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Abstract—A simple modification to Kittler and Illingworth’s minimum error thresholding method was
made and the performance of the modified version was compared with that of the original version
empirically. By correcting the biased estimates of variances of model distributions, a significant improvement
in performance was found. The improvement was most outstanding among not-well-separated, but still
bimodal histograms. In fact, the modification provides a more robust method. The new version is nearly

computationally equivalent in complexity to the original version.
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1. INTRODUCTION

Thresholding is one of the most frequently used
segmentation technique in image processing. It trans-
forms a grey-level image into a binary image. After a
threshold value is determined, the technique converts
a pixel’s brightness to 0 or 1 according to whether it
is smaller than or bigger than the threshold value.
There has been much work done about determining
a threshold value so that after the thresholding the
image consists of nicely segmented regions.'” Among
the methods solely based on histograms, one very
good method is found in Ref. (1).

Here we describe a simple modification to Ref. (1),
and the improvement in the performance. In the next
section, the reason why the modification is needed is
explained, and in Section 3, the experimental design
is presented. Empirical performance data over a large
number of histograms are provided and discussed in
Section 4 and a conclusion is drawn in the final
section.

2. MODIFICATION

A histogram is generated from a gray level image.
For each brightness level, the histogram gives the
number of pixels in the image with the brightness
level. If the histogram is bimodal, the histogram
thresholding problem is to determine a best threshold
t separating two modes of the histogram from one
another. Before we talk about the modification we
made, a brief description about the notion of the best
threshold in Kittler and Illingworth’s”) method is
presented.
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Modes Bimodal distribution

It assumes that the observations come from a
mixture of two Normal distributions having respective
mean and variances (4, o3) and (15, o3) and respective
proportions g; and ¢,. Then the mixture distribution
reflected in the histogram takes the form

; i il | i Vil
Sy = ,q—l AT R
N 2nay 2na,

Given a brightness level ¢ as a trial threshold, it
models the two resulting pixel populations, one from
those pixels whose brightness level is smaller than the
threshold, and the other from those pixels whose
brightness level is larger than the threshold. The two
populations are modeled by Normal distributions
N(py(t),03(t) and N(us(t),03(t), where py(t), pa(t),
a?(t), and o3(t) denote the means and the variances
of the populations.

If an image has n brightness levels, we try in
succession n different levels as a threshold value.
Let P(0), P(1), ..., P(n — 1) represent the histogram
frequencies of the observed brightness values 0, 1, ...,
n — 1. For each brightness value ¢, a fitting criterion
J(t) is calculated, which is defined by

J() =1 + 2[g,(D)loga (1) + g(t)logo ()]
— 2[g1(ogq,(t) + ga(thlogq,(z)]

where
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The better the models fit the data, the smaller the
criterion. Therefore the t value which minimizes
the criterion function is considered to be the best
threshold value.

2.1. Biased means and variances

The measured means pu,(t) and p,(t) and variances
o3(t) and o3(t) come from the distributions whose tails
are truncated by the threshold value. The distribution
on the left has its right tail truncated and the one on the
right has its left tail gone. However the distributions in
the model are not modeled as being truncated in
Kittler and Illingworth’s method. The truncation by
partitioning does bias the means and the variances
we measure and use as the parameters of the models.
In fact, the assumption of well separated modes
implies that if ¢ is the threshold which separates the
modes, the mean and the variance measured from
P(1),..., P(t) are close estimates of the true mean and
variance for the model. Likewise, so are the mean and
variance measured from P(t + 1), ..., P(n). However,
we face a large number of images in practice whose
histograms do not have two well separated modes.
For the rest of this section, we show the way to
compute better estimates of the true means and
variances. Here only the case of a left side distribution
whose right tail is truncated is shown. The case for
the right side distribution is similar. We provide only
the final result for that.

