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Abstract—This paper presents a new method for estimating piecewise-smooth

optical flow. We propose a global optimization formulation with three-frame

matching and local variation and develop an efficient technique to minimize the

resultant global energy. This technique takes advantage of local gradient, global

gradient, and global matching methods and alleviates their limitations.

Experiments on various synthetic and real data show that this method achieves

highly competitive accuracy.

Index Terms—Optical flow, motion discontinuity, occlusion, energy minimization.
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1 INTRODUCTION

OPTICAL flow is a 2D image motion measure that has a wide range
of applications in computer vision [14], video coding [16] and
computer graphics [35]. Its accurate and efficient estimation is a
long-standing difficult problem.

The fundamental assumption enabling optical flow estimation

is brightness conservation:

Iðx; y; tÞ ¼ Iðxþ u�t; yþ v�t; tþ�tÞ; ð1Þ

where Iðx; y; tÞ is the image intensity at point ðx; yÞ and time t, and

ðu; vÞ is the optical flow vector. Depending on what variation of (1)

is used, optical flow estimation methods can be classified into two

main categories: matching-based and gradient-based.1 Matching-

based methods make direct use of (1). They can handle large

motion and avoid tricky derivative calculations, but they often

meet with computational difficulties and yield poor subpixel

accuracy [2]. Gradient-based methods use the linear approxima-

tion of (1)

Ixuþ Iyvþ It ¼ 0; ð2Þ

a.k.a the Optical Flow Constraint Equation (OFCE) [2], where

ðIx; Iy; ItÞ is the spatiotemporal image intensity gradient. These

methods have become the most popular because of the relatively

low computational complexity and good accuracy, but they can

break down in the presence of large motion and inaccurate

derivative estimates [38].
Additional constraints on the flow are obtained from various

flow field models [2], [4]. Among them, we are particularly

interested in piecewise smooth models [5] because they are

applicable to general scenes and are indispensable building blocks,

leading to more complex motion analysis in a bottom-up fashion
[30]. Piecewise-smooth models include two types: local parametric
and global optimization. Local parametric methods assume that
within a certain region the flow field is described by a parametric
model [4], with the simplest and most popular model being
piecewise constant. Their accuracy and efficiency are among the
best according to various comparative studies [2], [13], but they
degrade or fail when local information becomes insufficient or
unreliable. Global optimization methods try to strike a balance
between overall brightness error and smoothness error by
minimizing a global energy, which might be developed from
regularization [5], [21] or Bayesian (MAP, MRF) [19], [6], [29]
perspectives. They are less sensitive to poor local constraints, but
existing techniques of this type, even those using robust estimators
[5], tend to oversmooth the flow field.

Traditional techniques [2] usually require brightness conserva-
tion and flow smoothness to be satisfied in a strict (least-squares,
LS) sense. They yield limited accuracy in practice where model
violations due to motion discontinuities and abrupt intensity
changes are abundant. As the limitations are widely recognized, a
large number of recent efforts have been devoted to increasing
robustness especially in the presence of motion discontinuities.
Among these attempts, replacing LS estimators with robust
estimators has achieved the most success [27], [28], [5], [21], [1],
[26], [38]. Reformulating global optimization criteria in terms of
MRF with line processes [22], [19], [15], [6], weak continuity [8], [5]
or anisotropic diffusion [2], [7] is another widely pursued
direction. Despite these advances, handling occlusion remains a
tough problem for the field.

Unsatisfactory state-of-the-art performance is largely due to
formulation defects and solution complexity. On one hand,
approximate formulations are frequently adopted for ease of
computation, with the consequence that the correct flow is
unrecoverable even in ideal settings. As an example, many
methods intended to preserve motion discontinuities use gradi-
ent-based brightness constraints, which break down at disconti-
nuities due to derivative evaluation failure [38]. On the other hand,
more sophisticated formulations typically involve large-scale
nonconvex optimization problems, which are so hard to solve that
the achievable accuracy might not be competitive with simpler
methods. Motion estimation research has arrived at a stage at
which a good collection of ingredients are available; but, in order
to significantly improve performance, both problem formulation
and solution methods need to be carefully considered.

