constant sequence whose values are equal to the first value of X.

R will be a constant sequence whose value is the last value of X before X
becomes postactive.

R;1s the same as X,_,.
R, == X;.,. But R does not include the first value of X.

C is a binary/boolean sequence. R; = X as long as C == 1. When C becomes
0, R becomes postactive. If the first value of C is 0, then R has no elements.

The first value of R is X, such that C; == 1; each subsequent value of X
becomes the subsequent value of R. If Cy == 1, then R is identical with X.

Yis a sequence of integers. Select the values of X such that their process-time
subscripts are equal to the integers in Y. The values in ¥ must always ascend.

R’s first element will equal the first element of X. The next element of R will
be the first element of ¥, and from then on: R; = Y,_,.

The first K elements of R will be the preactive token. From then on Ry, will
equal X; for all i>=1. K must be an integer constant.

This is the concatenation operator. R will be X as long as X is not
postactive. The remainder of R will be the entire sequence Y.

R = X up to and including X, where C, is the first true value of C.
C is a boolean or binary sequence. The first value of R will be the first value

of X. Thereafter, if C, is true, then R, , takes the next value of X. If C, is false,
then R;,; == R,

INSIGHT: A DATAFLOW LANGUAGE 345

Table 1 cont’d

A = B extended by C; Until the first true C value, A = B. From the first time i such that C, == true,
A=A,

A = Bsustainedby C; IfC,=0,thenA; = B. If C; =1, then A, = A,_,.

*R = X whenever C; R takes all values X, such that C; = 1.

3.4, Sequence Operators

INSIGHT provides a variety of operations for manipulating sequences. The
if-then-else expression (illustrated in function threshold-and-sum above) allows a
sequence to be generated, each of whose elements is chosen from one of two input
sequences, depending on the value of a boolean expression sequence. The
conditional expression allows a sequence to be generated, each of whose elements
is chosen from one of many input sequences. This construct is similar to the cond
function in LISP. All the standard numeric operators and functions such as +, —, *,
/, **, abs, cos, sin, log, etc., are provided, as are all the standard logical opcrators
and the comparative character operators. The interesting operators in INSIGHT
are the sequence operators, a set of special sequence generation and manipulation
operators. Some of these come from LUCID", and others were invented to express
constructions that can occur in a configuration of the RCN. Some of the operators
can be explained in terms of the process time sequences they produce, and a few
can only be explained in terms of their effects in real time. Table 1 lists and briefly
defines the current INSIGHT process time sequence operators, indicating which
are from LUCID. The real time operators are under development.

4. EXAMPLES

We are in the process of encoding vision algorithms in INSIGHT, to be sure the
language is sufficient for our needs. In this section we present a few of the simpler
vision algorithms and utility algorithms as examples.

4.1. Count

Count is a utility function that generates useful index sequences. It has four
arguments: start, step, increment, and reset. Start is a sequence of start values, and
step is a sequence of corresponding step values. Increment is a boolean valued
sequence that tells whether or not to increment the current value of the sequence
being generated by the step value to obtain the next value or just to repeat the
current value. Reset is a boolean valued sequence that tells when to reset the

sequence being generated back to the next start value and begin using the next step
value.

346 L.G. SHAPIRO, R.M. HARALICK and M.J. GOULISH

function count (start, step: integer sequence;
increment, reset: boolean sequence)
: integer sequence
where
declare
integer sequence hold-start, hold-step;

relations
hold-start = start upon (reset==true);
hold-step = step upon (reset==true);
count = start fby if (reset==true)
then next(hold-start)
else if (increment==true)
then count + hold-step
else count
endif
endif;
endwhere

SAMPLE TRACE:

start= < 01234, ..
step=<<11111...
increment= < 11111...
reset=<<000010001001...
hold-start= < 0000011112223...
next hold-start= < 000011112223...
hold-step=<1111111111111...
if-then-else= < 123412342343...
count= < 0123412342343,

4.2. Advance

Advance is a utility function that takes two arguments: a sequence of any type
and an integer n. It produces a resultant sequence whose first value is the (n + 1)th
value of the input sequence. It uses the function count without arguments which
produces the default sequence <1234 5 .. >.