We assume that a histogram consists of two Normal
distributions. The probability distribution function of
the left distribution (N, ¢%) whose right tail is truncated
at ¢ is given by
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Let the original distribution be N(u,0?) and the
truncated distribution be N(y,,s?). Then we get the
following equations.
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Now we want to find y, o given ¢, i, and o,. By
[
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simply replacing z by z, = in (1), we get the
following linear equation.

m=g+0A (3)
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In (2), the inverse square root of # is nicely

approximated to a linear function of . By so doing,
we get

where
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If (3) is inserted into (4), and is solved for o, we
have a closed form solution for the updated variance.
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For the distribution on the right, we have the
following solution. In this case, it is the left tail which
is truncated.
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2.2. Use of both measured and updated variances

In the middle of the histogram, where two distri-
butions overlap heavily, we use the measured means
and variances. In other words, the truncation tends
not to bias the statistics since both of them lose some
area by truncation but at the same time get some
area by overlapping. When the two distributions have
the same variance and are in equal proportion, the
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Fig. 1. The effects of truncations.

truncation bias is negligible. This is clearly shown in
the Fig. 1.

Let area A represent the portion of the right
distribution which is to the left of t,. Let area B
represent that of the left distribution being to the
right of t,. When truncation occurs at ¢, the variance
of the population to the left of t, is underestimated
by the amount of area B, but at the same time,
overestimated by the amount of area 4. Thus, trunc-
ation does not have much impact on the correctness
of the mean and the variance. However, when we
have t, as a truncating line, we do get the biased
statistics. The left distribution does not include enough
portion of right distribution to offset the truncated
portion of itself. Therefore, we have underestimated
variances.

Since the measured variances are very close to the
true variances in heavily overlapped areas, we use a
weighted sum of the updated variances and the
measured variances. The less overlapped the area is,
the more weight is given to the updated variances. By
so doing, we can effectively approximate the correct
means and the correct variances.

Now consider the weight parameter. For which ¢
do we use solely the measured variances? For which
t do we use solely the updated variances? It is clear
that at the left-end and at the right-end, we should
use only the updated variances according to the above
argument. It is also apparent that we should use only
the measured variances at the point where most
overlapping occurs. This point corresponds to the
exact threshold we are looking for. The problem here
is that we do not know this value, but we need to
know. The best we can do is to estimate it with some
other method like, for example, Otsu’s method® or
even the original Kittler and Illingworth method itself.
We call this estimated threshold value a cutoff point
from now on. At the cutoff point the measured
variances are used. The following relation shows what
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is actually used as a variance for the case of the left
distribution,

cp—t

cp
62,4 is the used variance, o2, is the measured variance,
¢? is the updated variance from (5), cp is the cutoff
point, and ¢ is the truncating point.

For the right distribution, the following is used.
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where n is the number of brightness levels in the
image, and o is the updated variance from (6).

3. EXPERIMENTAL DESIGN

Instead of arguing that a method is better than the
other in several real images, we generate more than
two thousand histograms with parameters of the
composite distributions carefully controlled. It is fair
to say that one is better than the other only after they
are tested on a large variety of histograms. It is
important to clearly state on which data an experi-
ment is done. In this section, we describe what kind
of histograms we generate, how to generate them, and
finally the performance measure we use.

3.1. Histogram types

We only consider the histograms which are
expected to appear with a reasonable frequency in
practice. This factor is influenced not only by the
types of distributions involved but also by the par-
ameters and the relative weight between the left and
the right distributions.

Each histogram consists of two histograms, the one
on the left, and the other one on the right. According
to the composite distributions, we choose 9 different
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types of histograms, which are common in practice.
In addition, we choose the parameters of histograms
in such a way that most of the resulting histograms
have clear bimodality and about 5-10% of them are
rather vaguely bimodal or unimodal. In other words,
most of the histograms do show the bimodality but
not to the extent where every technique can come
up with the perfect threshold value. We need the
histograms which show clear boundaries and also
those which do not.

The different values for each of the parameters of
the distributions are shown below.

