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There are now a wide variety of image segmentation techniques, some considered general
purpose and some designed for specific classes of images. These techniques can be classified as:
measurement space guided spatial clustering, single linkage region growing schemes, hybrid
linkage region growing schemes, centroid linkage region growing schemes, spatial clustering
schemes, and split-and-merge schemes. In this paper, each of the major classes of image
segmentation techniques is defined and several specific examples of each class of algorithm are
described. The techniques are illustrated with examples of segmentations performed on real
images. - 1985 Academic Press, Inc.

1. INTRODUCTION

What should a good image segmentation be? Regions of an image segmentation
should be uniform and homogeneous with respect to some characteristic such as gray
tone or texture. Region interiors should be simple and without many small holes.
Adjacent regions of a segmentation should have significantly different values with
respect to the characteristic on which they are uniform. Boundaries of each segment
should be simple, not ragged, and must be spatially accurate.

Achieving all these desired properties is difficult because strictly uniform and
homogeneous regions are typically full of small holes and have ragged boundaries.
Insisting that adjacent regions have large differences in values can cause regions to
merge and boundaries to be lost.

As there is no theory of clustering, there is no theory of image segmentation.
Image segmentation techniques are basically ad hoc and differ precisely in the way
they emphasize one or more of the desired properties and in the way they balance
and compromise one desired property against another.

Image segmentation techniques can be classified as: measurement space guided
spatial clustering, single linkage region growing schemes, hybrid linkage region
growing schemes, centroid linkage region growing schemes, spatial clustering schemes,
and split and merge schemes. As can be observed from this brief typology, image
segmentation can be viewed as a clustering process. The difference between image
segmentation and clustering is that in clustering, the grouping is done in measure-
ment space. In image segmentation, the grouping is done on the spatial domain of
the image and there is an interplay in the clustering between the (possibly overlap-
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ping) groups in measurement space and the mutually exclusive groups of the image
segmentation.,

The single linkage region growing schemes are the simplest and most prone to the
unwanted region merge errors. The hybrid and centroid region growing schemes are
better in this regard. The split and merge technique is not as subject to the unwanted
region merge error. However, it suffers from large memory usage and excessively
blocky region boundaries. The measurement space guided spatial clustering tends to
avoid both the region merge errors and the blocky boundary problems because of its
primary reliance on measurement space. But the regions produced are not smoothly
bounded, and they often have holes, giving the effect of salt and pepper noise. The
spatial clustering schemes may be better in this regard, but they have not been well
enough tested. The hybrid linkage schemes appear to offer the best compromise
between having smooth boundaries and few unwanted region merges.

The remainder of the paper briefly describes the main ideas behind the major
image segmentation techniques and gives example results for several of them. Some
of the techniques can produce some very small regions. In most of our examples, we
have eliminated the small regions in the results we show. When small regions are
eliminated, a statement of the fact is made in the description of the results.
Additional image segmentation surveys can be found in Zucker [51], Riseman and
Arbib [44], Kanade [21], and Fu and Mui [9].

2. MEASUREMENT SPACE GUIDED SPATIAL CLUSTERING

This technique for image segmentation uses the measurement space clustering
process to define a partition in measurement space. Then each pixel is assigned the
label of the cell in the measurement space partition to which it belongs. The image
segments are defined as the connected components of the pixels having the same
label.

The accuracy of the measurement space clustering image segmentation process
depends directly on how well the objects of interest on the image separate into
distinct measurement space clusters. Typically the process works well in situations
where there are a few kinds of distinct objects having widely different gray tone
intensities (or gray tone intensity vectors, for multiband images) and these objects
appear on a near uniform background.

Clustering procedures which use the pixel as a unit and compare each pixel value
with every other pixel value can require excessively large computation time because
of the large number of pixels in an image. Iterative partition rearrangement schemes,
such as ISODATA, have to go through the image data set many times and, if they
do so without sampling, can also take excessive computation time. Histogram mode
seeking, because it requires only one pass through the data, probably involves the
least computation time of the measurement space clustering techniques, and it is the
one we discuss here.

Histogram mode seeking is a measurement space clustering process in which it is
assumed that homogeneous objects on the image manifest themselves as clusters in
measurement space. Image segmentation is accomplished by mapping the clusters
back to the image domain where the maximal connected components of the mapped
back clusters constitute the image segments. For single band images, calculation of
this histogram in an array is direct. The measurement space clustering can be
accomplished by determining the valleys in this histogram and declaring the clusters
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FiG. 1. This is an enlarged raw mineral ore section: the bright areas are grains of pyrite; the gray
areas constitute a matrix of pyrorhotite; the black areas are holes.
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F1G. 2. This is a histogram of the image of Fig. 1. The three nonoverlapping modes correspond to the
black holes, the pyrorhotite, and the pryrite.
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F1G. 3. This shows the segmentation of the image of Fig. 1 using the measurement space clusters of
Fig. 2.

to be the intervals of values between valleys. A pixel whose value is in the ith
interval is labeled with index i and the segment it belongs to is one of the connected
components of all pixels whose label is /.

Figure 1 shows an example image which is the right kind of image for the
measurement space clustering image segmentation process. It is an enlarged image of
a polished mineral ore section. The width of the field is about 1 mm. The ore is from
Ducktown, Tennessee, and shows subhedral to enhedral pyrite porophyroblests
(white) in a matrix of pyrorhotite (gray). The black areas are holes. Figure 2 shows
the histogram of this image. The valleys are no trouble to find. The first cluster is
from the left end to the first valley. The second cluster is from the first valley to the
second valley. The third cluster is from the second valley to the right end. Assigning

F1G. 4. This shows an image similar in some respects to the image of Fig. 1, but one in which
homogencous region segmentation may not be appropriate.
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to each pixel the cluster index of the cluster to which it belongs and then assigning a
unique gray tone to each cluster label yields the segmentation shown in Fig. 3. This
is a virtually perfect segmentation.