function advance (seq: sequence; m: integer constant)
: sequence
where
relations
advance = s wvr count() > #;
endwhere

INSIGHT: A DATAFLOW LANGUAGE 347

4.3. Binary Clone

Binary clone is an image processing function that illustrates one implementation
of the dilation operation in mathematical morphology’. It inputs a sequence of
pixels from a binary image and a memory indicating the appropriate amount of
delay needed by each stage in a pipeline of processors. It outputs a sequence of
pixels for the resultant dilated image. For more details on the operations of
mathematical morphology and a pipeline machine designed for executing them, see
Sternberg”.

function binary-clone (image: binary sequence;
delays: integer memory)
: binary sequence;
where
declare
size, stages: translator integer;
result[0:size]: binary seqarray;
relations
result[0] = image;
foreach stage = 1 to size
result[stage] = result [stage — 1]
or
result [stage — 1] dby delays[stage];
endfor;
binary-clone = result [size];
endwhere

4.4. Mapper

As a last example, we present a very simplified form of an order dependent
structural shape matching algorithm'. Two shapes are to be compared and an error
of the match computed. Each shape is represented by a list of its parts and their
attributes. The parts of each shape are numbered from 1 to max-parts. Function
mapper inputs two integer sequences c-first and u-first. Each pair of corresponding
elements (c-first;, wu-first,) represent the hypothesis that part number c-first of the
first shape corresponds to part number u-first of the second shape. Thus the inputs
can be thought of conceptually as a sequence of hypotheses. The three outputs are
best-error, whose last value will be the error of the best match, and (best-c-first,
best-u-first) whose last values indicate the best hypothesis. Maperr uses a utility
function compute-error which is assumed to compute the error between a pair of
parts, based on their attributes which are stored in the local memory of each stage,
so that parallel access is possible.

348 L.G. SHAPIRO, R. M. HARALICK and M.J. GOULISH

function mapper (c-first, u-first : integer sequence)
besterr: real sequence; best-c-first, best-u-first: integer sequence
where
declare
c-part[1:max-parts], u-part[1:max-parts]: integer seqarray;
error[1l:max-parts|: real seqarray;
best-error: real sequence;
best-c-first, best-u-first: integer sequence;
max-parts, stage: translator integer;
relations
c-part[1] = c-first;
u-part[1] = w-first;
error[1] = compute-error (c-first, u-first);
foreach stage = 2 to max-parts
c-part[stage] = (c-part|[stage—1] mod max-parts) + 1;
u-part[stage] = (u-part|[stage—1] mod max-parts) + 1;
error[stage] = error[stage—1] +
compute-error(c-part[stage], u-part[stage]);
endfor;
best-error = MAXINT fby if error[max-parts] < best-error
then error[max-parts]
else best-error;
0 fby if error[max-parts] < best-error
then c-first
else best-c-first;
(0 fby if error[max-parts| < best-error
then wu-first
else best-u-first

best-c-first

best-u-first

endwhere

5. CONCLUSIONS

The INSIGHT language allows the expression of low, mid, and high-level vision
algorithms in a relational form that can be easily translated to a configuration of a
reconfigurable computational network. The language is still under development
and is being tested for utility by encoding a set of representative vision algorithms
and simulating their execution. Using the language is, in fact, teaching us how to
write parallel algorithms for machine vision. We expect this research to lead to a
fast, general purpose, machine vision system.

REFERENCES

1. S. Yalamanchili, K.V. Palem, L.S. Davis, A.J. Welch, and J.K. Aggarwal, “Image
processing architectures: A taxonomy and survey.” in Progress in Pattern Recognition 2,

INSIGHT:-A DATAFLOW LANGUAGE 349

10.

11

eds. L.N. Kanal and A. Rosenfeld, Elsevier, Amsterdam, 1985, pp. 1-37.
L. Snyder, “Introduction to the configurable highly parallel computer,” [EEE
Computer 15 (1982) 47-56.

. P. Brinch Hansen, “The SOLO operating system”, Software — Practice and Experience

Vol. 6, 1976.