In this paper, we discuss a matching-based global optimization
method with a practical solution technique. The formulation uses
three-frame matching to reduce visibility problems at occlusions
and balances the strengths of brightness and smoothness errors
according to local data variation. We develop a hierarchical three-
step optimization strategy to solve the resulting energy minimiza-
tion problem. Step 1 uses a high-breakdown robust local gradient-
based method with a deterministic iterative implementation,
which provides a high-quality initial flow estimate. Step 2 uses a
global gradient-based method which efficiently improves the flow
field coherence. Step 3 minimizes the original energy by greedy
propagation. It corrects gross errors introduced by derivative
evaluation and pyramid operations. In this process, merits tend to
be inherited from all three techniques. As a result, high accuracy is
achieved both on and off motion boundaries.

2 FORMULATION

We assume the optical flow field V minimizes the global energy

E ¼
X

all pixels i

EBðViÞ þ ESðViÞ; ð3Þ
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1. Frequency/phase-based methods are often close to frequency-domain
equivalents of the above two methods [2].
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where Vi is the flow vector at pixel i and EB and ES represent
brightness conservation and flow smoothness, respectively.

The traditional assumption that pixels are visible in all frames is
a major source of gross errors in occlusion areas. Treating such
violations as outliers [6] may prevent error from propagating to
nearby regions, but does not provide constraints for occlusion
pixels and, thus, does not help their motion estimation. Introdu-
cing additional fields to represent occlusion [10], [20] vastly
increases the problem complexity. We observe that normally all
points in a frame are visible in the previous or the next frame.
Assuming constant motion within three frames, we define the
matching error as the minimum of the backward and forward
warping errors, i.e.,

eW ðViÞ ¼ minðjIbðViÞ � Iij; jIfðViÞ � IijÞ; ð4Þ

where Ii is the intensity of pixel i in the middle frame and
IbðViÞ; If ðViÞ are warped intensities in the previous and the next
frames, respectively. This error design is simple yet very effective.
Similar ideas have shown good results in recent independent
studies [31], [39], [18]. We further use a robust error function
�ðx; �Þ to resist other sources of outliers, yielding the brightness
energy

EBðViÞ ¼ �ðeW ðViÞ; �BiÞ; ð5Þ

where �Bi is the local brightness variation scale. We define the
smoothness error to be

ESðViÞ ¼
1

8

X
j2N8

i

�ðjVi � Vjj; �SiÞ; ð6Þ

where �Si is the local flow variation scale. It requires a vector Vi to
be consistent with its 8-connected neighbors fVj; j 2 N8

i g and the
robust error function prevents smoothing across motion bound-
aries. We choose to use the Geman-McClure robust error function
�ðx; �Þ ¼ x2=ðx2 þ �2Þ [5] in both the EB and ES terms for its
redescending [5], [24] and normalizing properties. The first
property ensures that the outlier influence tends to zero. We take
errors exceeding

� ¼ �=
ffiffiffi
3

p
; ð7Þ

where the influence function begins to decrease, as outliers [5]. The
normalization property is desirable because the brightness and
smoothness energies become comparable and their relative
strengths can be adjusted locally by the scales �Bi; �Si—where
the observation is not trustworthy (�Bi is large), stronger
smoothness is enforced, and vice versa. We gradually learn the
scales during the optimization process (Section 3). Previous global
formulations [2], [5], [21], usually have a control parameter �

between EB and ES , and �B; �S; � are all globally tuned
parameters. Compared to such approaches, this locally adaptive
scheme is more reasonable and reduces parameter tuning in
experiments.

3 OPTIMIZATION

Minimizing a global energy like (3) is very hard. Stochastic
methods such as simulated annealing converge too slowly to be
practical [6]. Deterministic methods [6], [21] have achieved more
success, but they have limited capability for avoiding local minima
and their performance depends on the initialization quality. Our
approach to this problem is hierarchical graduated optimization. We
create a P -level image pyramid Ip; p ¼ 0; . . . ; P � 1 and begin
estimation from the top (coarsest) level P � 1 with a zero initial
flow field [4]. At every level, the algorithm proceeds in three steps,
each computing a finer approximation to the original energy.