Figure 4 shows an example image which one might think is the right kind of image
for measurement space clustering image segmentation, but it is not as ideal as the
first image. Figure 5 shows its histogram which also has three modes and two valleys,
and Fig. 6 shows the boundaries of the corresponding segmentation. Notice the
multiple boundary area. It is apparent that the boundary between the grain and
background is in fact shaded dark and there are many such border regions which
show up as dark segments. In this case, we do not desire the edge borders to be
separate regions and although the segmentation procedure did exactly as it should
have done, the results are not what we desired. Segmentation into homogeneous
regions is not necessarily a good solution to a segmentation problem.

Figure 7 shows an image of a section of an F-15 bulkhead. It is clear that the
image has distinct parts such as webs and ribs. Figure 8 shows the histogram of this
image. It has two well separated modes. The narrow one on the right with a long left
tail corresponds to specular reflection points. The main mode has three valleys on its
left side and two valleys on its right side. Defining the depth of a valley to be the
probability difference between the valley bottom and the lowest valley side and
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F16. 5. This shows the histogram of the image in Fig. 4.
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F1G. 6. This shows the segmentation produced by clustering the histogram of Fig. 5.

eliminating the two shallowest valleys produces the segmentation shown in Fig. 9.
The problem in the segmentation is apparent. Since the clustering was done in
measurement space, there was no requirement for good spatial continuation and the
resulting boundaries are very noisy and busy. Separating the main mode into its two
most dominant submodes produces the segmentation of Fig. 10. Here the boundary
noise is less, and the resulting regions more satisfactory, but the detail provided is
much less.

Ohlander [36] refines the clustering idea in a recursive way. He begins by defining
a mask selecting all pixels on the image. Given any mask, a histogram of the masked
image is computed. Measurement space clustering enables the separation of one
mode of the histogram from another mode. Pixels on the image are then identified

Fi1c. 7. This is an image of a section of an F-15 bulkhead.
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F1G. 8. This is a histogram of the bulkhead image of Fig. 7.

F1G. 9. This is the segmentation of the bulkhead induced by a measurement space clustering into 5
clusters.
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F16. 10. This is the segmentation of the bulkhead induced by a measurement space clustering into 3
clusters.
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F1G. 11. Depicts the recursive histogram directed spatial clustering scheme of Ohlander.
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Frc. 12. Shows the results of the histogram directed spatial clustering when applied to the bulkhead
image.

with the cluster to which they belong. If there is only one measurement space cluster,
then the mask is terminated. If there is more than one cluster, then each connected
component of all pixels with the same cluster is, in turn, used to generate a mask
which is placed on a mask stack. During successive iterations the next mask in the
stack selects pixels in the histogram computation process. Clustering is repeated for
each new mask until the stack is empty.

Figure 11 illustrates this process which we call recursive histogram directed spatial
clustering. Figure 12 illustrates the boundaries of a recursive histogram directed
spatial clustering technique applied to the bulkhead image of Fig. 7. It produces a
result with boundaries being somewhat busy and many small regions in areas of
specular reflectance. Figure 13 illustrates the results of performing an 8-connected

F1G. 13. Shows the results of performing an 8-connected shrink operation followed by a fill operation
on the segmentation of Fig. 12.
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Fic. 14. Shows a second image of the F-15 bulkhead from a slightly different viewpoint.

shrink operation followed by a fill operation on the segmentation of Fig. 12. The
tiny regions are removed in this manner, but several important long, thin regions are
also lost. For purposes of comparison, both here and later in the paper, Fig. 14
illustrates a second image of the F-15 bulkhead, taken from a slightly different
viewpoint. Figure 15 illustrates the recursive histogram directed spatial clustering
technique for the image of Fig. 14, and Fig. 16 shows the result after the shrink and
fill.

For ordinary color images, Ohta, Kanade, and Sakai [38] suggest that histograms
not be computed individually on the red, green, and blue (R, G, and B) color
variables, but on a set of variables closer to what the Karhunen—Loeve transform
would suggest. They suggest (R + G + B)/3, (R — B)/2, and (2G — R — B)/4.

F1G. 15. Shows the results of the histogram directed spatial clustering scheme applied to the image of
Fig. 14.
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F1G. 16. Shows the results of the shrink and fill operations on the segmentation of Fig, 15.

2.1. Thresholding

If the image contains a bright object against a dark background and the measure-
ment space is 1-dimensional, measurement space clustering amounts to determining
a threshold such that all points smaller than or equal to the threshold are assigned to
one cluster and the remaining points are assigned to the second cluster. In the easiest
cases a procedure to determine the threshold need only examine the histogram and
place the threshold in the valley between the two modes. Unfortunately, it is not
always the case that the two modes are nicely separated by a valley. To handle this
kind of situation a variety of techniques can be used to combine the spatial
information on the image with the gray tone intensity information to help in
threshold determination.

Chow and Kaneko [7] suggest using a threshold which depends on the histogram
determined from the spatially local area around the pixel to which the threshold
applies. Thus, for example, a neighborhood size of 33 by 33 or 65 by 65 can be used
to compute the local histogram. Chow and Kaneko avoided the local histogram
computation for each pixel’s neighborhood by dividing the image into mutually
exclusive blocks, computing the histogram for each block, determining an ap-
propriate threshold for each histogram, and then spatially interpolating the threshold
values to obtain a spatially adaptive threshold for each pixel.

