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Comparative Study of a Discrete Linear Basis 
for Image Data Compression 

ROBERT M. HARALICK, MEMBER, IEEE, AND K. SHANMUGAM, MEMBER, IEEE 

Abstract-Transform imlige data compression consists of dividing the 
image into a number of nonoverlapping subimage regions and quantizing 
and coding the transform of the data from each subimage. Karbunen­
Loeve, Hadamard, and Fourier transforms are most commonly used in 
transform image compression. This paper presents a new discrete linear 
transform for image compression which we use in conjunction with 
ditferential pulse-code modulation on spatially adjacent transformed 
subimage samples. For a set of thirty-three 64 x 64 images of eleven 
ditferent categories, we compare the perfo~ of the discrete linear 
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transform compression technique with tbe Karhunen-Loeve and Hada­
mard transform techniques. Our measure of performance is the mean­
squared error between tbe original image and the reconstrncted image. 
We multiply the mean-squared error with a factor indicating the degree 
to which the error is spatially correlated. We find that for low compression 
rates, the Karhunen-Loeve outperforms both tbe Hadamard and the 
discrete linear basis ·method. However, for high compression rates, tbe 
performance of the discrete transform method is very close to that of 
the Karbunen-Loeve transform. The discrete linear transform method 
performs much better than the Hadamard transform method for all 
compression rates. 

I. INTRODUCTION 

THE OBJECTIVE of efficient compression (coding) of 
image data is to remove the redundancy from the 

image in transmission across a digital communication link. 
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Two important classes of compression schemes that make 
use of the spatial correlation of image elements are the 
differential pulse-code modulation (DPCM) schemes and 
transform compression techniques. DPCM techniques are 
based on the principle that it is more efficient to code the 
difference between the gray-tone values of adjacent image 
elements than the actual values because of the high correla­
tion between the gray-tone values of adjacent image ele­
ments. In transform data compression the mathematical 
transform of the imagery data from nonoverlapping sub­
image regions is taken and the transform coefficients which 
contain a significant portion of the image energy per unit 
area are coded and transmitted. The reconstruction of the 
imagery is done using the decoded values of the transform 
coefficients and the appropriate basis vectors which were 
used in transforming the data. 

The idea of linear transforms and block quantization was 
suggested by Huang and Woods [I], [2]. Various linear 
transform techniques include the Fourier, Hadamard, and 
K.arhunen-Loeve transforms. Fourier, Hadamard, and 
"slant" transforms have been studied in detail by Pratt et 
a/. [3], [4]. Habibi and Wintz [5] have compared the 
performance of Hadamard, Fourier, and Karhunen-Loeve 
transforms on a set of four 256 x 256 pictures at 0.5, 1.0, 
and 2.0 b/picture element. 

An adaptive version of the transform data compression 
technique was investigated by Tasto and Wintz [ 6] and a 
comparison of the performance of DPCM and transform 
techniques may be found in [7]. There is an excellent 
summary of transform coding techniques by Wintz [8]. 

The general consensus of the previous studies on image 
data compression techniques is that the Fourier and 
Hadamard transforms provide adequate domains for coding 
even though their performance is inferior to those obtained 
by the K.arhunen-Loeve transform. However, the fast ver­
sions of the Hadamard and Fourier transforms provide 
considerable simplification in implementation. 

We present a new discrete linear basis (DLB) for trans­
form data compression which offers some of the computa­
tional advantages of the Fourier and Hadamard transforms 
without sacrificing the performance compared to the 
K.arhunen-Loeve transform. The basis vectors are cal­
culated a priori, as in the Hadamard and Fourier transforms, 
and a fast implementation of the DLB transform is also 
possible. 

In much of the earlier work on transform data compres­
sion, the transformed samples of the imagery data from 
spatially adjacent subimage regions were quantized in­
dependently using the simple Max's nonuniform quantizer 
[9] or a sophisticated coding scheme such as the Huffman 
code. We found that while the transformed samples ofdata 
from one subimage region were uncorrelated, in general 
there was high correlation between transformed samples of 
data from two spatially adjacent subimages. Hence we used 
a differential coding scheme to remove some of this re­
dundancy in transform samples from adjacent subimages. 
The use of a DPCM scheme on the transformed samples 
was first suggested by Haralick et al. (10]. Recently, Habibi 
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[11], [12], and Arisana and Kanaya [13] have also pre­
sented results on various possible ways of using DPCM 
systems to quantize transformed data. 

We compared the performance of the DLB transform 
with that ~f the Hadamard and Karhunen-Loeve transform 
techniques OD a set of thirty-three .64 X 64 images using a 
subimage size of 4 x 4. For the subimage size we had 
chosen, which was recommended by Wintz [8], the Fourier 
transform does not offer any significant improvement in 
performance over the Hadamard transform, and hence we 
did not consider the Fourier transform in our studies. In 
addition to using the mean-squared error and subjective 
picture quality as measures of performance, we also used a 
correlated error measure for comparing the performance of 
the DLB transform with the Karhunen-Loeve and Hada­
mard transforms. Based on the comparative performance 
on the set of 33 images, we conclude the DLB transform 
offers a good tradeoff between the ease of implementation 
of the Hadamard transform and the superior performance 
of the K.arhunen-Loeve transform. 

II. TRANSFORM IMAGE DATA CoMPRESSION 

Since transform image data compression techniques have 
been studied in detail by a number of investigators, only a 
brief outline of the technique will be presented here. The 
first step in implementing a transform data compression 
technique is to divide the M x M image into a set of non­
overlapping subimages (or windows) of size n x n, n < M. 
H we interpret an n x n subimage as a point in an n2

-

dimensional space where each of the n2 coordinates corre­
sponds to one of the n2 pels in the subimage, then the image 
is a collection of k, k = (M/n)2

, vectors of dimension n2
• 

We will let N denote the value of n2
, and X1oX2 , • • • ,Xt the 

collection of the data vectors from k nonoverlapping 
windows in the image. · 

The second step in transform image data compression is 
to project the N-dimensional data into an r-dimensional 
subspace using a set of r basis vectors vl> v2, . .. 'v,.. The 
jth projection of the data vector X; is given by 

Yii = V/X; (1) 

where lj T = (lJ~> lj2 , • • ·, ViN) is the transpose of the jth 
basis vector. 

The r projections of each of the data vectors X; are coded 
independently and the code is transmitted over a binary 
channel to the receiver. The reconstruction of the data 
vector X, at the receiver takes place using the decoded 
values Pii of Yii according to 

(2) 

where 1f i is the reconstructed value of X 1• 

H we have a noise-free channel, then there are two sources 
of error in a transform image coding scheme, namely, the 
truncation error and the quantization error. The truncation 
error can be reduced by a suitable choice of the basis vectors 
and the number of projections used, and the quantization 



error can be reduced by the use of an efficient coding 
scheme for the projectioQs. 