® (Gamma, Normal)
Gamma: «(6, 8, 10), f(4, 6, 8)
Normal: p(140, 170, 200), o(20, 30, 40).
@ (Gamma, Cauchy)
Gamma: (6, 8, 10), (4, 6, 8)
Cauchy: «(140, 170, 200), (20, 30, 40).
® (Gamma, Slash)
Gamma: «(6, 8, 10), p(4, 6, 8)
Slash: «(140, 170, 200), (10, 15, 20).
@ (Normal, Normal)
Normal: p(60, 80, 100), (20, 30, 40)
Normal: p(160, 180, 200), (20, 30, 40).
@ (Normal, Cauchy)
Normal: p(60, 80, 100), o(20, 30, 40)
Cauchy: (160, 180, 200), £(20, 30, 40).
@ (Normal, Slash)
Normal: (60, 80, 100), o(20, 30, 40)
Slash: «(160, 180, 200), (10, 15, 20).
@ (Cauchy, Cauchy)
Cauchy: «(60, 80, 100), £(20, 30, 40)
Cauchy: (160, 180, 200), £(20, 30, 40).
@ (Cauchy, Slash)
Cauchy: «(60, 80, 100), 5(20, 30, 40)
Slash: «(160, 180, 200), 5(10, 15, 20).
@ (Slash, Slash)
Slash: (60, 80, 100), 5(20, 30, 40)
Slash: o160, 180, 200), (10, 15, 20).

(Gamma, Normal) means that we use a Gamma
distribution on the left, and Normal distribution on
the right.

The final factor to be considered is the relative
weight of the left and the right distributions. Even
when the means of two distributions are placed far
away from each other, the resulting histogram would
be almost unimodal if the relative weight were close

to 0 or 1 since the small sized distribution is dominated
by the big one so that the existence of the former
hardly appears. A close examination of the resulting
histograms from other possibilities led us to the
following numbers, 0.4, 0.5, and 0.7. In total, we
have 9 types of distributions with 9 by 9 different
parameters and 3 different proportions so that 2187
distinct histograms are generated.

3.2. Generation of random variates

The modules generating Normal, Gamma, Cauchy,
and Slash variates are described in this section. One
thing common to all the modules is that when we get
a variate falling beyond the meaningful range, i.e. [0-
255], we simply throw it away and generate another
one. By so doing, it is guaranteed that all the variates
used are in the range [0-255].

3.2.1. Normal variates. There are several algorithms
known for generating pseudo random Normal vari-
ates. What we use here is a modified Box—Mueller
algorithm. The algorithm consists of the following
steps.

1. Generate two uniform random numbers, U,
and U,.

Let V; =2*U; —1,and V; =2x U, — 1.

Let S= V2 4+ V3

If § = 1, Go back to step 1.

. Else, let T= ,;/ —2xlog(S)/S.

6. Let X =V, *T.

OIS

X is arandom variate from the normal distribution.

32.2. Gamma variates. The generation of the
Gamma variates is straightforward in that we generate
o uniform variates, multiply them, take the logarithm
of the result, and multiply by — f, which results in a
gamma variate.”

3.2.3. Cauchy variates. Cauchy variates are gener-
ated in a more trivial way. We induce the inverse
cumulative distribution function, generate a uniform
variate from the range of [0-1], and calculate the
corresponding value, which is the Cauchy variate.

3.2.4. Slash variates. Slash distribution is defined
as N(0,1)/U(0, 1). However, in order to control the
position in the histogram and the variance, we used
N(0, B)/U(0,1) + «. Employing the same method as in
the Normal variate generation, we get N(0, 1) variates,
We multiply by £ and divide by a uniform variate
from [0-1], and finally add « to it.

3.2.5. Uniform variates. The basis of all the above
variates is the uniform variates out of [0-1]. The 4.3
BSD C language provides a uniform random number
generation function which returns a number in the
range of 0-2147483647. The latter is the maximum
number representable in a 32 bit machine, i.e. 231 — 1.

3.3. Performance measure

We call the performance measure the error ratio,
which is the percentage of misclassified pixels which
are not misclassified in the imaginary perfect method.
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The smaller the error ratio of a method, the better
the method. Note that even the perfect method has
misclassification errors.

First we need to know the threshold provided by
the perfect method. We can compute it since we
know the composite histograms and their respective
parameters and the ratio. We first describe the way
to get the exact threshold value, and the validity of
the error ratio we measure as a performance index.

3.3.1, Finding the exact threshold. The exact thres-
hold value is obtained by solving the following
equation. This is called minimum error threshold. This
is only possible when we know the exact distributions
in the histogram.

af(x) = (1 — gg(x) ™

where f and g are the probability density functions
of the left and the right distributions and 4 is the ratio
of the pixels from the left distributions and the total
pixels.