Weszka, Nagel, and Rosenfeld [48] suggest determining a histogram for only those
pixels having high Laplacian magnitude. They reason that there will be a shoulder of
the gray tone intensity function at each side of the boundary. The shoulder has high
Laplacian magnitude. A histogram of all shoulder pixels will be a histogram of all
interior pixels just next to the interior border of the region. It will not involve those
pixels in between regions which help make the histogram valley shallow. It will also
have a tendency to involve equal numbers of pixels from the object and from the
background. This makes the two histogram modes about the same size. Thus the
valley seeking method for threshold selection has a better chance of working on
the new histogram.
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Weszka and Rosenfeld [49] describe one method for segmenting white blobs
against a dark background by threshold selection based on busyness. For any
threshold, busyness is the percentage of pixels having a neighbor whose thresholded
value is different from their own thresholded value. A good threshold is that point
near the histogram valley between the two peaks which minimizes the busyness.

Watanabe [46] suggests choosing a threshold value which maximizes the sum of
gradients taken over all pixels whose gray level equals the threshold value. Kohler
[24] suggests a modification of the Watanabe idea. Instead of choosing a threshold
which maximizes the sum of gradient magnitudes taken over all pixels whose gray
tone intensity equals the threshold value, Kohler suggests choosing that threshold
which detects more high contrast edges and fewer low contrast edges than any other
threshold.

Kohler defines the set E(T') of edges detected by a threshold T to be the set of all
pairs of neighboring pixels one of whose gray tone intensities is less than or equal to
T and one of whose gray tone intensities is greater than 717

E(T) = {((4, j),(k,1))|(1) pixels (i, j) and (k, !) are neighbors

(2) min {I1(i, j),I(k,1)} < T <max{I(i,j),I(k,1)}}.

The total contrast C(T') of edges detected by threshold T is given by

Cc(T) = L min{|I(i, j) — T|, |I(k,1) — T|}
(i, ), (k,D)EE(T)

The average contrast of all edges detected by threshold T is then given by
C(T)/#E(T). The best threshold 7, is determined by that value is maximizes
C(T,)/ #E(T,).

Milgram and Herman [30] reason that pixels which are in between regions
probably have in-between gray tone intensities. If it is these pixels which are the
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F1G. 17. Illustrates how the threshold of the Panda and Rosenfeld technique depends on the gradient
magnitude.
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F1G. 18. Shows a FLIR image from the NATO data base. To reduce neise it was filtered with a
Gaussian filter with a sigma of 1.5 and neighborhood size of 15.

cause of the shallow valleys, then it should be possible to eliminate their effect by
only considering pixels having small gradients. They take this idea further and
suggest that by examining clusters in the 2-dimensional measurement space consist-
ing of gray tone intensity and gradient magnitude, it is even possible to determine
multiple thresholds when more than one kind of object is present.

Panda and Rosenfeld [39] suggest a related approach for segmenting a white blob
against a dark background. Consider the histogram of gray levels for all pixels which
have small gradients. If a pixel has a small gradient, then it is not likely for it to be
an edge. If it is not an edge, then it is either a dark background pixel or a bright blob

FiG. 19. Shows the FLIR image of Fig. 17 thresholded at gray tone intensity 159 (a) and 190 (b).
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FIG. 20. Shows the pixels of the FLIR image having large gradient magnitude.

pixel. Hence, the histogram of all pixels having small gradients will be bimodal and
for pixels with small gradients, the valley between the two modes of the histogram is
an appropriate threshold point. Next consider the histogram of gray levels for all
pixels which have high gradients. If a pixel has a high gradient, then it is likely for it
to be an edge. If it is an edge separating a bright blob against a dark background
and if the separating boundary is not sharp but somewhat diffuse, then the
histogram will be unimodal, the mean being a good threshold separating the dark
background pixels from the bright blob pixels. Thus Panda and Rosenfeld suggest
determining two thresholds; one for low gradient pixels and one for high gradient

F1G. 21. Shows a scattergram of the gray tone intensity-gradient measurement space for the image of
Fig. 17. The gray tone intensity is the y axis and the gradient is the x axis. Notice the nicely bimodal gray
tone intensity distribution for small gradient magnitude.
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F1G. 22. Shows the segmentation of the image in Fig. 17 using the Panda and Rosenfeld scheme.

pixels. By this means they perform the clustering in the two dimensional measure-
ment space consisting of gray tone intensity and gradient. The form of the decision
boundary in the two dimensional measurement space is shown in Fig. 17.

Figure 18 illustrates a FLIR image from the NATO data base which one might
think has the right characteristics for this type of segmentation algorithm. Figures
19a and 19b illustrate the FLIR image thresholded at 159 and 190, respectively.
Figure 20 shows the pixels having a large gradient magnitude, where the gradient is
computed as the square root of the sum of the squares of the linear coefficients
arising from a gray tone intensity cubic fit in a 7 X 7 window. Figure 21 shows the
horseshoe shaped cluster in the 2-dimensional gray tone intensity—gradient space
where the gray tone intensities and the gradient values have been equal interval
quantized.

Figure 22 illustrates the resulting segmentation. Notice that because there is a
bright object with a slightly darker appendage on top, the assumption of a homoge-
neous object on a dark background is not met. The result is that only the boundary
of the appendage is picked up.

A survey of threshold techniques can be found in Weszka [47].

