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Abstract — A method of graytone texture pattern generation using a regular Markov chain is presented. The
procedure arranges the generated gray tones in a sequence along a scan line. The transition probability
matrix of the Markov chain directly determines the spatial co-occurrence probapbilities of gray tones in the
generated image. The generated image can be rotated and arithmetically combined to produce images of
additional texture patterns. The paper illustrates the variety of texture which can be produced by this

method.
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1. INTRODUCTION

The generation of texture in computer synthesized
Images is important to graphics.V It is also important
to image processing people who do texture feature
extraction on remotely sensed imagery as well as
medical imagery. Comparative studies of the efficiency
and accuracy of those techniques have been done to
identify their advantages.*** In such studies, sampies
of textures are usually taken from real image data. This
is reasonable because the ultimate purpose is to
analyze real data. But, on the other hand, conclusions
of such studies might sometimes be one-sided or not
generalizable because of the limited number and
variety of the data samples.

To make a thorough comparison of each technique,
we can supplement the real data by synthesized texture
patterns having specified statistics. Then, by using the
synthesized texture patterns, the characteristics of each
technique can be investigated in the usual manner to
provide stronger conclusions about the advantages of
each textural feature extraction method.

There are, however, only a few studies about texture
pattern analysis and/or synthesis.~”) These studies
use either a Markov chain approach or an autore-
gression approach.

In this paper we generate texture using Markov
chains. A texture image can be synthesized using the
cutcomes of gray tone values from a regular Markov
chain by arranging these outcomes in a sequential
manner along an image line. The major advantages of
this method are a simple synthesis process and direct
specification of spatial co-occurrence matrix of synthe-
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sized texture. The generation procedure can be exten-
ded by selecting according to some rule or pattern the
outcomes from a set of simultaneously operating
Markov processes, and then applying a probability
transformation. Synthesized textures by this kind of
extension can have more generalized structures and
variety in their patterns.

The next section describes the mathematical no-
tation used in the paper, and theory of regular Markov
chains is briefly summarized. In Section 3, the method
of texture synthesis by a simple regular Markov chain
is described. The extended methods are discussed in
section 4, and examples of synthesized textures are
given in section 5.

2. NOTATION AND REGULAR MARKOV CHAIN

Pictorial information of an image is represented asa
function of row-column variables (r,¢). The image in
its digital form is usually stored in the computer as a
two-dimensional array. If L, = {1,2,...,N,} and
L.={1,2,...,N,} are the row and column spatial
domains, then L, x L, is the set of resolution cells and
the digital image is a function I which assigned some
gray tone value G = {1,2,..., N} to each and every
resolution cell; I: Ly x L. — G.

The frequency p(i) of a grey tone i occurring in the
image is defined by

B #[(k,hyeL, x L,
N N, N,

I(k, ) = i]

p()

Using these frequency values, we define an occurrence

probability vector P and an occurrence probability
matrix P as follows:
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Spatial co-occurrence probability p(i, j; d,8) is de-
fined by using parameters of a distance d and a
direction §. For a case of § = 0, it can be described as

p(l’]’dao) = # {[(k, h)a (ma n)]B(Lr X Lc)
X (L, x L)|m —k=0,n—k=d,
Ik, h) = i, I(m,n) = j}/(N, - N_).

There are eight directions of §. Each value of 6 is an
angle of clockwise rotation from the positive horizon-
tal direction and their co-occurrence probabilities are
similarly described by following the above. A more
detailed discussion about the concept can be found in
Haralick et al.®

From the definition it is easily justified:

p(i,j;d,6) = p(j,i;d,6+180), & =0,4590,135. (2)
A spatial co-occurrence probability matrix P(d, 8)

has spatial co-occurrence probabilities P(i, j; d, §) as its
entries :

p(1,1;d,6), p(1,2;d,6) p(1,N:d.é)
2,1;d,8), p(2,2;d,6 2,N;d,é
P(,6) = p( s4.0) - pl : ) p( : )
p(N,1:d,8), p(N,2:d,é) p(N,N:d,d)

(6 =0,45,90,...,315).

From (2) and (3), we must have

P(d,d + 180) = PT(d,8), §=0,45,90,135. (4)

Let us define a transition probability matrix M(d, 5)
having for each entry m(i j;d,8) the conditional
probability of a gray tone transition from gray tone i to
gray tone j between points which are d apart in the the
direction of 6. Then

M(d,&) = {m{i,j;d,8)} = P~1P(d,5)
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Fig. 1. Convention for the direction and distance relation-
ships for a spatial co-occurrence probability matrix.
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and
mi,j;d 8) =B )
p(d)
0 =0,45,90,...,315.
Then from (4) and (5), it becomes
M(d,6 + 180) = P~1PT(d, 5) (6)

Let M be a transition matrix of a finite Markov
chain. The matrix M is regular if and only if for some
integer L, M™ has no zero entries. A finite Markov
chain having a regular transition matrix is called a
regular Markov chain.