Suppose that for instance a histogram consisting
of Gamma and Cauchy distributions is given. Then
we should solve equation (2) for x to find the exact
threshold value.

a—1,-%

x* ek 1

o (1+(5522))
B

(«)p*

where o, B, oy, B, and g are given constants. It is
clear that there is no easy closed form solution for
the above equation. Instead, all the probability density
values within a interval (between modes) are evaluated
and the point that has minimum difference in terms
of the evaluated function values was chosen as the
exact threshold value. This is because the exact
threshold value, in general, lies between the modes of
two density functions and the modes are expressed in
terms of given parameters.

3.3.2. Performance index: error rate. Unless the
intersection of the domains of two distributions con-
tributing a histogram is empty, i.e. they do not overlap
at all, even the correct threshold value misclassifies a
certain number of pixels. This was implied when we
adopted the minimum error threshold as the correct
threshold. From now on, we refer to the imaginary
thresholding method which finds the correct threshold
value as perfect method.

Let us look at the thresholding problem in terms
of a decision problem.”) Given two sets of pixels,
called Left and Right, we have to decide the point
which classifies the whole data into two sets. Nat-
urally, there are two types of errors, ie. classifying a
pixel from Left as one from Right, and classifying a
pixel from Right as one from Left. Let P(L|L), P(L|R),
P(R|L), and P(R|R) denote the probability that a Left
pixel is classified as from the Left, that a Right pixel
is classified as from the Left, that a Left pixel as from
the Right, and that a Right pixel as from the Right
respectively. The sum of them is equal to 1.

(8)

We want to reduce the classification error, or
P(L|R) + P(R|L) as much as possible. Actually it is
the correct threshold value that minimizes the error.
If we regard the classification error as a function of
the threshold value, then the error associated with
the correct threshold value is the minimum, i.e. lower
bound. Now what we want to measure as the error
of a method given a histogram is how far the classi-
fication error is from the lower bound. Thus we
measure the difference bdtween the two and take it
as an error index.

Suppose that ¢ and f denote the correct threshold
value and the calculated value respectively. Also
let’s assume that F(x), G(x), denote the cumulative
distribution functions of the left, and the right distri-
butions respectively. The classification error is
P(L|R) + P(R|L). Since P(LIR)=G(f) and
P(R|L) = 1 — F(/), the misclassification error of the
method considered is 1 — F(f) + G(f), and the mis-
classification error of the perfect method is
1 — F(¢) + G(c), the method error is expressed as
1+ G(f) = F(f) — (1 + G(c) — F(c)), which is simpli-
fied as (F(¢) — F(f)) + (G(f) — G(c)). What we calcu-
late as an error measure is the number of pixels which
lie in the range between the correct threshold value
and the calculated threshold value minus the number
of the misclassified pixels even by the correct
threshold. Therefore the probability that a pixel is
counted as falling in the error range is
|(F(c) — F(f)) — (Glc) — G(f))], which is exactly the
one we derived above.

4. RESULTS AND DISCUSSIONS

We measured the performance of the original and
3 modified Kittler and Illingworth methods, namely
Exact, Combine, and 2Phase. The 3 modified methods
differ only in the way of getting the cutoff point. Exact
uses the exact threshold. This is not known in practice.
The reason we include this is to see the limit of the
modification we make since it will give the best result.
In Combine, the cutoff point is computed using Otsu’s
method.® 2Phase uses Kittler and Illingworth’s origi-
nal method to estimate the cutoff point. Concerning
the name, we regard the process of finding the cutoff
point as the phase 1 and that of finding the final
threshold value as the phase 2. When the original
fails to give any reasonable estimate, we simply pick
the middle point in the brightness level spectrum, i.e.
128 in our experiment, as the cutoff point.