2.2. Multidimensional Measurement Space Clustering

For multiband images such as LANDSAT or Thematic Mapper, determining the
histogram in a multidimensional array is not feasible. For example, in a six band
image where each band has intensities between 0 and 99, the array would have to
have 100° = 102 locations. A large image might be 10,000 pixels per row by 10,000
rows. This only constitutes 10® pixels, a sample too small to estimate probabilities in
a space of 10! values were it not for some constraints of reality: (1) there is
typically a high correlation between the band-to-band pixel values, and (2) there is a
large amount of spatial redundancy in image data. Both these factors create a
situation in which the 10® pixels can be expected to contain only between 104 and
10° distinct 6-tuples. Based on this fact, the counting required for the histogram is
easily done by hashing the 6-tuples into an array.
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Clustering using the multidimensional histogram is more difficult than univariate
histogram clustering. Goldberg and Shlien [11, 12] threshold the multidimensional
histogram to select all N-tuples situated on the most prominent modes. Then they
perform a measurement space connected components on these N-tuples to collect
together all the N-tuples in the tops of the most prominent modes. These measure-
ment space connected sets form the cluster cores. The clusters are defined as the set
of all N-tuples closest to each cluster core.

An alternate possibility (Narendra and Goldberg [34]) is to locate peaks in the
multidimensional measurement space and region growing around them, constantly
descending from each peak. Their region growing then includes all successive
neighboring N-tuples whose probability is no higher than the N-tuple from which it
is growing. Adjacent mountains meet in their common valleys.

Rather than accomplish the clustering in the full measurement space, it is possible
to work in multiple lower order projection spaces and then reflect these clusters back
to the full measurement space. Suppose, for example, that the clustering is done on a
four band image. If the clustering done in bands 1 and 2 yields clusters ¢;, ¢,, ¢; and
the clustering done in bands 3 and 4 yields clusters ¢, and ¢; then each possible
4-tuple from a pixel can be given a cluster label from the set
{(crs€a)s (€1, €5), (€3, €4), (€2, €5), (€3, €4), (€35 ¢5) ). A 4-tuple (x, x,, x5, x,) gets the
cluster label (¢,, ¢ ) if (x,, x,) is in cluster ¢, and (x,, x,) is in cluster ¢,.

3. REGION GROWING

3.1. Single Linkage Region Growing

Single linkage region growing schemes regard each pixel as a node in a graph.
Neighboring pixels whose properties are similar enough are joined by an arc. The
image segments are maximal sets of pixels all belonging to the same connected
component. Single linkage image segmentation schemes are attractive for their
simplicity. They do, however, have a problem with chaining, because it takes only
one arc leaking from one region to a neighboring one to cause the regions to merge.

The simplest single linkage scheme defines “similar enough” by pixel difference.
Two neighboring pixels are similar enough if the absolute value of the difference
between their gray tone intensity values is small enough. Bryant (1979) defines
similar enough by normalizing the difference by the quantity (square root of 2) times
the root mean square value of neighboring pixel differences taken over the entire
1mage.

For pixels having vector values, the obvious generalization is to use a vector norm
of the pixel difference vector. Instead of using Euclidean distance, Asano and
Yokoya [1] suggest that two pixels be joined together if the absolute value of their
difference is small enough compared to the average absolute value of the center pixel
minus neighbor pixel for each of the neighborhoods the pixels belong to. The ease
with which unwanted region chaining can occur with this technique limits its
potential on complex or noisy data.

3.2. Hybrid Linkage Region Growing

Hybrid single linkage techniques are more powerful than the simple single linkage
technique. The hybrid techniques seek to assign a property vector to each pixel
where the property vector depends on the K X K neighborhood of the pixel. Pixels
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which are similar are similar because their neighborhoods in some special sense are
similar. Similarity is thus established as a function of neighboring pixel values and
this makes the technique better behaved on noisy data.

One hybrid single linkage scheme relies on an edge operator to establish whether
two pixels are joined with an arc. Here an edge operator is applied to the image
labeling each pixel as edge or non-edge. Neighboring pixels, neither of which are
edges, are joined by an arc. The initial segments are the connected components of
the non-edge labeled pixels. The edge pixels can either be left assigned as edges and
be considered as background or they can be assigned to the spatially nearest region
having a label.

The quality of this technique is highly dependent on the edge operator used.
Simple operators such as the Roberts and Sobel operators may provide too much
region linkage, for a region cannot be declared as a segment unless it is completely
surrounded by edge pixels. Haralick and Dinstein [15], however, do report some
success using this technique on LANDSAT data. They perform a region growing of
the edge pixels in order to close gaps before performing the connected components
operator. Perkins [41] uses a similar technique.

Haralick [17, 18] discusses a very sensitive zero-crossing of second directional
derivative edge operator. In this technique, each neighborhood is least squares fitted
with a cubic polynomial in two variables. The first and second partial derivatives are
easily determined from the polynomial. The first partial derivatives at the center
pixel determine the gradient direction. With the direction fixed to be the gradient
direction, the second partials determine the second directional derivative. If the
gradient is high enough and if in the gradient direction, the second directional
derivative has a negatively sloped zero-crossing inside the area of the pixel, then an
edge is declared in the center pixel of the neighborhood.

Figure 23 shows the edges resulting from the second directional derivative
zero-crossing operator using a gradient threshold of 4, a 9 X 9 neighborhood, and a
zero-crossing radius of 0.85. The edges are well placed and a careful examination of