In the principal components method of transform data 
compression, the basis vectors are comprised of the r eigen­
vectors of the sample covariance matrix of X1oX2 , • • ·,X" 
corresponding to the r largest eigenvalues of t11e covariance 
matrix. In the Hadamard transform method the projections 
onto the r lower sequency Walsh functions are used. Com­
plete details of these procedures may be found in [8]. 

In much of the earlier work in traQsforxp. image data 
compression, the pr9jections of the data vect~rs have been 
coded independently. The number of bits assigned to the 
jth projection is either proportional to the variance of the 
projection or proportional to the logarithm of the variance 
of the projection. Bit assignments proportional to variance 
seem to yield better pictures [ 5]. Other ~ariations in the 
quantization (coding) procedure may be found in [8]. 
Using an adaptive version of the Karhunen-Loeve trans­
form with different Huffman coding for each projection, 
Tasto and Wint~ [6] have proposed a coding scheme whose 
mean-squared-error performance nearly attains the upper 
bound on the rate-distortion function [14], [15] for discrete 
ergodic sources with memory. ' · 

The selection of a particular set of basis vectors for 
transform i~age coding can be justified if the image in­
formation lost in using the set of basis vectors with the 
associated quantizing procedure can be quantified by a 
measure of distortion. At this point, mathematical tract­
ability seems to dictate that the distortion measure be of the 
mean-squared-error type. For Gaussian sources it is pos­
sible to specify the minimum bit rate R for a fixed mean­
squared-error D parametrically as [15] 

~ 1 A,. 
R(D) = t... - log2 ...! 

A,>e 2 8 

(3) 

where l 1 are the eigenvalues of the covariance matrix of 
the source random process. This optimum performance can 
be approached 'by applying the Karhunen-Loeve (principal 
components) transformation and quantizing the transform 
coefficients separately. In spite of some of the simplified 
procedures suggested [16] for fulding and implementing 
the Karhunen~Loeve transform, the fact that the procedure 
is image dependent makes it computationally c.omplex, and 

·this has restricted its use. 
Fortunately, the Karbunen-Loeve expansion for a dis­

crete sample of a stationary process is approximately given 
by a Fourier expansion. Also, there is experimental evidence 
that replacing the finite Fourier matrix with the Walsh.:.. 
Hadamard matrix does not result in a serious degradation 
[17], [18]. Hence, the Fourier and Hadamard transforms 
have been widely used. Another factor in favor of their use 
is their ease of implementation. For a subimage size n x n, 
the Hadamard transform requires 1.n2 log2 n

2 operations as 
compared to 2n4 operations required for the principal 
components transformation. 
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III. DISCRETE LINEAR TRANSFORM 

Basis Vectors 

The basis vectors which define the new discrete linear 
transform are generated by requiring that 1) theN vectors 
Vt> V2 ,- • ·, VN e RN be mutually orthogonal; 2) the com­
ponents of the vectors be integer valued with no common 
factors; and 3) each vector be either oqd or even 

V - (:~) . {even, ifa1 = aN+ 1_, i = 1,2,···,N 
- : IS odd "f . , 1 a 1 = -aN+ 1- 1, i = 1,2,- · ·,N. 

aN 

We suggest one way to generate such a basis. First, let us 
consider generating the even vectors. Let 

if N is even 

if N is odd. 

There will be a total of [ N/2] even vectors in the basis. We 
begin by taking all of the components of the first even 
vector to be unity. Suppose we have generated even vectors 
Vt> V2 , • • ·, V"_ 1 ; then we generate V" as follows. Let 

a1 

a2 

v" = if N is even 

a2 

a1 

a1 

a2 .. 

v" = if N is odd. 

a2 

a1 

We require that the components of V" satisfy the following 
[ N/2] - k constraints: 

ra1 - sa" = ra2 - sak+ 1 = · · · = ra£Nt2J-k+ 1 - sa£N/2J· 

(3) 

In addition to (3), we require that Yt be orthogonal to 
V., V2 ,- • ·, V"_ 1• Hence we have a total of [ N/2] - I con­
straints on the [N/2] components of V". We can use the 
one remaining degree of freedom to make the components 
have integer values without any integer common factor. 
We know we can do this since we require the [N/2] CO$­

ponents to satisfy [ N/2] - 1 linear equations having in­
teger coefficients. Therefore, besides the irrational solutions, 
there are an infinite number of rational solutions. We can 
take any one of these solutions and multiply out the 
denominators to obtain the integer-valued veetpr. 
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Now we consider the odd vectors. Let 

N ~~· 
( 2 )= N-1 

2 ' 

if N is even 

if N is odd. 

There are (N/2) components to be determined for any odd 
vector. Suppose we have generated odd vectors Wh · · ·, 
Wt-t· We generate Wt as follows. Let 

W"= if N is odd 

if N is even. 

Require 

rb 1 - sbli:+t = rb2 - sb1+2 = · · · = rb(Nfl)-k+t' 

and that W~: be orthogonal to Wt>W2,. • ·,Wii:-t· These 
requirements represent (N/2) - 1 constraints. Since there 
are (N/2) components to be determined, we have one 
degree of freedom left, and we can use this degree of free­
dom to make the components have integer values without. 
any integer common factor. TheN basis vectors generated 
using the previous procedure are then rearranged such that 
the first basis vector has no sign changes (sequency 0), 
the second vector has one sign change (sequency 1) and so 
on. That is, the basis vectors are arranged in the ascending 
order of their sequencies. Although we have not proven it, 
we have conjectured that the procedure generates basls 
vectors having sequencies 0 through N - 1, one basis 
vector per sequency. With r = 1, s = -2, and N = 4, the 
four basis vectors are 

0 (=l) ( =1) U) · 
The five basis vectors for N = 5 (with r = 1, s = -1 for 
even vectors, and r = s = 1 for odd vectors) are 

(il ~!) m (~~) ~~J. 
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With r = 1, s = 1, and N = 8, the eight basis vectors are 

1 
1 
1 
1 
1 
1 
1 
1 

For certain values of r and s, some of the basis vectors 
of the DLB transform are the same as some of the basis 
vectors of the slant transform (which is defined for values 
of N equal to integer powers of 2). In general, however, the 
basis vectors of the DLB transform and slant transforms 
are different. 