A regular Markov chain is one in which any of its
states can exist after some number of steps L, no matter
what the starting state is. In other words, a regular
Markov chain has no transient sets, and has a single
ergodic set with only one cycle.

The next two theorems play very significant roles in
calculating spatial co-occurrence probability matrices
of generated textures in the next section. Their proofs
can be found in.®
Theorem 1. If M is a N x N regular transition matrix,
then there exists a matrix A4 satisfying

(@) lim M*= A4,
Lo

(ii) each row of A is composed of the same pro-
bability vector of

3)

N
a=[ay,0,...,ay], 0, =0and Y a,=1

n=1
that is
A = Ex where £ =(1,1,...,1).

The matrix A4 is called a limiting matrix of M.
Theorem 2. If M is a regular transition matrix and 4
and « are as given in Theorem 1, then

(i) for any probability vector II,

lim Mt = a,
L—-w

(i) the vector a is the unique probability vector
such that

aM = a, and
(iil) MA=AM = A

3. IMAGE GENERATION BY A SINGLE
REGULAR MARKOV CHAIN AND
ITS STATISTICS

Now consider a regular Markov chain such that it
has the outcomes of gray tone values G = (1,2,...,N)
and a transition matrix M of
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m(1,1)  m(1,2) m(1,N)
o m(2tl) m(2?2) m(2?N)
m(J\},z) mu\},z) m(]\;, NO)

Each m(i, j) isthe conditional probability of generating
a gray tone value j when the previous gray tone is i.
We will assume that the spatial domain of the
synthesized image is large enough so that
MY>~d4 and MM x4 )
Then the matrix P defined in (1) is given by:
&y

%)

"o
i

.. [0]

o1 .

“ay

The texture synthesis procedure is -described as
follows.

Step 1. Usingan arbitrary initial gray tone value g° to
initialize the regular Markov chain. Let g(k; M, g°) be
the kth outcome from the Markov chain.

Step 2. Arrange the outcomes to generate an image by

Ik, 1) = g(N(k—1) + (I=-1); M,¢°)
with (8)
10,1)=g(0,M;g°) = ¢°
In the above, outcome gray tone values are arranged
sequentially across a horizontal line as shown in Fig.
2a.

As the scanning direction is 0-degree, the transition
probability matrix in the O-degree direction distance d
is simply given by

M(d,0) = M*? )

So from (5) and (9), its spatial co-occurrence pro-

bability matrix in the O-degree direction is given

P(d,0) = PM? (10)

The spatial co-occurrence probability matrix for the
90-degree direction is determined using gray tone
values between points of a same column but a different
row, ie. (k1) and (k + 4,1). From the generation, the
transition probability of gray tones between points

drawn apart is given by M so
M(d,90) = M®Ne = 4 (11

Thus the spatial co-occurrence probability matrix in
the 90-degree direction is
P(d,90) = PA = o
so that
P(,j;d,0) = aa; (12)

By using similar reasoning, transition probability
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matrices of 45-degree and the 135-degree direction are
given by
M(d,45) = MWet D =~ 4
and
M(d,135) = MW= ~ 4
respectively. Accordingly we have

{ P(d,45) = PA =oa"a, and

P(d,135)= PA = a"a (13)

From (6),

P(d,180) = PT(d,0) = (MT)*P:

P(d,225) = PT(d,45) = o',

P(d,270) = P7(d,90) = a0,

P(d,315) = P7(d,135) = «"a..

Of course, the generation does not have to proceed

horizontally. When different scanning directions, as
shown in Fig. 2 are used to generate an image, the

spatial co-occurrence probability matrices are genera-
lized as follows.

PMe; when 6 is in the scanning
direction,
P(d,8) =< (MTyP; when § is in the anti-
scanning direction, and
L aTa; other cases
T e
o - . ———===s
. .

h'315-degrees

d:135-degree

Fig. 2. Scanning directions of gray tone outcomes
arrangement.
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Fig. 3. Outcomes arrangement in a weaving model. Note N,
and N, are odd.

Thus texture patterns with various spatial co-
occurrence probability matrices are realizable by
chosing appropriate M matrices.