F1G. 23. Shows the second directional derivative zero-crossing operator using a gradient threshold of
4, a9 X 9 neighborhood and a zero-crossing radius of 0.85 applied to the bulkhead image of Fig, 14.
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pixels on perceived boundaries which are not classified as edge pixels will indicate
the step edge pattern to be either nonexistent or weak. A connected components
operation applied to the non-edge pixels accomplishes the initial segmentation. After
the connected components operation, the edge pixels are assigned to their spatially
closest component by a region filling operation. Figure 24 shows the boundaries
from the region filled image. Obviously, there are some regions which have been
merged together. However, those boundaries which are present are placed correctly
and they are reasonably smooth. Lowering the gradient threshold of the edge
operator could produce an image with more edges and thereby reduce the edge gap
problem. But this solution does not really solve the gap problem in general.
Although the connected components of the non-edge pixels of the edge operator
do not yield an adequate segmentation, the edges can be used in combination with
other segmentation techniques to improve the segmentation derived from those
techniques. For example, the Ohlander technique discussed in Section 2 segments on
the basis of measurement space clusters, but can lose some important edges. Such a
segmentation will be improved if the edges can be used to refine it. To this end, we
started with the Ohlander segmentation of Fig. 15 and overlaid the binary edge
image shown in Fig. 24. This was achieved by starting with a symbolic image of the
segmentation (where the value of each pixel 1s its region number) and multiplying
this image on a pixel by pixel basis with the binary edge image. The resultant image
has pixels with value zero where the edges were, and all the rest of the pixels still
show their region numbers. We then applied a connected components operator to
the non-edge pixels of this image, and removed small regions. The result is shown in
Fig. 25. Note that Fig. 25 shows a better segmentation than Fig. 15 because several
important straight lines that were missing have been put in. However, this technique
does not always work as well. Figure 26 shows the same approach applied to the
Ohlander segmentation of Fig. 13. This image had more specular reflection and there

FiG. 24. Shows a hybrid linkage region growing scheme in which any pair of neighboring pixels,
neither of which are edge pixels can link together. The resulting segmentation consists of the connected
components of the non-edge pixels and where edge pixels are assigned to their nearest connected
component. This result was obtained from the edge image of Fig. 23.
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Fic. 25. Shows the results of overlaying an edge image on the segmentation (Fig. 15) of the bulkhead
image of Fig. 14, applying a connected components operator, and removing small regions.

were many extraneous edges which were put back into the segmentation. These do
not seem to improve the segmentation at all.

Yakimovsky [50] assumes regions are normally distributed and uses a maximum
likelihood test to determine edges. Edges are declared to exist between pairs of
contiguous and exclusive neighborhoods if the hypothesis that their means are equal
and their variances are equal has to be rejected. For any pair of adjacent pixels with
mutually exclusive neighborhoods R, and R, having N, and N, pixels, respectively,

F1G. 26. Shows the result of overlaying an edge image on the segmentation (Fig. 13) of the bulkhead
image of Fig. 7, applying a connected components operator, and removing small regions.
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the maximum likelihood technique computes the mean

1
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and the scatter
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as well as the grand mean
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and grand scatter
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The likelihood ratio test statistic T is given by

_ [sy/v+ M)W
[st/m] ™ [s2/8,]™

Edges are declared between any pair of adjacent pixels when the T statistic from
their neighborhoods is high enough. As N, and N, get large, 2log T is asymptoti-
cally distributed as a chi-squared variate with 2 degrees of freedom.

If it can be assumed that the variances of the two regions are identical, then the
statistic

(Nl + Nz - 2)N1N2 ()_{1 - )_(2)2
N + N, 852 52

has an F distribution with 1, and N, + N, — 2 degrees of freedom under the
hypothesis that the means of the regions are equal. For an F value which is
sufficiently large, the hypothesis can be rejected and an edge declared to exist
between the regions.

Haralick [16] suggests fitting a plane to the neighborhood around the pixel, and
testing the hypothesis that the slope of the plane is zero. Edge pixels correspond to
pixels between neighborhoods in which the zero-slope hypothesis has to be rejected.
To determine a roof or V-shaped edge, Haralick suggests fitting a plane to the
neighborhoods on either side of the pixel and testing the hypothesis that the
coefficients of fit are identical. If the hypothesis is rejected, then a roof edge is
declared.

Another hybrid technique first used by Levine and Leemet [25] is based on the
Jarvis and Patrick [20] shared nearest neighbor idea. Using any kind of reasonable
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notion for similarity, each pixel examines its X X K neighborhood and makes a list
of the N pixels in the neighborhood most similar to it. Call this list the similar
neighbor list, where we understand neighbor to be any pixel in the K X K neighbor-
hood. An arc joins any pair of immediately neighboring pixels if each pixel is in the
other’s shared neighbor list and if there are enough pixels common to their shared
neighbor lists; that is, if the number of shared neighbors is high enough.

To make the shared neighbor technique work well each pixel can be associated
with a property vector consisting of its own gray tone intensity and a suitable
average of the gray tone intensity of pixels in its K X K neighborhood. For example,
we can have (x,a) and (y, b) denote the property vectors for two pixels if x is
the gray tone intensity value and « is the average gray tone intensity value in the
neighborhood of the first pixel and y is the gray tone intensity value and 5 is the
average gray tone intensity value in the neighborhood of the second pixel. Similarity
can be established by computing

S=wi(x = p)" +w(x =5+ w(y - a)’,

where w;, w,, and w; are nonnegative weights. The pixels are called similar enough
for small enough values of s.

Pong er al. [43] suggest an approach to segmentation based on the facet model of
images. The procedure starts with an initial segmentation of the image into small
regions. Each region with associated property vector is considered a unit. In a series
of iterations, the property vector of a region is replaced by a property vector that is a
function of its neighboring regions. Then adjacent regions having similar final
property vectors are merged. This gives a new segmentation which can then be used
as input to the algorithm. Thus a sequence of coarser and coarser segmentations are
produced. Useful variations are to prohibit merging across strong edge boundaries
or when the variance of the combined region would become too large. Figures 27, 28,
and 29 illustrate the results of the Pong approach on the image of Fig. 7 for one,
two, and three iterations, respectively. Figure 30 illustrates the result of removing
regions of size 25 or fewer pixels from the segmentation of Fig. 29.

oy
2o A,
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F16. 27. Shows one interation of the Pong algorithm on the bulkhead image of Fig. 7.
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F1G. 28. Shows the second iteration of the Pong algorithm.