3.1 Step 1: Gradient-Based Local Regression

Suppose a crude flow estimate V0 is available and has been
compensated for. Step 1 uses a robust gradient-based local
regression method to compute the incremental flow �V0. For each
pixel, we find the dominant translational motion in its W �W

neighborhood by solving the n ¼ W �W set of OFCEs ((2)) under a
least-median-of-squares (LMS) criterion [24]. The LMS solution is
usually approximated by the estimate yielding the smallest
criterion value in a set of trial estimates. In the recipe given by
Rousseeuw and Levoy (RL) [24], a trial estimate is calculated from
each pair of constraints and m estimates are generated by
randomly drawing from the total C2

n possibilities. They also
suggest a reweighted least squares (RLS) procedure to improve the
statistical efficiency of the LMS estimate. For each trial estimate,
they calculate the variance of healthy residual errors as
s ¼ 1:4826 �medianni¼1 r

2
i , identify constraints agreeing with the

trial estimate as those with residuals satisfying jrij � 2:5s, and
update the estimate using LS on the inliers. Previous uses of LMS
in motion estimation [1], [26], [38] uniformly apply the above
algorithm to all pixels. This incurs unnecessary computation at the
majority of the places where no outliers exist and least-squares
suffices; meanwhile, the accuracy is compromised at places of
heavy contamination where a small trial set might not contain a
good estimate.

By taking advantage of the piecewise smoothness property of
optical flow and the reasonable accuracy of the LS estimate at the
majority of pixels, we propose a deterministic adaptive algorithm
to generate the trial set [39]. The idea is to start with the LS flow
field and generate the trial solution set from neighboring values
instead of by random drawing. In our experiments, we form a trial
set Vfjg for each Vi using values at the corners and side midpoints
of the W �W box centered at site i, keep estimates yielding lower
criterion values, and iterate until no update occurs.

This algorithm in effect provides an estimator whose complex-
ity depends on the actual outlier contamination. It can be faster
and yield more stable accuracy than algorithms based on random
sampling. We show its advantages by comparing its results with
the RL algorithm using m ¼ 30 random samples; in this case, the
probability of having at least one good initial estimate is as high as
99.98 percent even with 50 percent outliers present [1]. On the
TS sequence (Section 4), which only contains flow outliers at the
motion boundary so that the RL algorithm can almost recover the
LMS solutions, our method produces virtually the same accuracy
with less computation. Fig. 2e shows the number of trials at each
pixel as an intensity image. More trials, indicated by brighter
colors, are carried out closer to the boundary where the motion is
more complex. The number ranges from 1 to 13, as opposed to the
fixed 30 in the RL case. Comparisons were also conducted on all
the other sequences described in Section 4 and our method always
produced higher accuracy in less time. As a side note, it would be
interesting to see how the trial set size could be used as an early
cue for scene complexity.

3.2 Step 2: Gradient-Based Global Optimization

Recall that V0 is the initial flow estimate that has been compensated
for and �V0 is the incremental flow resulting from Step 1. Step 2
improves the coherence of �V0 by using a gradient-based global
optimization method. The energy to minimize is a closer
approximation to (3):

Eð�V Þ ¼
X
i

�ðeGð�ViÞ; �BiÞ þ
1

8

X
j2N8

i

�ðVi þ�Vi � Vj ��Vj; �SiÞ

2
4

3
5;

ð8Þ

where eG is the OFCE residual ((2)) and Vi is the ith vector of the
initial flow V0. The local scales �Bi; �Si are important parameters
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which control the shape of E and, hence, the solution. Below, we
describe how to estimate �’s from Step 1’s results.

Assume that normal errors are zero-mean Gaussian variables

with standard deviation ~��, and outliers have errors exceeding 2:5~��.