Implementation of the DLB Transform 

The projection operations and the reconstruction for the 
DLB transform can be implemented directly using (1) and 
(2). The number of operations required for computing all 
the N projections for a data vector in RN is 2N2 , which is 
the same as the number of operations required for im­
plementing the Karhunen-Loeve transform. However, this 
is considerably more than the 2N log2 N operations re­
quired for implementing the Hadamard transform. It is 
possible to reduce the number of operations required to 
obtain the DLB transform by using a fast 'algorithm, 
described below. 

The fast algorithm is based on the principle that the basis 
vectors for RN can be represented by taking the proper dot 
products of the basis vectors of two lower dimensional 
subspaces RN' and RN2

, where N1 and N2 are such that 
N = N 1N2 • Let U = (u1,u2 ,. • ·,uN,l and V = (vhv2 ,. • ·, 

vNJT be two vectors of dimension N1 and N2 , respectively. 
Then we can define a product vector of dimension N 1N2 by 

uN,vh · · · ,uN,vNJT. (4) 

Suppose we have a set of vectors U1,U2 , ···,UN, which 
form an orthogonal basis for RN', and a set of vectors 
Yt,Vz,. · ·,VN2 which form an orthogonal basis for RN2

; 

then we can define a set of product vectors 

{UiVi I i = 1,2,. · ·,N1;j = 1,2,. · ·,N2 } 

as defined in (4). We will show that {U1Vi} is an orthogonal 
basis for RN,N2 , and by repeated construction we will 
develop a fast algorithm for the DLB transform which will 
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require a considerably smaller number of operations than 
the 2N2 operations required by the direct implementation. 

Lemma: Let {Xt,X2, · · · ,XN,} be an orthogonal basis for 
RN• and {Yt,Y2,. · ·,YN

2
} be an orthogonal basis for RN2

• 

Then {X;Yi I i = 1,2,· · ·,Nt;j = 1,2,. · ·,N2} is an or­
thogonal basis for RN•N2 • 

Proof of this lemma is given in the Appendix. 
We will now develop a fast algorithm to represent an 

N-dimensional vector V in terms of the product vector of 
the basis vectors in lower dimensional spaces. Let N = 
NtN2 • • • N,. and let {X~ I i = 1,. · ·,N,J be an orthogonal 
basis vector for N,.. Then, by successive application of the 
preceding lemma, 

B = {Xf,x~ · · · xt 1 it = 1,. · ·,N2; i2 = 1,. · ·, 

N 2 ; • • ·; i" = 1,. · ·,N"} (5) 

is an orthogonal basis for RN. The usual way to represent 
V, V = (v~>v2 ,. • • ,vNl in terms of basis B is to take the 
dot product of V (projection of V) with each of the vectors 
in B. This requires (NtN2 • • • N,.)2 operations of addition 
and multiplication. We can reduce the number of add and 
multiply operations to (Nt + N 2 + N,.) x N 1N 2 • • • N" by 
the following algorithm. 

Consider the calculation of W;1,;2, •.• ;;k, the dot product 
of the vector V with the basis vector X;~,X;!, · · · ,x;:. for 
all i~>i2, • • ·.i-t· For simplicity in calculation, we use a k­
dimensional indexing notation on the NtN2 • • • N" com­
ponents of the vector V. The components of V will be 
denoted by v with a k-dimensional index. An index of 
Ut>j2 , • • • ,j,.) on v means the component 

Ut - 1)N2N3 ... N,. + ... + Ut-2 - 1)Nk-1 ... N,. 

+ (A-t - 1)N,. + j,.. 
We begin with 

(6) 
Now, to determine 

for each ik,jl>j2,. • • ,j,._ 1 requires N,. add and multiply 
operations. There are a total of (NkNtN2 • ~ • N,._ 1)N,. add 
and multiply operations. Let v}~.h•·. ·i•k-• denote the last 
summation on the right-hand side of (6); then 

Nt 

w,,,h•· · ·•ik = L 
it=t 

(7) 

No~, to determine the value of the last summation on the 
right-hand side of (7) for each ik-t.i,.,jt>jt,j2 ,· • ·,j,._2 re­
quires N,._t operations and there are a total of (N,._tN,.Nt 
· · · N,._ 2)N,._t add and multiply operations. Continuing 
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this reasoning, there are k summations. The /th summation 
requires (N1N1+t · · · N"N1N 2 • • • N1_ 1)N1 operations. Hence 
the total number of add and multiply operations required is 

k 

T = L (N,Nl+t ... NkNtN2 ... N,_l)N, 
l=t 

= (N1N 2 · · · N")(Nt + N 2 + · · · + N"). (8) 

Let us now compare the number of operations required 
for different transforms for N = 16 (subimage size 4 x 4). 
The number of operations required for obtaining the 
Karhunen-Loeve transform is 512. The number of opera­
tions required for the Hadamard transform will be obtained 
from (8), with k = 4, N1 = N 2 = N 3 = N4 = 2, as 128, 
noting that there are no multiplication operations in ob­
taining the Hadamard transform. If we implement the DLB 
transform using the four vectors given in the previous 
section, the total number of operations required can be 
obtained from (8), with k = 2, N1 = 4, N 2 = 4, as 256. 
These 256 operations for the DLB can be carried out in 
integer arithmetic, whereas the 512 operations for the 
Karhunen-Loeve transform must be done in floating point 
arithmetic since the eigenvectors have components with 
irrational values. Also, the Karhunen-Loeve transform 
requires eigenvector computations. Hence it can be seen 
that the DLB transform is computationally much simpler 
than the Karhunen-Loeve transform. However, it requires 
more operation than the Hadamard transform. 

The DLB transform has considerable advantages over 
the Karhunen-Loeve transform and the Hadamard trans­
form for subimage size 6 x 6 for which fast Hadamard 
transform does not exist. If we implement the DLB using 
k = 2, Nt = 6, N2 = 6, the number of integer operations 
required is 864. The Karhunen-Loeve transform requires 
2592 floating point operations. 

IV. QuANTIZATION PRocEDURE 

Mter the N picture elements in each n x n subimage 
region have been transformed into r ::;;; N projections, each 
projection must be quantized and coded. Many quantization 
procedures have been suggested in the past. These pro­
cedures are designed to minimize the mean-square error in 
quantization or to improve the subjective picture quality 
by coding only those projections which correspond to the 
spatial frequencies to which the eye is most sensitive. All 
of these procedures, however, quantize the projections of 
data from a subimage region independent of the projections 
of data from another spatially adjacent subimage region. 
We suggest a differential quantizing scheme to remove the 
redundancy in the projections of data from spatially 
adjacent subimage regions. 