3.3. Centroid Linkage Region Growing

In centroid linking region growing, in contrast with single linkage region growing,
pairs of neighboring pixels are not compared for similarity. Rather, the image is
scanned in some predetermined manner such as left-right top—bottom. The value of
a pixel is compared to the mean of an already existing but not necessarily completed
neighboring segment. If its value and the mean value of the segment are close
enough, then the pixel is added to the segment and the mean of the segment is
updated. If there is more than one region which is close enough, then it is added to
the closest region. However, if the means of the two competing regions are close
enough, the two regions are merged and the pixel is added to the merged region. If
no neighboring region has its mean close enough, then a new segment is established

Fi1G. 29. Shows the third iteration of the Pong algorithm.
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FiG. 30. Shows the segmentation obtained by removing regions smaller than size 25 from the
segmentation of Fig. 29.

having the given value of the pixel as its first member. Figure 31 illustrates the
geometry of this scheme.

Keeping track of the means and scatters for all regions as they are being
determined does not require large amounts of memory space. There cannot be more
regions active at one time than the number of pixels in a row of the image. Hence, a
hash table mechanism with the space of a small multiple of the number of pixels in a
row can work well.

Another possibility is a single band region growing technique using the T-test. Let
R be a segment of N pixels neighboring a pixel with gray tone intensity y. Define the
mean X and scatter S by

1
X=%

Y I(r,c)

(r,c)ER

and

St= Y (I(r,c) - X)%

(r,c)eR
2 3 4
1 y

F1G. 31. Illustrates the region growing geometry for the one pass scan left-right, top-bottom region
growing. Pixel i belongs to region R; whose mean is X;, i = 1, 2, 3, and 4. Pixel y is added to a region
R; if by a T-test the difference between y and Xj is small enough. If for two regions R, and R;, the
difference is small enough, and if the difference between X; and Xj is small enough, regions R, and R;
are merged together, and y is added to the merged region. If the difference between X, and ; 15

X;
significantly different, then y is added to the closest region.
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Under the assumption that all the pixels in R and the test pixel p are independent
and identically distributed normals, the statistic

(N=DN, o |
T=|————(y—-X)/S§
N+ 1) (y—X)/
has a Ty _, distribution. If T is small enough y is added to region R and the mean
and scatter are updated using y. The new mean and scatter are given by

Xnew < (N?old + y)/(N + 1)
and B _ -
Sr%ew o St?ld +(y - X)2 # N(Xnew - Xuld) .

If 7 is too high the value y is not likely to have arisen from the population of
pixels in R. If y is different from all of its neighboring regions then it begins its own
region. A slightly stricter linking criterion can require that not only must y be close
enough to the mean of the neighboring regions, but that a neighboring pixel in that
region must have a close enough value to y. This combines a centroid linkage and
single linkage criterion. The next section discusses a more powerful combination
technique, but first we want to develop the concept of “significantly high.”

To give a precise meaning to the notion of too high a difference, we use an « level
statistical significance test. The fraction « represents the probability that a T statistic
with N — 1 degrees of freedom will exceed the value 7y _,(«). If the observed T is
larger than ¢, _,(a), then we declare the difference to be significant. If the pixel and
the segment really come from the same population, the probability that the test
provides an incorrect answer is «.

The significance level a is a user-provided parameter. The value of ¢y _,(a) is
higher for small degrees of freedom and lower for larger degrees of freedom. Thus,
region scatters considered to be equal, the larger a region is, the closer the value of a
pixel has to be to the mean of the region in order to merge into the region. Figure 32
plots ¢,,(e) as a function of M, the number of degrees of freedom for a few different
values of a.

Note that all regions initially begin as one pixel in size. To avoid the problem of
division by 0 (for S? is necessarily 0 for 1-pixel regions and 0 for regions having
identically valued pixels) a small positive constant can be added to S2 One
convenient way of determining the constant is to decide on a prior variance V' > 0

12.80
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F1c. 32. Illustrates how the T-test threshold changes as a function of its degrees of freedom for a fixed
significance level.
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and an initial segment size N. The initial scatter for a new 1-pixel region is then
given by NV and the new initial region size is given by N. This mechanism keeps the
degrees of freedom of the T-statistic high enough so that a significant difference is
not the huge difference required for a T-statistic with a small number of degrees of
freedom. Figure 33 illustrates the resulting segmentation on the bulkhead image of
Fig. 14 for a 0.2% significance level test after all regions smaller than 25 pixels have
been removed.

Pavlidis [40] suggests a more general version of this idea. Given an initial
segmentation where the regions are approximated by some functional fit guaranteed
to have a small enough error, pairs of neighboring regions can be merged if for each
region, the sum of the squares of the differences between the fitted coefficients for
this region and the corresponding averaged coefficients, averaged over both regions,
is small enough. Pavlidis gets his initial segmentation by finding the best way to
divide each row of the image into segments with a sufficiently good fit. He also
describes a combinatorial tree search algorithm to accomplish the merging which
guarantees a best result. Kettig and Landgrebe [22] successively merge small image
blocks using a statistical test. They avoid much of the problem of zero scatter by
considering only cells containing a 2 X 2 block of pixels.

Gupta, Kettig, Landgrebe, and Wintz [13] suggest using a T-test based on the
absolute value of the difference between the pixel and the nearest region as the
measure of dissimilarity. Kettig and Landgrebe [22] discuss the multiband situation
leading to the F-test and report good success with LANDSAT data.

Nagy and Tolaba [33] just examine the absolute value between the value of a pixel
and the mean of a neighboring region formed already. If this distance is small
enough, the pixel is added to the region. If there is more than one region, then the
pixel is added to that region with smallest distance.