4. EXTENDED SYNTHESIS METHODS

The generation method stated in the previous
section can be extended by using multiple Markov
chains and a rule or pattern for selections among them.
Four different methods are described here. Generaliz-
ing the structure of statistics of synthesized images,
these generation methods can produce textures of a
greater variety.

1. An image by a weaving method

In a weaving method, an image is synthesized by
multiple regular Markov processes whose outcomes
are arranged alternately in lines of an image as in
Section 3.

Let us consider two independent regular Markov
chains, say chain No. 1 and chain No. 2. Let quantities
of M, «, A, P defined in Section 3 have subscripts
denoting which Markov process they describe.

One of the simplest methods for arrangement is a
plain weaving of Fig. 3, in which the solid circles and
the empty circle represent the outcomes from chain
No. 1 and chain No. 2, respectively. The scanning
direction is assumed to be 0-degree and assume

MW= 12 o 4 and M®™-DZ o 4
in place of (7). Now let us consider the spatial co-
occurrence probability matrix of the image.

From the assumptions, chain No. 1 and chain No. 2
are independent of each other and have occurrence
probability vectors of gray tone values as @, and «,
respectively.

For § = 0 and d = 1, the co-occurrence probability
matrix from chain No. 1 outcomes to chain No. 2
outcomes is simply given by «]a,, and the one from
chain No. 2 cutcomes to chain No. I outcomes is a30;.
Thus its whole co-occurrence probability matrix is the
average of these and is given by:
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P(1,0) = (ofo, + a30,)

The consideration is applicable to the co-occurrence
probability matrices between the outcomes of two
chains. These cases exist in the 0 and 90 degree
direction with distances of odd numbers. So we have

PQ2n + 1,0) = PQ + 1,90) = % (oo, + aZ;)

N -1
=0,1,2,... e
" 2

When the distance has an.even value in the O-degree
direction, co-occurrence probabilities are defined be-
tween the outcomes from the same chain. Let the
distance be 2/, then from (10), the spatial co-occurrence
probability matrices for the outcomes of chain No. 1
and chain No. 2 are given by P;M; and P,M,. Thus
the whole probability matrix is

P(21,0) = 1{P,M, + P,M,}.
N, —1

I=12,...,
Bt 2

In the directions of 45 and 135 degrees, the outcomes
of each chain are arranged in parallel. Referring the co-
occurrence probabilities to (13), we have

P(d,45) = P(d,135) = 1(«fa, + aloy).  (14)

The last is the one in 90-degree direction with even
distances. In this case, the spatial co-occurrence pro-
bability matrix is defined between the outcomes from
the same chains after a large enough distance of N..
Thus as in the case of (14), we have

P(2,90) = Hofoy + afay).

The spatial co-occurrence probability matrix are
summarized as follows:

P@O) Laloy + alay) for odd d
T L(PMY?  PoMY?) for even d
P(d,45) = J(aia; + ojay). (15)
10T T for odd d
P(d,90) = {20172 +#2)
HaToy + olay) for even d
P(d,135) = H(afo, + alas,).

The cases of 180, 225, 270, and 315 degrees are found
by (6). In the previous result, ranks of spatial co-
occurrence probability matrix are reduced to one if it is
not in the scanning direction, but those in (15) can have
larger ranks.

Although only one case is analyzed in the above, the
synthesis procedure can be generalized by different
scanning directions, different arrangement rules, or
using many Markov chains, etc. The outcome se-
quences from each Markov chain can be compared to
‘strings for weaving textures in this method.
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2. An image by composite method

In a composite synthesis method, we use a regular
Markov chain and a set of random gray tone value
generators. Conveniently giving index numbers to the
generators, let us describe a probability vector of their
outcomes to be:

Bi= [Igin Bizs- s ,BiN]:

where f;; means an occurrence probability of gray
tone value j from the i-th random gray tone value
generator. The regular Markov chain has the set of
outcomes of {1,2,..., M}, which are the index symbols
of the random generators.

In the first stage of the texture synthesis, the regular
Markov chain generates an image by the same
method as stated in Section 3 such that each resolution
cell has one of the index symbols of the random
generators. We call such an image a symbolic image.
Describe the resulting spatial co-occurrence proba-
bility matrix of symbols as ‘

i=12,....M

S(1,1;d,6)  8(1,2:4,6) S(1,M;d, )
S(2,1;4,8)  S(2,2:4,6 S,M;d,s

8(d,d) = ( ; ) ( . ) ( . ) (16)
S(M,1;d,8) S(M,2:d,5) S(M,M;d,s

which is already calculated in Section 3.