Consider a sequence of projections Ylk, Y2,., · · ·, YK,., which 
are projections of data vectors X 1,X2 ,. • • ,XK onto the kth 
basis vectors. If the data vector.,; X~>X2,. • • ,XK are from 
spatially adjacent subimage regions, then the sequence of 
projections Ylk, Y2k, • • ·, YKk will be correlated. Hence a 
differential coding of this correlated sequence of projections 
will be more efficient than direct coding of the projections. 
Depending on the size of the subimage region and the 



,'· ''!~'---

HARALICK AND SHANMUGAM: IMAGE DATA COMPRESSION 

spatial correlation function of the image, the differential 
coding scheme can be designed with an appropriate 
predictor. 

In our comparative studies,. we used a differential coder 
with a one-stage predictor for coding these coefficients. The 
quantizer levels were determined using an equal-probability 
algorithm on the estimated probability distribution of the 
first-order difference sequence. 

The number of bits used for coding the various coefficient 
sequences were determined as follows. Let u1

2 ,u /,. · · ,u/ 
be the variances of the r coefficients and let n1on2 , • • • ,nr be 
the number of bits used to code each coefficient. Given the 
total number of bits NB which we want to use, the number 
of bits used to code each coefficient is determined from 
2"1 = [au/], where a is related to NB and u /, i = I ,2,- · · ,r, 
by 

r 

2NB = n au/. (10) 
i=l 

Since the ni are integers and we do not impose the con­
straint L ni = NB, the actual number of bits used for 
coding may be slightly larger or lower than NB. 

Various possible ways of using DPCM systems to quantize 
the transformed data are also discussed by Habibi [II], [I2] 
and Arisana and Kanaya [13]. In particular, a variation in 
the way we assign bits would be to assign bits to the DPCM 
system in proportion to the variance of the differential 
signal in the DPCM system. 

V. COMPARISON OF PERFORMANCE 

Description of the Image Set Used 

For comparing the performance of the DLB transform 
data compression technique with the Karhunen-Loeve and 
Hadamard transforms we used a set of 33 images of size 
64 x 64 resolution cells. These images were obtained by 
digitizing t x t-in sections of standard I :20 000, 9 x 9-in 
aerial photography supplied by the United States Army 
Engineer Topographic Laboratories. Each image was digit­
ized into a 64 x 64 resolution-cell matrix and the levels of 
digitization ranged from I to 64. There were II scene 
categories in the image set comprised of scrub, wood, river, 
orchard, marsh, swamp, old residential, new residential, 
urban, road, and railroad yard scenes. 

Indexes of Performance 

Three performance indexes are used in comparing the 
performance of the different image coding techniques. 
These measures of performance are I) the root-mean-square 
(rms) error between the original and the reconstructed 
images, 2) visual comparison of reconstructed images, and 
3) correlated rms error. 

The gray values of the reconstructed images are first 
rounded off to integers, the error images are obtained, and 
the rms error is computed from the error picture. The 
correlated rms error is the product of the rms error times a 
spatial correlation measure obtained from the error image. 
The correlation measure, which is a measure of the spatial, 
neighborly dependence of the error within the image, is 
computed as follows. 
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Let Lx = {I,2,- · ·,Nx} and L., = {I,2,- · ·,N.,} be the 
x and y spatial domains of the error picture, and let G = 
{I,2,- · · ,N9 } be the set of gray tones in the error image. 
We first compute four matrices of relative frequencies 
P(i,j,d,()), with which two neighboring resolution cells 
separated by a distance of d occur in the error image, one 
with gray-tone value i and the other with gray-tone value j. 
The angular relationship between the neighboring resolu­
tions cells is denoted by e. Formally, for angles quantized 
to 45 intervals, the unnormalized frequencies are defined by 

P(i,j,d,0°) = #{((k,/), (m,n)) E (L., X Lx) X (L., X Lx)l 

k - m = 0, I/ - nl = d, I(k,l) = i, I(m,n) = j} 

P(i,j,d,45°) = #{({k,/), (m,n)) E (L., X Lx) X (L., X Lx)l 

(k - m = d, I - n = -d) or (k - m = -d, I - n = d), 

I(k,l) = i, I(m,n) = j} 

P(i,j,d,90°) = #{((k,l), (m,n)) E (L., X Lx) X (L., X Lx)l 

lk - ml = d, I - n = 0, I(k,l) = i, I(m,n) = j} 

P(i,j,d,135°) = #{((k,l), (m,n)) E (L., X Lx) X (L., X Lx)l 

(k - m = d, I - n = d) or (k - m = -d, I - n = -d), 

I(k,l) = i, I(m,n) = j} (11) 

where I: L., x Lx-+ G, and # denotes the number of 
elements in the set. Note that these matrices are symmetric: 
P(i,j; d,()) = P(j,i; d,()). The distance metric d implicit in 
the preceding equations can be explicitly defined by 
d((k,l),(m,n)) = max {lk - ml, II - nl}. 

Let P(i,j) denote one of the normalized gray-tone transi­
tion matrices. Then the correlation measure is defined by 
the following equations: 

and 

C = - ~ ~ P(i ") lo { P( i,j) } f 7' ,J g P( i)P(j) 

h = - L P(k) log P(k) 
k 

P(k) = L P(i,k) = L P(k,i) 
i i 

·C 
p = -. 

h 
(12) 

The correlation measure p defined in (12) is also a measure 
of independence between the variables of the distribution 
P(i,j). For details of the properties of the correlation 
measure, the reader is referred to [I9]. 

After the correlation measure has been computed for 
each of the four angular gray-tone transition matrices, the 
average value of p is calculated. The average correlation 
measure contains information about the nature of the 
spatial distribution of the error picture and the rms error 
gives an idea of the magnitude of the error between the 
original and reconstructed images. Thus the product of p 
and rms error is a measure of the magnitude and the spatial 
distribution of the errors. 
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TABLE I 
PERFoRMANCE OF KAluruNEN-LoEw TllANSFoRM MI!11IOD 

1 e. 741 e.51!7t •·•"'' 
2 1.758 1.58(!88 1.12454 
5 111.788 8.57928 8.11191!'3 
6 0.780 .0.57320 0.05722 
7 8.750 8.56830 1.10220 