The Levine and Shaheen scheme [26] is similar. The difference is that Levine and
Shaheen attempt to keep regions more homogeneous and try to keep the region
scatter from getting too high. They do this by requiring the differences to be more

F1G. 33. Shows the one pass centroid linkage segmentation of the bulkhead image of Fig. 14. A
significance level of 0.2% was used.
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significant before a merge takes place if the region scatter is high. For a user
specified value @, they define a test statistic T, where
T=|y— Xpewl —(1 — 5/X...,) 0.

If 7 < 0 for the neighboring region R in which |y — X| is the smallest, then y is
added to R. If T> 0 for the neighboring region in which |y — X| is the smallest,
then y begins a new region. Readers of the Levine and Shaheen paper should note
that there are misprints in the formulas given for region scatter and region scatter
updating.

Brice and Fennema [2] accomplish the region growing by partitioning the image
into initial segments of pixels having identical intensity. They then sequentially
merge all pairs of adjacent regions if a significant fraction of their common border
has a small enough intensity difference across it.

Simple single-pass approaches which scan the image in a left-right, top—down
manner are, of course, unable to make the left and right sides of a V-shaped region
belong to the same segment. To be more effective, the single pass must be followed
by some kind of connected components merging algorithm in which pairs of
neighboring regions having means which are close enough are combined into the
same segment. This is easily accomplished by using the two pass label propagation
logic of the Lumia et al. [52] connected components algorithm.

After the top-bottom, left-right scan, each pixel has already been assigned a region
label. In the bottom-up, right-left scan, the means and scatters of each region can be
recomputed and can be kept in a hash table. Whenever a pair of pixels from
different regions neighbor one another, a 7-test can check for the significance of the
difference between the region means. If the means are not significant, then they can
be merged. A slightly stricter criterion would insist not only that the region means be
similar, but also that the neighboring pixels from the different regions must be
similar enough. Figure 34 shows the resulting segmentation of the bulkhead image
for a 0.2% significance level after one bottom—up, right-left merging pass and after
all regions smaller than 25 pixels have been removed.

F16. 34. Shows the two pass centroid segmentation of the bulkhead image of Fig. 14. A significance
level of 0.2% was used on both passes.
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One potential problem with region growing schemes is their inherent dependence
on the order in which pixels and regions are examined. A left-right, top—down scan
does not yield the same initial regions as a right-left, bottom—up scan or for that
matter a column major scan. Usually, however, differences caused by scan order are
minor.

4. HYBRID LINKAGE COMBINATION TECHNIQUES

The previous section mentioned the simple combination of centroid linkage and
single linkage region growing. In this section we discuss the more powerful hybrid
linkage combination techniques.

The centroid linkage and the hybrid linkage can be combined in a way which
takes advantage of their relative strengths. The strength of the single linkage is that
boundaries are placed in a spatially accurate way. Its weakness is that edge gaps
result in excessive merging. The strength of centroid linkage is its ability to place
boundaries in weak gradient areas. It can do this because it does not depend on a
large difference between the pixel and its neighbor to declare a boundary. It depends
on a large difference between the pixel and the mean of the neighboring region to
declare a boundary.

The combined centroid hybrid linkage technique does the obvious thing. Centroid
linkage is only done for non-edge pixels, that is, region growing is not permitted
across edge pixels, or, putting it another way, edge pixels are not permitted to be
assigned to any region and cannot link to any region. Thus if the parameters of
centroid linkage were set so that any difference, however large, between pixel value
and region mean was considered small enough to permit merging, the two pass
hybrid combination technique would produce a connected components segmentation
of the non-edge pixels. As the difference criterion is made more strict, the centroid
linkage will produce boundaries in addition to those of the edges.

Figure 35 illustrates a one pass scan combined centroid and hybrid linkage
segmentation scheme using a significance level test of 0.2%. Edge pixels are assigned

F1G. 35. Shows the one pass combined centroid and hybrid linkage segmentation of the bulkhead
image of Fig. 14. A significance level of 0.2% was used.
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FIG. 36. Shows the two pass combined centroid and hybrid linkage segmentation of the bulkhead
image of Fig. 14. A significance level of 0.2% was used on both passes.

to their closest labeled neighbor and regions having fewer than 25 pixels are
eliminated. Notice that the resulting segmentation is much finer than that shown in
Figs. 33 and 34. Also the dominant boundaries are nicely curved and smooth. Figure
36 illustrates the two pass scan combined centroid and hybrid linkage region
growing scheme using a significance level test of 0.2%. The regions are somewhat
simpler because of the merging done in the second pass.

5. SPATIAL CLUSTERING

It is possible to determine the image segments by simultaneously combining
clustering in measurement space with spatial region growing. We call such a
technique spatial clustering. In essence, spatial clustering schemes combine the
histogram mode seeking technique with a region growing or a spatial linkage
technique.

Haralick and Kelly [14] suggest that segmentation be done by first locating, in
turn, all the peaks in the measurement space histogram, and then determining all
pixel locations having a measurement on the peak. Next, beginning with a pixel
corresponding to the highest peak not yet processed, both spatial and measurement
space region growing are simultaneously performed in the following manner. Ini-
tially, each segment is the pixel whose value is on the current peak. Consider for
possible inclusion into this segment a neighbor of this pixel (in general, the
neighbors of the pixel we are growing from) if the value of a neighbor (an N-tuple
for an N band image) is close enough in measurement space to the value of the pixel
and if its probability is not larger than the probability of the value of the pixel we
are growing from. Matsumoto, Naka, and Yamamoto [27] discuss a variation on this
idea.