Contrasting this to (7), we can express � in terms of ~�� as

� ¼ 2:5
ffiffiffi
3

p
~��. At each site i, we calculate ~��Si

as the sample standard

deviation of “inliers” of smoothness errors fVj � Vi; j 2 N8
i g, with

inliers selected by the RLS procedure in Section 3.1. ~��Si
is further

bounded above by a globally constant value 1:4826 �mediani ~��Si
to

prevent erroneously large values and bounded below by 0.001 for

stability. We use the OFCE residual as ~��Bi
and limit its value to the

range ½0:01; 1:4826 �mediani ~��Bi
�. The scale computation in Step 3

is similar except that ~��Si
is limited to [0.004,0.02] and we adopt a

globally constant ~��B, estimated from matching errors eW i ((4)) by

maxð0:08; 1:4826 �mediani eW iÞ. Although ad hoc, the above

method has shown effectiveness in capturing local scale variation.
With the scales specified, we minimize the energy using

Successive OverRelaxation (SOR) [8], [6]. Starting with the initial
estimate �V0, on the kth iteration, each u component (and v

similarly) is updated as uki ¼ uk�1
i � !=T ðuiÞ@E=@uk�1

i , where
T ðuiÞ ¼ I2x=�B

2
i þ 8=�S

2
i . SOR is good at removing high-frequency

errors while very slow at removing low-frequency errors [36], [9].
In our case, the initial estimate has dominant high-frequency
errors—it has good accuracy at most places but may lack
coherence due to the use of local constraints—and, hence, the
SOR procedure is very effective and converges fast. In addition,
the update step size is adjusted by spatially varying local scales
(through T ðuiÞ), which further improves the efficiency in
exploring the solution space.

3.3 Step 3: Global Matching

V1, sum of the initial estimate V0 and the incremental flow �V1

from Step 2, still exhibits gross errors at motion boundaries and

other places with poor gradient estimates. We reduce its errors by

solving the original matching-based formulation (3) through

greedy propagation. We first calculate the energy EBðViÞ þ
ESðViÞ from V1 for all pixels. Then, we iteratively visit each pixel,

examining whether a trial estimate from a candidate set results in a

lower global energy E. The candidate set consists of the

8-connected neighbors and their average, which were updated in

the last visit. Once a pixel energy decrease occurs, we accept the

candidate and update the locally affected energy terms. The simple

scheme works reasonably well because bad estimates are confined

to narrow areas in the initial flow V1. It converged quickly in our

experiments. It is worth mentioning that a similar greedy

propagation scheme was successfully applied to solving a global

matching stereo formulation in an independent study [33].

3.4 Overall Algorithm

Operations on each pyramid level are illustrated in Fig. 1. When

more than one pyramid level is used, we choose to skip Step 3 on

the coarsest level. The consideration is that gradient-based

methods suffice on the coarsest level since the data are

substantially smoothed and the flow is small; applying the

matching constraint can be harmful due to the smoothing and

possible aliasing.

From a practical point of view, the graduated scheme benefits

from all three popular optical flow approaches. Step 1 (gradient-

based local regression) generates high-quality initialization while

leaving local ambiguities to be resolved later in more global

formulations. Step 2 (gradient-based global optimization) im-

proves the flow coherence; it converges fast because of the good

initialization. Simple hierarchical schemes have the limitations that

the projection and warping operations oversmooth the flow field,

and errors in coarser levels are magnified and propagated to finer

levels and are generally irreversible [3], [6]. These problems are

much alleviated by Step 3 (matching-based global optimization)

—it works on the original pyramid images and corrects gross

errors caused by derivative computation, projection, and warping.

4 EXPERIMENTS

We estimate optical flow in the middle of every three frames. The

number of pyramid levels is empirically determined and no other

parameters are tuned. We also compare results with those

produced by BA (Black and Anandan [6])—a good representative

of previous dense regularization techniques. BA’s code is

publicly available. It calculates flow on the second of two frames.

It uses the same number of pyramid levels as ours and other

parameters are set as suggested in [6]. The computation time of

our algorithm depends on the motion complexity in the input

data. It is typically close to that of BA. Some sample CPU time

values (in seconds on a PIII 900MHz PC running Linux) for our

algorithm and BA are: 11.7 and 14.7 (Taxi), 29.5 and 27.4 (Flower

Garden), 36.8 and 24.2 (Yosemite). Note that neither algorithm

has been optimized for speed.