Tables 1-10 show the error rates. Before we discuss
the results, a brief explanation about what the table
entries mean is provided. Each table corresponds
to each combination of composite distributions in
histograms. For instance, Table 1 is about the histo-
grams made up of two Cauchy distributions. Table
10 accounts for all 2187 cases while others account
for 243 histograms each, The entries Mean and Std
represent the means and the variance of the error
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Table 1. Error rate in percentage— Cauchy and Cauchy

Method Mean Std MIN 25% Median 5% 95% MAX
Original 2.683 8.700 0.000 0.055 0.224 0.637 18.785 52.231
Exact 0.923 5.556 0.000 0.011 0.026 0.070 0.576 49.161
Combine 1.297 5.536 0.000 0.061 0.221 0.647 2.466 49.161
2Phase 1.287 5.365 0.000 0.051 0.228 0.543 2.230 49.161
Table 2. Error rate in percentage — Cauchy and Slash
Method Mean Std MIN 25% Median 75% 95% MAX
Original 2.603 8.425 0.000 0.055 0.218 0.773 20.710 51.190
Exact 0.808 5.031 0.000 0.011 0.023 0.151 0.825 52.521
Combine 1.214 5.033 0.000 0.050 0.228 0.780 3.199 52.521
2Phase 1.261 4.748 0.000 0.048 0.191 0.650 2.501 48.940
Table 3. Error rate in percentage— Gamma and Cauchy
Method Mean Std MIN 25% Median 75% 95% MAX
Original 1.119 5.844 0.000 0.021 0.069 0.171 0.737 45.119
Exact 0.073 0.092 0.000 0.015 0.045 0.092 0.248 0.817
Combine 0.187 0.734 0.000 0.014 0.057 0.156 0.618 10.748
2Phase 1.110 5.856 0.000 0.018 0.063 0.158 0.578 45.163
Table 4. Error rate in percentage — Gamma and Normal
Method Mean Std MIN 25% Median 75% 95% MAX
Original 0.610 4.092 0.000 0.069 0.146 0.274 0.632 50.000
Exact 0.120 0.122 0.000 0.035 0.087 0.162 0.307 0.999
Combine 0.187 0.370 0.000 0.041 0.095 0.185 0.667 4.094
2Phase 0.204 0.440 0.000 0.054 0.116 0.216 0.500 5.402
Table 5. Error rate in percentage — Gamma and Slash
Method Mean Std MIN 25% Median 75% 95% MAX
Original 1.046 5.829 0.000 0.022 0.071 0.192 0.882 48.058
Exact 0.094 0.165 0.000 0.014 0.044 0.114 0.296 1.495
Combine 0.141 0.320 0.000 0.016 0.053 0.130 0.460 3.092
2Phase 1.021 5.836 0.000 0.019 0.066 0.171 0.729 48.083
Table 6. Error rate in percentage — Normal and Cauchy
Method Mean Std MIN 25% Median 75% 95% MAX
Original 3.499 9.481 0.000 0.146 0.479 1.089 24.234 56.144
Exact 1.320 6.316 0.000 0.048 0.080 0312 2.141 54.421
Combine 1.562 5.710 0.000 0.109 0.345 0.874 5.135 54,898
2Phase 1.695 5111 0.000 0.174 0.490 0.990 5.031 54.421

rates in percentage. All the others are order statistics.
In the entry MAX, we see the worst case performance
of each method while in the MIN, the best perform-
ance is shown. Consider Table 4 as an example, which
is for Gamma and Normal case. Original method
gives a threshold which misclassifies 50% more pixels
than the exact threshold. 2Phase outputs the threshold
value which does 5% worse than the perfect.

All three different modifications performed better
than the original method in almost all entries. There
are some cases for which the modified methods
worked poorly, i.e. the MAX cases. All the worst cases
come from clear unimodal histograms whose images
do not comprise objects and background. Threshold-
ing techniques should not be used for such images.
Therefore we will not discuss such worst cases any
further.

It is the data near the 90-95 percentile that really

matters since these are performance indices for the
histograms which show unclear bimodality. In every
table, we see a significant performance difference
between the Original and the modified methods by as
much as an order of magnitude. Even in other entries,
about two thirds of the case show the mean of error
rates decreased owing to the modification by more
than 50%.