Milgram [28] defines a segment for a single band image to be any connected
component of pixels, all of whose values lie in some interval I and whose border has
a higher coincidence with the border created by an edge operator than for any other
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interval 1. The technique has the advantage over the Haralick and Kelly technique
[14] in that it does not require the difficult measurement space exploration done in
climbing down a mountain. However, it does have to try many different intervals for
each segment. Extending it to efficient computation in multiband images appears
difficult. However, Milgram does report good results in segmenting white blobs
against a black background. Milgram and Kahl [29] discuss embedding this tech-
nique into the Ohlander [36] recursive control structure.

Minor and Sklansky [31] make more active use of the gradient edge image than
Milgram, but restrict themselves to the more constrained situation of small convex-
like segments. They begin with an edge image in which each edge pixel contains the
direction of the edge. The orientation is so that the higher valued gray tone is to the
right of the edge. Then each edge sends out for a limited distance a message to
nearby pixels and in a direction orthogonal to the edge direction. The message
indicates what is the edge direction of the sender. Pixels which pick up these
messages from enough different directions must be interior to a segment.

The spoke filter of Minor and Sklansky [31] counts the number of distinct
directions appearing in each 3 X 3 neighborhood. If the count is high enough they
mark the center pixel as belonging to an interior of a region. Then the connected
components of all marked pixels are obtained. The gradient guided segmentation is
then completed by performing region growing of the components. The region
growing must stop at the high gradient pixels, thereby assuring that no undesired
boundary placements are made.

Burt, Hong, and Rosenfeld [4] describe a spatial clustering scheme which is a
spatial pyramid constrained ISODATA kind of clustering. The bottom layer of the
pyramid is the original image. Each successively higher layer of the pyramid is an
image having half the number of pixels per row and half the number of rows of the
image below it. Initial links between layers are established by linking each parent
pixel to the spatially corresponding 4 X 4 block of child pixels. Each pair of
adjacent parent pixels has 8 child pixels in common. Each child pixel is linked to a
2 X 2 block of parent pixels. The iterations proceed by assigning to each parent
pixel the average of its child pixels. Then each child pixel compares its value with
each of its parent’s values and links itself to its closest parent. Each parent’s new
value is the average of the children to which it is linked, etc. The iterations converge
reasonably quickly and for the same reason the ISODATA iterations converge. If the
top layer of the pyramid is a 2 x 2 block of great-grandparents, then there are at
most 4 segments which are the respective great-grandchildren of these 4 great-
grandparents. Pietikainen and Rosenfeld [42] extend this technique to segment an
image using textural features.

6. SPLIT AND MERGE

The split method for segmentation begins with the entire image as the initial
segment. Then it successively splits each current segment into quarters if the segment
is not homogeneous enough. Homogeneity can be easily established by determining
if the difference between the largest and smallest gray tone intensities is small
enough. Algorithms of this type were first suggested by Robertson [45] and Klinger
[23]. Kettig and Landgrebe [22] try to split all nonuniform 2 x 2 neighborhoods
before beginning the region merging. Fukada [10] suggests successively splitting a
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region into quarters until the sample variance is small enough. Efficiency of the split
and merge method can be increased by arbitrarily partitioning the image into square
regions of a user selected size and then splitting these further if they are not
homogeneous.

Because segments are successively divided into quarters, the boundaries produced
by the split technique tend to be squarish and slightly artificial. Sometimes adjacent
quarters coming from adjacent split segments need to be joined rather than remain
separate. Horowitz and Pavlidis [19] suggest a split and merge strategy to take care
of this problem. Muerle and Allen [32] suggest merging a pair of adjacent regions if
their gray tone intensity distributions are similar enough. They recommend the
Kolmogorov—Smirnov test. Figure 37 illustrates the result of a Horowitz and
Pavlidis type split and merge segmentation of the bulkhead image of Fig. 7.

Chen and Pavlidis [6] suggest using statistical tests for uniformity rather than a
simple examination of the difference between the largest and smallest gray tone
intensities in the region under consideration for splitting. The uniformity test
requires that there be no significant difference between the mean of the region and
each of its quarters. The Chen and Pavlidis tests assume that the variances are equal
and known.

Let each quarter have K pixels, X,; be the jth pixel in the ith region, X, be the
mean of the ith quarter and X.. be the grand mean of all the pixels in the 4 quarters.
Then in order for a region to be considered homogeneous, Chen and Pavlidis require
that

IX,— X.|<e, i=1,2,3,4.

We give here the F-test for testing the hypothesis that the means and variances of
the quarters are identical. The value of the variance is not assumed known. Under
the assumption that the regions are independent and identically distributed normals,

FiG. 37. Shows a split and merge segmentation of the bulkhead image of Fig. 7.
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the optimal test is given by the statistic F which is defined by

4
KY (X,—X.)/3
F= i=1

4 K *
L X (X~ %) /4K - 1)

It has an Fj 4 x_,, distribution. If F is too high the region is declared not uniform.

The data structures required to do a split and merge on images larger than
512 X 512 are extremely large. Execution of the algorithm on virtual memory
computers results in so much paging that the dominant activity may be paging
rather than segmentation. Browning and Tanimoto [3] give a description of a split
and merge scheme where the split and merge is first accomplished on mutually
exclusive subimage blocks and the resulting segments are then merged between
adjacent blocks to take care of the artificial block boundaries.

7. CONCLUSION

We have briefly surveyed the common techniques of measurement space clus-
tering, single linkage, hybrid linkage, region growing, spatial clustering, and split and
merge used in image segmentation. We have noted that they can be made more
powerful if they are based on some kind of statistical test for equality of means.

Not discussed as part of image segmentation is the fact that it might be
appropriate for some segments to remain apart or to be merged not on the basis of
the gray tone distributions, but on the basis of the object sections which they
represent. The use of this kind of semantic information in the image segmentation
process is essential for higher level image understanding and it is in this area that we
recommend further study.
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