4.1 Synthetic Data

Five data sets with flow groundtruth are used for quantitative

evaluation. We use e, the absolute u or v error, as the error

measure. The motivations are 1) the u and v components, and

positive and negative errors are treated symmetrically in optical

flow estimation and 2) a 1D measure is much easier to work with

than a 2D or higher-dimensional measure. We give the empirical

cumulative distribution function (cdf) of e in addition to its mean �ee

(pixels). Better estimates should have cdf’s closer to the ideal unit

step function. To facilitate comparison with other techniques, we

also report the popular average angular error effð�Þ [2], [12]. It is

important to point out that this error measure ought to be used

with caution. One problem with it is that estimates having the

same error magnitude may result in vastly different angular error

values [1]. More fundamental problems with quantitative evalua-

tion will be discussed at the end of this section.

The TS sequence (Fig. 2) gives an illustrative example. It is

well textured and contains two occluding squares translating at

exactly 1 pixel/frame. Therefore, any formulation assuming

brightness conservation and piecewise smoothness should fully
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recover the flow. Our method does achieve that (see Fig. 2b and

curve “S3” in Fig. 3a). Now, let us look at results from two

gradient-based methods, BA and our Step 1, which is a robust

local gradient-based technique by itself [1], [26]. They both

produce gross errors at motion boundaries due to gradient

evaluation failure. In addition, Step 1 shows rounded corners

because the background motion becomes dominant there, while

BA’s poor accuracy can be attributed to oversmoothing and slow

convergence of its SOR procedure. Curve “BA400” in Fig. 3a uses

400 instead of the default 20 SOR iterations.

The Translating Tree (TT), Diverging Tree (DT), and Yosemite

(YOS) sequences were obtained from Barron [2]. TT and DT [12]

simulate translational camera motion with respect to a textured

planar surface. TT’s motion is horizontal and DT’s is divergent.

YOS’s motion is mostly divergent. The cloud part is excluded from

evaluation [6], [1]. We use two levels of pyramid for TT and DT,

and three levels for YOS. Error measures are given in the captions

of Fig. 3. Many optical flow papers published after [2] report the eff
error on these data sets. Our TT result seems to be the best. The

smallest DT error was given by Fleet and Jepson [12]: 0.99 degrees

at 61.0 percent density. Our error appears to be large because

1) much of our error comes from erroneous estimates at image

borders, which are excluded from evaluation in [2] (in fact, if we

exclude a 10-pixel wide margin, the errors drop to �ee ¼ 0:03 and

eff ¼ 1:64, respectively) and 2) our flow field is 100 percent dense

while many other results in [2], [25], [26] are for selected fields.

Some results on YOS are quoted in Table 1. The first group

assumes piecewise constant flow. The second groups assume

stronger flow models such as local affine flow and constant flow in

a considerable number of frames. These assumptions are appro-

priate for YOS and may lead to higher accuracy. The smallest error

on YOS was reported from a simultaneous motion estimation and

segmentation algorithm assuming an affine motion model in nine

frames [11]. Although using only a piecewise constant flow model

and three frames, our method compares favorably with these

techniques.

We examine the motion boundary performance of our method
on the DTTT sequence (Fig. 4). It was generated from TT, DT, and
“cookie cutters:” Image data inside the cookie cutters come from
TT and those outside come from DT. We display the horizontal
and vertical flow components as intensity images to show more
details. Brighter pixels represent larger positive speeds. Two
pyramid levels are used. Our result is smooth with crisp motion
boundaries, and is better than BA both visually and quantitatively
(see Fig. 4 and Fig. 3e). As a by-product of our method, motion
boundaries are easily located in the smoothness error map.

Nonetheless, we do notice some gross errors near the
boundaries, e.g., the right corner of the triangle is smoothed into
the background. A closer look reveals that most of such errors
happen in textureless regions, where even human viewers are
unable to resolve the ambiguity. In such situations, the correctness
of the “groundtruth” is questionable and so is the authority of
quantitative evaluation based on it. Also noticeable is that our
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Fig. 2. TS sequence results (left to right:(a) to (f)). (a) middle frame with motion boundary highlighted. (b,c,d,f) show flows in the window outlined by the dotted line. (b) our

estimate looks the same as the groundtruth. (c) BA estimate. (d) Initial LS estimate in Step 1. (e) LMS trial set size in Step 1 (see Section 3.1). (f) Step 1 final result. Step 2

result looks identical and is hence not shown separately.