J J 0. 770 8.47980 0.02967 
12 0.830 0.79188 0.16722 
13 0.760 0.51'1510 0.02230 

HWOOD- e. 798 e.63220 0. Jfll630 
ORCH-

15 0.810 1.534!!111 0.74526 
SUBUR-

23 
e. 780 1 .35!!70 0.49905 

SWUR-
24· ... 740 e.4!!890 1.02050 

RIVER• 27 "' 
URBAN- 29 e. 760 I .41270 111.57497 

SCRUB­
SCRUB• 
SCRUB• 
ORCK­
HWOOD• 
KWOOD­
ORCH -

uPBAN- 3e 1.840 1.23950 111.52604 
URBAN• 3 1 1.768 1.46~00 111.65230 
S~UR- 32 e. 780 I .44380 0.59282 
RIVER• 33 0.758 0.491116111 0.1112152 
RIVER• 34 111.76111 1.1117118 1.27001 
ROAD. 39 111.850 1.17630 111.49559 
SWA~P- A2 0.740 1.32998 1.38864 
ROAD. AA 0.760 1.12728 111.41340 
RAlLY• 48 111.760 1.15140 0.35395 
SWA~P- 5111 1.750 1.06200 0.28341 
RAlLY• 51 0.770 1.3476111 111.48332 
MARSH• 52 e.790 0.7537111 1.1711115 
ROAD • 53 111.770 111.8151111 111.2391111 
SWA~P 54 111.73111 111.94!!1110 0.20312 
LAKE: 57 0.78111 0.4762111 0.0391118 
LAKE • 5!" 0. 72111 0.47830 0.02633 
LAKE. 59 0.730 0.5130111 111.05188 
MARSH• 60 111.773 0.66790 111.1111930 
RAlLY• 1;1 0.76111 1.2438111 0.39736 
MARSH• 65 0.760 0.610611 e.lll7611ll 

1.218 1.47938 8.81946 
1o 191 1!1.47851 1.12215 
1.21111 111.51821!1 lll.fl4179 
1.21!1111 1!1.51751 1!1.82789 
1.251 1.54068 8.1!18673 
1.230 0.45611!1 0.1!11834 
1.158 0.6596111 •• 88185 
1.220 1!1.4757111 1.82173 
1.18111 1.5561111!1 8.1!1484, 
1.25111 1.18868 1!1.49131 
1.248 1.18538 8.37236 
1.25111 1.47968 1.82384 
1.198 1.14558 1.34248 
1.14111 1.82111 8.36561 
1.228 1.1116651 1.35998 
1.191!1 1.19761 1.36844 
1.258 1.47478 0.1111541' 
1.268 1!1.9744111 1.19417 
1.11190 1.7787111 0.25230 
1.250 1.11!1818 111.23455 
1.24111 111.89960 111.25655 
1.190 111.86740 11.19621 
1.250 0.90P78 111.28131 
1.22111 1.1168111 1!1.31642 
1.23111 0.67390 0.12507 
1.170 0.66270 0.12269 
1.240 0.81950 111.1251116 
1.220 111.45980 0.03388 
1.213 0.45390 111.1112105 
1.240 111.50680 0.04~01 
1.220 0.61!1580 1!1.06980 
I .25111 11.94531!1 0.24392 
1.250 0.5629111 111.03457 

TABLE II 

1.778 1.46951 1.12115 
1.768 1.47621 1.12174 
1.761 1.51461 1.13636 
1.751 8.49831 0.13483 
1.820 1!1.52858 8.87381 
1.791 111.44828 1.81898 
1.72111 0.57790 111.1115277 
1.78111 0.468111111 8.82371 
1.758 111.53488 0.83164 
1.778 1.1117868 0.42988 
I • 768 I .82270 111.32457 
1.86111 8.47738 111.82453 
1.758 8.9378111 8.28417 
1.780 111.86398 8.26551 
1.77111 0.84568 11.19289 
1.76111 11.9554111 11.257110 
1.818 111.468511 11.01762 
1.840 11.93670 0.15649 
1.618 0.62411111 8.15932 
1,8411 1.11575111 111.210119 
1.78111 11.84113111 111.2141114 
1.720 111.801114111 0.14635 
1.820 111.87740 111.18916 
1.77111 1.03310 111.26699 
1.78111 111.63811'1 111.11'1111!!3 
1.72111 111.611143111 0.111781114 
1.!!3111 111.79790 0.11468 
1.780 1.4518111 111.01497 
1.79111 111.4488111 1.81779 
1.838 0.49850 0.1114892 
1.771 1.5811111 1.85199 
10 76111 8 0 82521 IJ.IR491 
1.811 111.55871 8.83379 

PERFoRMANCE OF HADAMAIID TRANSFORM MI!11IOD 

SCENE NO .BITPEL RMS CORREL 
' ERROR ERROR 

SCRim- I 
SCRUB• 2 
SCRUB- 5 
ORCH - 6 
HWOOD• 7 
HWOOD- II 
ORCH - 12 
HWOOD- 13 
ORCH - 15 
SUBUR• 23 
SUBUR- 24 
RIVER- 27 
URBAN- 29 
URBAN• 30 
URBAN- 3 I 
SWUR- 32 
RIVER• 33 
RIVER- 34 
ROAD - 39 
SWA~P- 42 
ROAD - 44 
RAlLY• 48 
SWA~P- 50 
RAlLY- 51 
MARSH• 52 
ROAD - 53 
SWA~P- 54 
LAKE - 57 
LAKE - 58 
LAKE - 59 
MARSH- 68 
RAlLY• 61 
MARSH• 65 

e.818 e.56t68 e.e9990 
1.880 111.53470 111.1115300 
111.780 111.61081!1 1!1.10656 
1!1.810 1!1.64230 lll.lll9918 
0.810 111.63141!1 0.21178 
1.760 1!1.50221!1 0.04837 
111.840 111.93030 0.23052 
0.761!1 0.55950 lll.lll!'431 
0.820 0.79958 1.21435 
111.860 1.87338 •• 941'1119 
0.(!6111 1.71560 1.67609 
0.760 111.51060 0.1!1481!11 
1.880 1.71490 0.801Ji 
0.840 1.45230 1!1.64399 
0.860 1.64280 0.79316 
111.860 1.86310 1!1.84345 
1!1.760 111.58170 111.1!15647 
111.780 1.19130 111.32112 
111.880 1.32368 111.67885 
1.760 1.46650 1.43625 
1.760 1.26560 111.47135 
111.790 1.34481!1 0.42699 
11.760 1.17820 0.34610 
111.770 1.55370 111.54539 
111.76111 111.8111930 111.19296 
111.840 111.99150 0.33573 
111.780 1.03370 1.24356 
1.790 0.~111320 111.1117916 
0.740 0.48130 111.1114901' 
111.81110 111.56600 111.13455 
111.770 0.7111!'00 111.14709 
0.770 1.55390 111.531'19 
111.750 11.64570 111.1111181 

