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Short Papers
Breakpoint Detection Using

Covariance Propagation

Qiang Ji and Robert M. Haralick

Abstract—This paper presents a novel statistical approach for
detecting breakpoints from chain encoded digital arcs. An arc point is
declared as a breakpoint if the estimated orientations of the two fitted
lines of the two arc segments immediately to the right and left of the
arc point are significantly statistically different. The major contributions
of this research include developing a method for analytically estimating
the covariance matrix of the fitted line parameters and proposing a
perturbation model to characterize the perturbation associated with
each arc point.

Index Terms—Corner detection, arc segmentation, error propagation.
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1 INTRODUCTION

BREAKPOINTS are dominant points (points with sufficiently high
curvatures) on the boundary of an object. They have long been im-
portant two-dimensional features for computer vision research.
They have been used extensively for matching, pattern recognition,
and data compression. Over the years, various algorithms have been
developed for detecting breakpoints. Breakpoint detection algo-
rithms can be roughly grouped into two categories: One is based on
the detection directly from the underlying images [3], [6], [18], the
other is based on digital arcs, resulting from edge detection and
linking [2], [11], [8], [1], [9], [16], [17]. The research described in this
paper is concerned with detecting breakpoints from digital arcs.

Breakpoint detection from digital arcs partitions a given digital
arc sequence into digital arc subsequences having the property
that each arc subsequence is a maximal length sequence to which it
is reasonable to fit a line. Various techniques have been developed
for breakpoint detection from digital arc sequences. The basis for
these techniques is to identify the locations of the endpoints of
each maximal line segment. Different criteria have been proposed
for detecting breakpoints including maximum curvature, deflec-
tion angle, maximum deviation, and total fitting errors [1], [9],
[10], [16], [8], [2], [11], [17]. A major problem with the existing ap-
proaches is that the employed criterion is not tied to a statistical
analysis involving an explicit noise model, therefore making the
method statistically inefficient with regard to noise. To overcome
this, we have developed a statistical approach to breakpoint de-
tection, where the breakpoint criterion is treated as a random vari-
able and is subject to perturbation. Given an arc segment, an arc
point is declared as a breakpoint if the estimated orientations of
the two fitted lines of the two arc segments immediately to the
right and left of the arc point are significantly statistically different.
The major contributions of this research include developing a
method for analytically estimating the covariance matrix of the
fitted line parameters, proposing a perturbation model to charac-
terize the perturbation associated with each arc point, and devel-

oping a hypothesis testing statistic to statistically test the differ-
ence between the estimated orientations of the two fitted lines.

This paper is arranged as follows. In Section 2, we state the
problem and present the associated noise and breakpoint models.
Section 3 discusses in detail the theoretical aspects of the break-
point detector. The performance characterization and comparison
of the breakpoint detector is covered in Sections 4 and 5. The paper
ends in Section 6 with a discussion and conclusion of the devel-
oped approach.

2 PROBLEM STATEMENT

A breakpoint represents a discontinuity in the curvature of a curve.
The location of the discontinuity can be approximated by the inter-
section of two straight lines that underlie the arc segments to the
right and left of the breakpoint. Perturbation to the points on the
ideal underlying lines gives rise to the observed arc segments. This
section discusses the definition of the perturbation model and the
breakpoint model.

2.1 Perturbation Model
Given an observed sequence of N ordered points from a line arc
segment,

S x y n Nn n= =$ , $ , . . . ,2 7> C1 ,

the perturbation model assumes that $ , $x yn n2 7  result from random

perturbations to the ideal points (xn, yn), constrained to be on the line

xncosθ + ynsinθ − ρ = 0,     n = 1,…, N

where θ and ρ are the parameters of the underlying line that gives
rise to the observed arc segment. It is further assumed that the
random perturbations are independently and identically Gaussian
distributed in the direction perpendicular to the underlying line.
Analytically, the perturbation model can be expressed as follows

$ $ cos sinx y x yn n

t

n n

t

n
t2 7 2 7 2 7= + ξ θ θ                          (1)

where ξn are independently and identically distributed as N(0, σ2).

2.2 Breakpoint Model
For a piecewise linear approximation of a curve, breakpoints are
the endpoints of each line segment. Thus, an endpoint is a break-
point if the underlying two line segments immediately to the right
and to the left of the point meet and form a vertex, whose included
angle is statistically larger than a given angle threshold. Statisti-
cally, a breakpoint is defined as follows.