Then, in the second stage, a texture image is
synthesized. A grey tone value of each resolution cell is
to be supplied by the random gray tone value gene-
rator having the same index symbol in the symbolic
image generated in the first stage. That is, the regular
Markov chain indirectly participates in the gray tone
values by specifying their suppliers.

Now let us consider the statistics of the synthesized
textures. Given a transition from an outcome of the
i-th gray tone value generator to an outcome of the
J-th generator, the conditional transition probability
matrix is:

! B;—this is a conditional probability matrix.

From the generation of the symbolic image, such a
transition can occur with a probability of S(i,j; d, ).
Thus, in the spatial co-occurrence probability matrix
of the synthesized image, this particular transition
contributes an amount of

Accordingly, the spatial co-occurrence probability of
the texture must be the total of all those combinations,
ie.

M M

P(d,0) = 3. ). 8(i.j; d,0) B B;. (17)

2

Looking from this composite synthesis method, we
can identify the synthesis method of Section 3 to be its
special case. That is, if we use N gray tone generators
with occurrence probabilities such that
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Bi=1[0,...,0,1,0,...,0], i=12,.. N.(18)

i-th component

then P(d, 6) of (17) isreduced to S of (16). The gray tone
generator with f§; of (18) is not a random one any more,
but always supplies gray tone value i.

3. Compound of images

Let us assume that I, and I, are images generated by
regular Markov chains No. 1 and No. 2 respectively.
The a compound image I is defined as

I(r,c) = 1,(r,c) + I (r,c), forall (r,c)eL, x L,.

Since the gray tone valuesin I, and I, varyfrom 1 to N,
those in I vary from 2 to 2N.

Now consider the spatial co-occurrence probabil-
ities in the compound image. From the generation
procedure, a co-occurrence transition from a gray tone
value m to n in I must be provided by co-occurrence

transitions from i to j in [, and from k to 1 in I, such
that

i+k=m
j+1l=n.
Thus its co-occurrence probability is given by

min(N,n—1) min{N,m— 1)

plm,n;d,é) = Y Y

w=max{l,n—=N} t=max{1,m—N}

pl(t>W; dsa)

pam—t,n—w;d,8). (19)

where p; and p, are spatial co-occurrence probabilities
in I; and I, respectively. The spatial co-occurrence
probability matrix cannot be described compactly by
matrix or vector notations, butits entries can be simply
calculated by computer according to (19).

By using various original images of different statis-
tics, the compound images can have a large variety,
The compound process is not necessarily restricted to
two images and may incorporate many images.

4. Probability transformation

A probability transformation can be applied to any
texture. The gray tone values of the probability
transformed image are determined in a pointwise
manner by the gray tone values of the original image
under a specified probability of transformation. Let us
describe the transformation probability matrix as

q(L,1)  q(1,2) q(1,N)
2,1 2,2 2N

0= q(:,) q(:) q(: ) 20)
q(N,1) ¢{N,2) g(N,N)
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where each 4(}, /) is the conditional probability of the
occurrence of a gray tone value j in the transformed
image when the original image has a value i.
A co-occurrence of a transition from i to j in the
" original image provides a co-occurrence of transition
from kto 1 in the transformed image with a probability
of

q(, k)p(i, j; d,0)q(j, 1).

Thus the total co-occurrence probability r(k, 1; §,d)in
the transformed image is given by

rik,15d,8) =} q(i,k)p(i,j;d,8)q(, 1)

= Qi P(d,9)Q,

where Qy, k = 1,2,..., N, is the k-th column of Q and
the spatial co-occurrence probability matrix of the
transformed image is

R(d,6) = Q"P(d,8)Q (21)

That is, the R is a congruent matrix of P associated
with Q.

When, in each row of Q, only one element is 1 and
the others are 0, the transformation performs a change
of gray tone values deterministically.

In the transformation, the number of gray tone
values of the transformed image is not necessarily
equal to N, but it can be any positive integer. In this
case, Q must be generalized to be a rectangular matrix.

In the results of (15), (17) and (19), the rank of spatial
co-occurrence probability matrices is considerably
generalized from the results of Section 3. From (21), the
probability transformation can easily modify the spa-
tial co-occurrence probability matrix and reduce or
increase the number of gray tone values in the
transformed image. Using these further extended
methods, we can obtain a greater variety of texture
patterns.