JITPEL RMS CORREL 
ERROR ERROR 

1.188 111.54841 1.1119540 
1.140 1.52221!1 1.04654 
1.170 111.56810 11.111!'122 
1.190 111.59990 0.1117640 
1.190 0.61340 111.2111786 
1.190 0.48990 111.04806 
1.140 111.82340 1.18257 
1.190 111.53760 111.06639 
1.160 111.74640 0.1931118 
1.218 1.68170 0.91045 
1.210 1.59088 8.65598 
1.258 111.58348 1.84182 
1.170 1.562~0 11.74614 
1.150 1.31520 111.57282 
1.210 1.45440 111.7111864 
1.190 1.65670 0.72365 
1.238 0.49340 111.1114931 
1.240 1.09560 111.25959 
1.110 1.14390 111.57263 
1.250 1.30310 111.32803 
1.190 1.111!'470 111.36784 
1.160 1.16508 111.35990 
1.240 1.1117760 111.28819 
1.210 1.33680 111.4111292 
1.220 111.74~30 0.16697 
1.120 0.9111170 111.31219 
1.240 111.94770 111.19531 
1.21110 0.49580 0.07000 
1.210 1!1.46900 111.03867 
1.220 111.55680 0.13162 
1.170 111.65160 111.11035 
1.248 1.37648 1.42691 
1.238 1.61688 ••• 6726 

BITPEL R~ CORREl. 
ERROR ERROR 

1.688 1.54488 1.19194 
1.720 111.5283111 1.04256 
1.740 111.55730 1.06644 
1.738 0.59500 0.07346 
1.690 111.68700 0.20722 
I. 750 0.48790 0.84362 
I • 710 8 • 799 68 0 • I 67 67 
1.760 0.53630 0.06787 
1.700 1.72850 0.19882 
1.710 1.60340·0.90312 
1.710 1.54380 0.64462 
1.841 0.511134W 111.1114624 
1.660 1.48640 111.77119 
1.680 1.22250 111.52173 
1.670 1.36730 111.67631 
1.710 1.52490 111.66458 
1.790 111.49140 111.1114732 
1.830 1.1116701'1 0.24623 
1.510 1.111111190 8.56021 
1.831!1 1.2722111 111.31!1754 
1.76111 1.1113350 1!1.34138 
a.711llll 1.111198111 0.~3Ap3 
1.811!1 1.1!1579111 0.27986 
1.781!1 1.2861!1111 111.35764 
1.771!1 1!1.722111111 lll.157011l 
1.631!1· 1!1.88731!1 1!1.31467 
1.828 1.93278 0.18578 
1.768 1.48898 1.1115923 
1.778 1.46918 1.111421112 
1.728 1.55648 1.13819 
I. 758 1.63261 11.892111!1 
1.818 1.294311 1.35727 
1.791 1.61318 1.1§839 
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TABLE III 
PERFoRMANCE OF DISCRETE LINEAR TRANSFORM METHOD 

B ITI"!L RM cat RD.. 
SCENE NO ERROR ERROR 

SCRUB- I 1.888 1.5!3.8 1.83311 
SCRUB- 2 1.'791 1.521,. 1.123M 
SCRUB- 5 1.778 1.59850 0.09564 
ORCH - 6 8.800 0.5P750 0.84896 
HWOOD- 7 1.810 0.56750 0.11345 
HWOOD- II 8.750 0.49210 0.02800 
ORCH- 12 0.830 0.19100 0.16401! 
HWOOD- 13 0.780 0.51990 0.02422 
ORCH - 15 i.830 8.66890 0.11492 
SUBUR- 23 0.850 1.58810 8.78653 
SURUR- 24 0.848 1.38990 0.45463 
RIVER- 27 1.,18 0.49830 0.02611 
URBAN- 29 0.878 1.49098 8.61718 
URBAN- 38 0.858 1.26228 8.51005 
URBAN- 31 8.8;8. 1.39548 0.68610 
SUBUR- 32 0.858 1.52518 0.63678 
RIVER- 33 8.760 8.49368 8.83078 
RIVER- 34 8.768 1.11758 8.26316 
ROAD- 39 e;s80 1.13110 0.53521 
SWAMP- 42 8.788 1.35070 0.35265 
ROAD- 44 8.770 1.17378 0.42703 
RAlLY- 48 ·0.788 1.28138 0.36782 
SWAMP- 50 8.758 1.11388 0.30618 
RAlLY- 51 Bo770 1.42540 0.46496 
MARSH- 52 8.798 0.76218 0.15921 
ROAD - 53 8.8~8 8-87538 8.25654 
SWAMP- 54 0.780 0.98240 8.20259 
LAKE- 57 8.790 0.48318 0.04693 
LAKE- 51! 8.748 0.47850 0.023.67 
LAKE- 59 ~.810 0.51730 0.06364 
MARSH- 60 0.760 0.67980 0.11069 
RAlLY- 61 0. 760 I .36090 8.47117 
~ARSH- 65 8.7P8 0.68620 8.87442 

BITI"!L RillS COitR!L 
ERROR ERROR 

1.128 •• .,.,. 1.11376 
1.168 •• 49568 1.12185 
1.170 0.51730 0.04160 
1.190 0.52860 0.02904 
1.280 0.52880 0.09136 
1.190 0.45718 0.02208 
1.140 8.65440 0.06618 
1.288 8.47168 8.01777 
1.170 0.58750 0.1.048 
1.210 1.28540 8.51372 
1.210 1.19250 0.39609 
1.248 0.48138 0.81~38 
1.178 1.2587, 1.46698 
1.178 1.85738 8.39863 
1.218 1.15588 1.48689 
1.198 1~23998 1.49636 
1.240 0.47248 8o02222 
1.250 8.98960 0.18296 
1.120 0.87648 8.38920 
1.258 1.16788 0.23012 
1.238 0.93218 8.28365 
1.170 8.94420 0.24479 
1.250 0.95878 0.23928 
1.230 I .17950 0.33498' 
•• 240 8.68910 8.12225 
1.130 8.76210 8.20749 
1.250 0.87950 8.13907 
1.208 0.46610 8.03779 
1.190 8.45710 0.81775 
t.23B e.5ee0e 8.&6120 
1.180 0.60110 0.07548 
1.250 1.09050 0.31726 
1.250 0.57080 8.05484 

8ITP£L RI'S ~61111&1. 