C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, N.J., 1985.
OCCAM Programming Manual, Prentice-Hall, N.J., 1984.

Y. Ishikawa and M. Tokoru, “A concurrent object-oriented knowledge representation
language Orient 84/K: Its features and implementation,” OOPSLA '86 Proceedings,
ACM, Sept. 1986, pp. 232-241.

E. Shapiro and A. Takeuchi, “Object oriented programming in concurrent PRO-
LOG,” New Generation Computing 1 (1983) 25-48.

W.W. Wadge and E.A. Ashcroft, LUCID: The Dataflow Programming Language,
Academic Press, London, 1984.

J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London,
1982.

S.R. Sternberg, “An overview of image algebra and related architectures,” in Integrated
Technology for Parallel Image Processing, ed. S. Levialdi, Academic Press, London,
1985, pp. 79-100.

L.G. Shapiro, R.S. MacDonald and S.R. Sternberg, “Ordered structured shape
matching with primitive extraction by mathematical morphology,” Patt. Recognition. 20
(1987) 75-90.

Linda G. Shapire was born in Chicago, Illinois, in 1949. She
received the B.S. degree in mathematics from the Universi-
ty of Illinois, Urbana, in 1970, and the M.S. and Ph.D.
degrees in computer science from the University of lowa,
Iowa City, in 1972 and 1974, respectively.

She was an Assistant Professor of Computer Science at
Kansas State University, Manhattan, from 1974 to 1978 and
an Assistant Professor of Computer Science from 1981 to
1984 at Virginia Polytechnic Institute and State University,
Blacksburg. She was Director of Intelligent Systems at
Machine Vision International in Ann Arbor from 1984 to
1986. She is currently an Associate Professor of Electrical
Engineering at the University of Washington. Her research
interests include computer vision, artificial intelligence,
pattern recognition, robotics, and spatial database systems.
She has co-authored a textbook on data structures with R.

Baron.
Dr. Shapiro is a senior member of the IEEE Computer

Society and a member of the Association for Computing
Machinery, the Pattern Recognition Society, and the
American Association for Artificial Intelligence. She is
Editor of Computer Vision, Graphics, and Image Processing

350

L.G. SHAPIRO, R.M. HARALICK and M.J. GOULISH

and an editorial board member of Pattern Recognition. She
has been General Chairman of the IEEE Conference on
Computer Vision and Pattern Recognition in 1986, General
Chairman of the IEEE Computer Vision Workshop in 1985,
and Co-Program Chairman of the IEEE Computer Vision
Workshop in 1982; she has served on the program commit-
tees of a number of vision and AI workshops and
conferences.

Robert M. Haralick was born in Brooklyn, New York, on
September 30, 1943. He received a B.A. degree in
mathematics from the University of Kansas in 1964, a B.S.
degree in electrical engineering in 1966 and a M.S. degree in
electrical engineering in 1967. He has worked with Autone-
tics and IBM. In 1965 he worked for the Center for
Research, University of Kansas, as a research engineer and
in 1969, when he completed his Ph.D. at the University of
Kansas, he joined the faculty of the Electrical Engineering
Department there where he last served as Professor from
1975 to 1978. In 1979 Dr. Haralick joined the Electrical
Engineering Department at Virginia Polytechnic Institute
and State University where he was a Professor and Director
of the Spatial Data Analysis Laboratory. From 1984 to 1986
Dr. Haralick served as Vice President of Research at
Machine Vision International, Ann Arbor, MI. Dr. Hara-
lick now occupies the Boeing Clairmont Egtvedt Profes-
sorship in the Department of Electrical Engineering at the
University of Washington.

Dr. Haralick has done research in pattern recognition,
multi-image processing, remote sensing, texture analysis,
data compression, clustering, artificial intelligence, and
general systems theory, and has published over 200 papers.
He is responsible for the development of GIPSY (General
Image Processing System), a multi-image processing pack-
age which runs in a workstation environment,

He is a Fellow of the Institute of Electrical and Electronic
Engineers, and a member of the Association for Computing
Machinery, and the Pattern Recognition Society.

Biographical sketch and photo of M.J. Goulish was not
received.