5. Examples

In the following examples, regular Markov chains
and random gray tone value generators are used in the
synthesis of texture samples. Outcomes have 3 gray
tone values of 1(white), 2(gray), and 3(black), and the
scanning direction is O-degrees unless otherwise stated.

- N
(a) Markovchain1; M= |3 § %
(MK-1 e

L; L2

8 8 ‘t

with e =[5 § %].

(b) Markov chain2; M= |+ L %
(MK 11
N

with a=[% § 1]

— -

(c) Markov chain3; M= [+ L 1
MK-3) b id

1oL 1

EER

with o[§ § 4]

4

(d) Markov chain4; M = :-% i L
(MK-4) 70 %

11t
14 4 2]

with a=[% {1 %]
(e) Markov chain 5; M= |} 2 Q
. (MK-5) 103 1

5 5 5

L3 1

5 5 5

with a=[§ 3 4]

and

(f) Random gray tone values generators
By =[0.7,0.2,0.1],
B, =[02,0.7,0.1],
B3 =10.1,0.2,0.7].

Figure 4 shows samples of texture patterns synthe-
sized by MK-1 to 5. Textures 4.1 ~ 4.3 have different
coarseness of texture in the horizontal direction, which
come from different dominancy of diagonal elements
in transition matrices. In texture 4.4, a transition of
gray tone values 2 — 2 in the 0-degree direction does
not occur. In texture 4.5, transition probability of gray
tone values 2 — 2 is large, but those of values 1 — 1 and
values 3 — 3 are small. Subsequently, the gray color is
dominant in the synthesized image.

Figure 5 shows samples of textures synthesized by
the plain weaving method.

Figure 6 shows samples of textures synthesized by
the composite method. In the synthesis, f;, §, and B,
are associated with symbols 1, 2 and 3 respectively in
the symbolic images generated by Markov chains.

Figure 7 shows samples of texture patterns synthe-
sized by the compound method. In each case, the
scanning directions in the generations of the first image
and the second image are O- and 90-degree re-
spectively. Then two images are added together.
Because each original image has 3 gray tone values, the
images of the compound method have 5 gray tone
values.

Figure 8 shows samples of texture patterns synthe-
sized by the probability transformations. To texture
4.1, three kinds of probability transformations are
applied. Their transition matrices are as follows:

09 005 0.05

0.~ 1005 09 005 |
005 005 09 |
075 0125 0.123

0,= |0.125 075 0.129] |
0125 0125 075
05 025 025

0.= 1025 05 025
025 025 0.5
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Fig. 4. Texture patterns synthesized by a single regular Markov chain.
Texture 4.1: generated by Mk-1.

Texture 4.2: geﬁerated by MK-2.

Texture 4.3: generated by MK-3.

Texture 4.4: generated by MK-4.

Texture 4.5: generated by MK-5.

Fig. 5. Texture patterns generated by the plain weaving method.

Texture 5.1: generated by MK-1 and MK-2.

Texture 5.2: generated by MK-1 and MK-4.

Texture 5.3: generated by MK-1 and MK-5.

The textures of 8.1 has a slight distortion of patterns
from Texture 4.1, because of the diagonal element
dominancy in Q,. But in the case of Texture 8.3, its
original pattern can be hardly recognized.

6. Conclusion

We have suggested procedures for synthesizing
texture images using regular Markov chains. The

simplest method is to arrange outcomes of gray tone
values from a Markov chain sequentially along image
lines. The transition probability matrix directly de-
termines the spatial co-occurrence probability mat-
rices in the scanning and reverse scanning direction.
Those in other directions are described using the
limiting matrix.

The procedure was extended to compound images,
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Fig. 6. Textures synthesized by the composite method with random gray tone value generators of ,, §, and

Bs.
Texture 6.1: the original symbolic image is generated by MK-1.
Texture 6.2: the original symbolic image is generated by MK-4.

Texture 6.3: the original symbolic image is generated by MK-5.

Fig. 7. Textures by the compound method.
Texture 7.1: generated by MK-1 and MK-1.
Texture 7.2: generated by MK-1 and MK-4.

Texture 7.3: generated by MK-1 and MK-5.

Texture 8.1: generated by Q,.

Texture 8.2: generated by Q,.

Texture 8.3: generated by Q..

o
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composite images, and those generated by muitiple
Markov chains. Further processing is possible to
images by applying a probabilistic point operator,
which can modify the statistics of images or change the
number of gray tone values.

Thus by choosing appropriate transition proba-
bility matrices of Markov chains and probability
transformation, texture images with various statistical
values and patterns are realizable as shown in
Section 4.
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