IAitCt PROfl 

1.688 0.419 ..... 735 
1.738 8.48298 0.02503 
1.750 8.49580 0.02587 
1.740 0.50510 8.03258 
,.sse e.51090 0.&9669 
t.7se 0.44390 0.01730 
1.720 8.68198 0.06243 
1.770 8.46178 0.01765 
1.720 0.54130 0.10665 
1.710 1.16520 0.58161 
1.720 1.11518 0.39652 
1.840 0.48018 0.01974 
1.680 1.14160 0.46163 
1.700 0.92810 0.34054 
1.680 1.00280 0.42840 
1.710 1.00890 0.41163 
1.800 0.46930 0.02464 
1.830 0.96200 0.1p839 
1.520 0.78920 0.34658 
1.830 1.13060 0.20919 
t;780 0.84?20 0.24864 
1.710 8.85170 0.21478 
1.838 0.93820 0.24435 
1.790 1.12170 0.30789 
1.780 8.64610 0.89816 
1.638 8.71578 0.20696 
).838 8.85870 8.12798 
1.770 8.45340 0.82174 
1.778 8.45288 8.01626 
1.728 0.49780 0.86803 
1.768 0.57850 0.86496 
1.818 8.97068 0.27963 
1.808 8.56038 0.84834 

The third measure of performance used was a direct 
comparison of the original and reconstructed integer images. 
For this purpose, the images were equal probability quan­
tized into 13 levels and digitally printed out; the error 
pictures were also printed out for comparison. 

and the average values of the correlated rms error versus 
bit rate for the 33 images are shown in Fig. 3. 

Comparison of the performance of the three compression 
methods in terms of rms error reveals the following. 

1) As one might expect, the Karhunen-Loeve transform 
technique yields the minimum rms error. 

Results of Transform Data Compression Experi17'!ents 

The set of 33 images was processed using the Karhunen­
Loeve, Hadamard, and DLB transform compression tech­
niques. The window size used was 4 x 4. For all three 
methods, we found that the projections of the data onto 
4 of the 16 basis vectors accounted for most of the image 
"energy"; the variances of the remaining 12 transform 
coefficients were very small compared to the first 4, and 
hence the bit-assignment algorithm ignored these coeffi­
cients. The 4 basis vectors for the Karhunen-Loeve trans­
form were the 4 eigenvectors of the covariance matrix of 
the image (which was computed for each image) corre­
sponding to the 4 largest eigenvalues. For the Hadamard 
and DLB transforms, the basis vectors with sequency 
(0,0), (1,0), (0,1), and (1,1) were used. 

The original images had gray-tone values in the range 
1-64 (6 bits) and the performances of the compression 
techniques were evaluated at bit rates of 0.8, 1.2, and 1.75 
b/picture element. The corresponding bit compression rates 
were 7.5, 5, and 3.4, respectively. The rms errors, correlated 
rms errors, and bit rates for the Karhunen-Loeve, Hada­
mard, and DLB transform coding techniques are shown in 
Table I-Table III for the 33 images we processed. Plots of 
correlated rm.s error versus bit rate are shown plotted for 
four scenes in Fig. l(a)-(<0. The average values ofthe rms 
error versus bit rate for the 33 images are shown in Fig. 2, 

2) The rms errors for images compressed by the DLB 
transform are comparable to the rms errors for the 
Karhunen-Loeve transform and are considerably lower 
than the rms error for the Hadamard transform coding. 

In terms of correlated rms error, the average performance 
of the DLB transform is quite close to the performance of 
the Karhunen-Loeve transform at high compression ratios. 
On some images the DLB transform performed better than 
the Karhunen-Loeve transform at high compression ratios. 
Both the DLB and Karhunen-Loeve transforms performed 
much better than the Hadamard transform at all compres­
sion ratios. 

For four scenes shown in Fig. 4, the reconstructed pic­
tures and error pictures are shown in Figs. 5-8. The pictures 
in the top rows of Figs. 5-8 were produced by the Karhunen­
Loeve transform, the middle row by the DLB transform, 
and the bottom row by the Hadamard transform. The 
error pictures show the absolute value of the error between 
the original and reconstructed pictures. 

The error pictures and reconstructed pictures for the 
orchard scene shown in Fig. 5 reveal that there are no 
significant differences in the pictures produced by the three 
methods. The Hadamard transform has a slightly larger 
rms error and correlated rms error. 

The error pictures and reconstructed pictures for the 
suburban scene shown in Fig. 6 reveal significant differences 
in the pictures produced by the three methods. The error 
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Fig. 2. Bit rate versus average rms error for 33 scenes. 
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F~g. 1. Bit rate versus correlated error .for four scenes. (a) Scene 23, 
suburban. (b) Scene 29, urban. (c) Scene 12, orchard. (d) Scene 61, 
railyard. 

pictures for the Karhunen-Loeve and DLB transforms are 
nearly identical at low bit rates. The error pictures for the 
Hadamard transform show the presence of larger errors; 
also, these error pictures have a higher spatial correlation, 
as evidenced by the well-defined boundaries. The high 
spatial correlation is also reflected in higher values for the 
correlated rms error, showing the usefulness of the cor­
related rms error as a measure of the magnitude and spatial 
distribution of the errors. In all of the error pictures, the 
boundaries show up clearly at high bit rates due to the 
fact that the average error decreases at higher bit rates and 
hence the lighter background due to smaller errors brings 
out the boundaries better. The error pictures for the urban 
and railyard scenes show the same trends seen in the subur­
ban scene. Namely, the performance of the DLB trans­
form is comparable to that of the Karhunen-Loeve 
transform and is much better than that of the Hadamard 
transform. 

Apart from the performance indexes we have used, an­
other way of comparing the performance of unitary trans­
forms is to judge by how uncorrelated the transform 
coefficients are. This correlation between transform co­
efficients is reflected in the variance of the transform 

L50 2.00 
BITS/PICTURE ELEMENT 

Fig. 3. Bit rate vep;us average correlated rms error for 33 scenes. 

SCBNE-12 
ORCHARD 

SCEHB-23 
SUBURBAlll 

SCBNE-29 
URBAN 

Fig. 4. Original pictures. 

SCBNE-61 
RlULYARD 

coefficients. We found that for the 33 scenes we processed, 
the variances of the transform coefficients produced by the 
DLB transform were very close to the variances of the 
transform coefficients produced by the Karhunen-Loeve 
transform. 