Fig. 3. Error e cdf curves for TS (a), TT (b) , DT (c), YOS (d), and DTTT (e). (�ee; eff) values: TS: Ours (2.2e-4, 1.1e-2), BA (0.12, 8.04); TT: Ours (9.8e-3, 0.05), BA (0.07,

2.60); DT: Ours (0.05, 2.60), BA (0.11, 6.36); YOS: Ours (0.08, 1.92), BA (0.12, 2.71 2); DTTT: Ours (0.08, 4.03), BA (0.20, 10.9). 2. The value is slightly different from

the one reported by Black and Anandan [5] most probably because their data are different from Barron’s and they calculated flow on the 14th frame instead of the 9th.

TABLE 1
Comparison of Various Techniques on YOS

(Cloud Part Excluded) with Barron’s Angular Error



motion boundaries are not as smooth as one would like. This

reflects the weakness of the simple optimization method in Step 3

and the need for more advanced techniques.

4.2 Real Data

Results on four real image sequences: Taxi , Flower Garden,

Traffic, and Pepsi Can, are given in Fig. 5. Taxi [2] mainly

contains three moving cars with the maximum speed about

3.0 pixels/frame. Motion in Flower Garden (from Black) is

caused by camera translation and scene depth. The image speed

of the front tree is as large as about 7 pixels/frame. Traffic (from

Nagel) contains 11 moving vehicles with the maximum image

speed at about 6 pixels/frame. Pepsi Can [5] has motion

discontinuities due to camera translation and scene depths. The

maximum image speed is about 2 pixels/frame. Two, three,

three, and two pyramid levels are used for the above four data

sets, respectively. Our technique shows consistent performance,

yielding clear-cut motion boundaries and smooth flow within

each layer.

5 CONCLUSION

We have presented a matching-based global optimization ap-

proach to optical flow estimation with a practical solution

technique. Contributions of our work include:

1. A simple and effective backward-forward matching
scheme ameliorates the visibility problem at occlusions.

2. A global energy function balances the strength of bright-
ness and smoothness errors according to local data
variability.

3. Motion discontinuities can be reliably located at flow
smoothness outliers.

4. A three-step graduated optimization strategy is developed
to minimize the resultant energy. It takes advantage of
gradient-based local regression, gradient-based global
optimization and matching-based global optimization
methods and reduces their limitations.

5. A deterministic algorithm is proposed to approximate the
LMS robust estimator in the local gradient step. Experiments
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Fig. 4. DTTT sequence results (left to right): middle frame (motion boundaries highlighted), our horizontal, vertical flow, and motion boundaries; BA horizontal, vertical

flow, and motion boundaries.

Fig. 5. Real data results. First column: middle frames. Second column: BA horizontal flow. Thirrd column: our horizontal flow. Fourth column: Our smoothness error (ES)

map. First row: Taxi. Second row: Flower garden. Third row: Traffic. Fourth row: Pepsi can.



showed that it can be faster and more accurate than
algorithms based on random sampling.

As an accurate and efficient low-level approach, the proposed

method can facilitate higher-level motion analysis. Our flow

estimates often have a layered look with motion boundaries

located. They can aid motion segmentation, contour-based and

layered representation [21], [35]. Model selection [34] is a crucial

problem in automatic scene analysis, which is difficult because

comparing a collection of models to the raw image data involves

formidable computation. Our method can supply a higher ground

for scene knowledge learning. The backward-forward matching

error, together with detected motion boundaries, can be used for

occlusion reasoning and motion discontinuity-preserving image

warping. Furthermore, some of our techniques can be useful to

other low-level visual problems such as stereo matching,

3D surface reconstruction and image restoration.
To improve the formulation, the proper modeling of the three-

frame matching error, the choice of robust estimator, and the

learning of parameters should be investigated. To develop more

global solutions to the optimization problem, methods such as

graph cuts [9], full multigrid methods [23], Bayesian belief

propagation (BBP) [36], and local minimization methods alter-

native to SOR [23] are worth studying. Among all criteria that the

global energy may arise from, the Bayesian approach is the most

appealing in both theoretical and practical respects. The benefits of

the Bayesian framework should be exploited and that may provide

a graceful solution to two important problems: global optimization

and uncertainty analysis [2], [37]. Finally, as we have pointed out

in Section 4.1, existing evaluation methods are flawed and

developing more convincing methods deserves great attention.
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