Next we show a specific example where Original
fails to give a good threshold while 2Phase gives the
one which is very close to the exact threshold. Figure
2 shows the histogram, which consists of two Cauchy
distributions with 70% of the pixels from the left
distribution. The vertical lines indicate the threshold
values from the five different methods and the exact
threshold value. 2Phase and Combine give the same
value of 152 while Exact gives 158 which is very close
to the exact threshold of 159 so that the two lines
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Table 7. Error rate in percentage — Normal and Normal
Method Mean Std MIN 25% Median 75% 95% MAX
Original 3.591 10.531 0.000 0.031 0.197 1.197 24.503 57.856
Exact 1.680 8.282 0.000 0.009 0.027 0.113 2.901 56.050
Combine 2019 7.672 0.000 0.038 0.229 1.005 5.015 56.050
2Phase 1.934 6.978 0.000 0.018 0.181 0.875 6.531 56.050
Table 8. Error rate in percentage— Normal and Slash
Method Mean Std MIN 25% Median 75% 95% MAX
Original 2.728 8.627 0.000 0.074 0.238 0.657 20.440 56.102
Exact 1.005 5.510 0.000 0.027 0.060 0.219 1.7117 56.189
Combine 1.405 5.687 0.000 0.066 0.274 0.660 4,553 56.189
2Phase 1.262 3.889 0.000 0.098 0.248 0.635 4.861 34.664
Table 9. Error rate in percentage — Slash and Slash
Method Mean Std MIN 25% Median 75% 95% MAX
Original 1.969 7.455 0.000 0.039 0.137 0412 14.309 54.325
Exact 0.670 4.862 0.000 0.011 0.027 0.097 0.467 52281
Combine 0.937 4.867 0.000 0.045 0.163 0.440 1.606 52.281
2Phase 1.094 4.710 0.000 0.030 0.157 0.370 1.743 49.458
Table 10. Error rate in percentage— Total
Method Mean Std MIN 25% Median 5% 95% MAX
Original 2205 7970 0.000 0.045 0.156 0.500 16.010 57.856
Exact 0.744 4959 0.000 0.017 0.046 0.138 0.780 56.189
Combine 0.994 4.807 0.000 0.037 0.150 0470 2.563 56.189
2Phase 1.207 5.097 0.000 0.040 0.152 0.452 3.353 56.050

Fig. 2. Threshold values from Original, Otsu, 2Phase, Combine, the exact threshold, and one from
Exact. Histogram, Cauchy(100, 40) Cauchy(180,40) 70%.

look like a thicker one. This is the reason why we
have only 4 vertical lines in the figure.* The Original
apparently fails to give any reasonable threshold. The
reason is clear in the next figures. Figures 3 and 4
depict the respective criterion functions computed
from the two methods. Note that how the shapes of
the criterion functions look similar to the histogram.
In Fig. 3 there is no local minimum. However, by

*Note the differences between Exact and the exact
threshold. By Exact we mean a method we tested where the
exact threshold is used as the cutoff point.

providing more precise estimates to the model, we get
the criterion function which has the local minimum
and gives very good threshold values as shown in
Fig. 4.

The best performance by Exact indirectly shows
the validity of the modification and the importance
of the cutoff point. The closer the cutoff point is to
the exact threshold, the better performance we got
from the modified methods. Since we can not use
Exact in practice, it would be better to compare
Combine and 2Phase. Although there are some cases
where 2Phase’s performance is better than that of
Combine, it should be stated that the latter provides
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Fig. 3. Criterion function from the Original.

Fig. 4. Criterion function from the 2Phase.

better results than the former. The most outstanding
difference can be found in Gamma-Slash and
Gamma-Cauchy cases. Combine actually uses 2
different techniques although one of them is very
simple and computationally cheap. By using two
different methods, a bias in a solution provided by
one method is offset by the other.

5. CONCLUSION

We made simple modifications to Kittler and
Illingworth’s thresholding method and compared per-
formances between the original method and the
modified ones on the wide variety of histograms we
might face in practice. We controlled the parameters
of distribution functions so that we could generate
basically bimodal histograms. The empirical data
show the apparently better performances by the
modified methods and consequently validate the
modifications we made to the original version. The
improvement was outstanding especially for the histo-
grams which show vague bimodality like the one we

show in the figures. Our methods become more robust
in the sense that they are less sensitive to the modality.
In conclusion, the update of the biased variances is
legitimate and makes the technique more powerful
with only a little more computational effort.
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