VI. CoNCLUDING REMARKs 

We have presented a new discrete linear transform 
method of data compression which we use in conjunction 
with a DPCM procedure for removing some of the re­
dundancy in image data. We have compared the perfor­
mance of the new method with the performance of 
Karhunen-Loeve and Hadamard transform methods on a 
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RECONSTRUCTED ERROR 
PICTURE PICTURE 

Bitpel=0.83 
RMS Error=0.791 
Correlated Error=O.l672 

Bitpel=0.83 
RMS Error=0.791 
Correlated Error=O.l640 

Bitpel=0.84 
RMS Error=0.930 
Correlated Error=0.2305 

RECONSTRUCTED 
PICTURE 

Bitpel=Ll5 

ERROR 
PICTURE 

RMS Error=0.659 
Correlated Error=0.0818 

Bitpel=L l4 
RMS Error=0.6541 
Correlated Error=0.0661 

Bitpel=l.l4 
RMS Error=0.8234 
Correlated Error=O.l825 

RECONSTRUCTED ERROR 
PICTURE PICTURR 

Bitpel=L 72 
RMS Error=0.5779 
Correlated Error=0.0527 

Bitpel=L 71 
RMS Error=O. 799 
Correlated Error=O.l676 

Fig. 5. Reconstructed and error pictures for scene 12, orchard. 

RECONSTRUCTED 
PICTURE 

Bitpel=0.81 

ERROR 
PICTURE 

mtS Error=!. 534 
Correlated Error=0.7452 

Bitpel=0.85 
mtS Error-1.588 
Correlated Error=0.7065 

Bitpel=0.86 
mtS Error=l.873 
Correlated Error=0.948 

RECONSTRUCTED 
PICTURE 

Bitpel=L25 

ERROR 
PICTURE 

mtS Error=!. 180 
Correlated Error=0.4913 

Bitpel=l.21 
RMS Error=!. 285 
Correlated Error=0.5137 

RECONSTRUCTED 
PICTURE 

Bitpel=L 77 

ERROR 
PICTURE 

RMS Error=l. 070 
Correlated Error=0.4290 

Bitpel=l. 71 
RMS Error=l.l65 
Correlated Error=0.5016 

Bitpel=l.21 Bitpel=l.71 
RMS Error=l.681 RMS Error=l.603 
Correlated Error=0.9004 Correlated Error=0.9031 

Fig. 6. Reconstructed and error pictures for scene 23, suburban. 
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RECONSTRUCTED ERROR 
PICTURE PICTURE 

Bitpel=0.76 
RMS Error=!. 243 
Correlated Error=0.3973 

Bitpel=0.76 
RMS Error=!. 360 
Correlated Error=0.4711 

Bitpel=O. 77 
RMS Error=!. 553 
Correlated Error=0.5381 

RECONSTRUCTED 
PICTURE 

Bitpel=l.25 

ERROR 
PICTURE 

RMS Error=0.945 
Correlated Error=0.2439 

Bitpel=l. 25 
RMS Error=!. 090 
Correlated Error=0.3172 

Bitpel=l. 24 
RMS Error=!. 376 
Correlated Error=0.4269 

RECONSTRUCTED ERROR 
PICTURE PICTURE 

Bitpel=l. 76 
RMS Error=0.825 
Correlated Error=O.l849 

Bitpel=l,76 
RMS Error=0.9706 
Correlated Error=0.2796 

Bitpel=l.~O 
RMS Error=!. 294 
Correlated Error=0.3572 

Fig. 7. Reconstructed and error pictures for scene 61, railyard. 

RECONSTRUCTED ERROR 
PICTURE PICTURE 

Bitpel=0.76 
RMS Error=!. 4127 
Correlated Error=0.5749 

Bitpel=0.87 
RMS Error=!. 490 
Correlated Error=0.6171 

Bitpel=O. 88 

RECONSTRUCTED 
PICTURE 

Bitpel=i. 19 

ERROR 
PICTURE 

RMS Error=!. 0455 
Correlated Error=0.3424 

Bitpel=l.l7 
RMS Error=!. 250 
Correlated Error=0.4669 

Bitpel=l.l7 

RECONSTRUCTED 
PICTURE 

Bitpel=l. 75 

ERROR 
PICTURE 

RMS Error=0.9378 
Correlated Error=0.2841 

Bitpel=l. 68 
RMS Error=l.l41 
Correlated Error=0.4616 

Bitpel=l. 66 

RMS Error=l.714 RMS Error=l.562 RMS Error=l.4864 
Correlated Error=0.8011 Correlated Error=0.7460 Correlated Error=0.7701 

Fig. 8. Reconstructed and error pictures for scene 29, urban. 
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set of 33 images. Based on the comparative performance 
on 33 images, we conclude that the new discrete linear 
transform offers a good tradeoff between the ease of im­
plementation of the Hadamard transform and superior 
performance to the Karhunen-Loeve transform. 

Other fast transforms such as the slant transform [ 4] or 
discrete cosine transform [20] also seem to perform well 
compared to the Hadamard transform, while retaining some 
of the computational advantages of the Hadamard trans­
form. Further theoretical and experimental work is needed 
to compare the performances of DLB, Hadamard, and 
discrete cosine transforms . 

.APPENDIX 

Lemma: Let {Xl>X2 ,- • ·,XN,} be an orthogonal basis for 
RN, and {Yl>Y2,- • ·,YN

2
} be an orthogonal basis for RN2 • 

Then {X1Yi I i = 1,2,· · ·,N1;j = 1,2,- · ·,N2 } is an or­
thogonal basis for RN,Nz. 

Proof: We will use the notation X 1k to denote the kth 
component of the vector X1 and we will first prove or­
thogonality of the basis and then prove the linear inde­
pendence. Consider 

N 1 Nz 
(X;Yj)T(X,Ym) = ~ ~ X;kYiiX,kYml 

k= 1 I= 1 

= ( ~ xikxnk) ( ~ lJ1Ym1) . 
k= 1 I= 1 

Since both {X1} and {Yi} are orthogonal basis, X1 is 
orthogonal to X, and Yi is orthogonal to Ym so that 
(X1Yi)T(X,Ym) = 0 and hence X 1Yi is orthogonal to X,Ym. 
The proof for linear independence is as follows. Suppose 
that { c1i li = 1,2,- · · ,N1 ; j = 1,2,- · · ,N2 } is a set of N1 N 2 

constants not all zero and that 

thereby implying that {X1Yi} is linearly dependent. We will 
show that this implies that {Xa is not linearly independent, 
a contradiction. We begin with 

1~1 X; (~1 cuYi). 

However, since the {Yi} are linearly independent and since 
the {cii} are not all zero, there must be some constant a: 
such that "£.7~ 1 c«iyi =I= 0. 

Let 

i = 1,2,· · ·,N1 • 

Then 

implies 
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where Xik is the kth component ofX1• However, 

implies that for some a: not all components of (btzl,b«2 , • • ·, 

b-l are zero. Hence there exist some b«fl =I= 0. Finally, 
since b«fl =I= 0, and 

implies that the {X1} are linearly independent, we have 
obtained the contradiction and the proof. 
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