Given an observed sequence of ordered points from an arc
segment, S as defined above and a point $ , $x ym m2 7  along the arc

segment, the arc point divides the arc segment S into two subseg-

ments S1 and S2, where

S x y n mn n1 1= =$ , $ , . . . ,2 7> C
and

S x y n m Nn n2 1= = +$ , $ , . . . ,2 7> C.
Let $θ 1  and $θ 2  be the estimated orientations of the two lines that

are fitted to S1 and S2, and $θ 12  be the included angle between the

lines, $θ 12  is defined as $ $ $θ θ θ12 1 2= − , given an included angle

threshold θ0, the breakpoint detection problem may be formulated
as a hypothesis testing problem as follows

H0 : θ12 < θ0       H1 : θ12 ≥ θ0                                       (2)
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where θ12 represents the population mean of random variable $θ 12 .
The hypothesis testing identifies the most likely breakpoint

along an arc sequence. If the testing rejects the null hypothesis H0,
it means that the angular orientations of the two lines are statisti-

cally different by at least θ0, and the arc point $ , $x ym m2 7  is a break-

point. Fig. 1 illustratively shows the breakpoint model described.
To solve the hypothesis-testing problem, we need to analyti-

cally derive the distribution of the random variable $θ 12 . To do so,
we first need to perform a least-squares line fitting to arc subseg-

ments S1 and S2, respectively, resulting in the estimated line ori-
entation parameters $θ 1  and $θ 2  for each line. Then we need to

analytically estimate the variances σ 1
2  and σ 2

2  for the estimated

line parameter $θ 1  and $θ 2  using the covariance propagation theory
we developed. Finally, we need to derive a test statistic to perform
the hypothesis testing. In the section to follow, we will describe the
theoretical derivations.

3 THEORY FOR THE PROPOSED APPROACH

In this section, we detail the theoretical aspects of the developed
algorithm. Specifically, we describe least-squares line fitting, co-
variance propagation, and hypothesis testing.

3.1 Least-Squares Line Fitting
To estimate the line parameters for each arc segment, we perform a
least-squares line fitting to the arc points. The least-squares fitting
can be formulated as follows.

Assume points $ , $ , . . . ,x y n Nn n2 7 = 1 , lie on an arc segment S, re-

sulting from perturbation of ideal points (xn, yn) locating on the

line xncosθ + ynsinθ − ρ = 0. Perturbations are assumed to be inde-
pendently introduced to each point with Gaussian distributed
noise in the direction perpendicular to the line segment as de-
scribed by the perturbation model in (1).

To estimate the best-fitting line parameters $θ  and $ρ  using the
least-squares method, we minimize the sum of squared residual
errors:

e2 2

1

= + −
=

∑ $ cos $ $ sin $ $x yn n
n

N

θ θ ρ4 9 .                         (3)

In matrix formulation, (3) can be written in quadratic form

e2 = $ $ $Θ ΘtS

where $Θ  is the parameter vector and $S D Dt=  is called the scatter
matrix. D and $Θ  are defined as

$
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where $ cos $α θ=  and $ sin $β θ= .

As a result, we need minimize $ $ $Θ ΘtS  subject to $ $α β2 2 1+ = . In-
troducing the Lagrange multiplier λ, the function to be minimized
can be expressed as

e2 1= − −$ $ $ $ $Θ Θ Θ Θt tS Cλ4 9 ,                                 (4)

where C is referred to as constraint matrix and is defined as

C =
�
��

�
��

1 0 0
0 1 0
0 0 0

.

Taking partial derivatives of e2 with respect to $Θ  and setting the
derivative to zero yields

$ $ $S CΘ Θ− =λ 0 .                                        (5)

This system is readily solved by considering generalized eigen-
vectors of (5). Of the two possible eigenvalues, we select the one
that minimizes the sum of geometric distances. Expressed in a
quadratic form, the quantity to minimize is

$ $ $ $ $Θ Θ Θ Θt tS C= =λ λ .

Since $S  is positive definite, the eigenvector $ $ $ $Θ = α β ρ4 9
t
 must cor-

respond to the smaller and positive eigenvalue λ . With $α  and $β
determined, the line parameter $θ  can be estimated from

$ arctan $ , $θ β α= 4 9 .                                      (6)

3.2 Covariance Propagation

The random perturbation on ideal points X = (x1, …, xN, y1, …, yN),

lying on the line xncosθ + ynsinθ − ρ = 0, yields the observed arc
points $ $ , . . . , $ , $ , . . . , $X x x y yN N= 1 12 7 . The use of $X  for estimating

line parameter Θ = (θ ρ)t yields $ $ $Θ = θ ρ4 9t
, a least-squares estimate

of Θ. Perturbation associated with $X  therefore induces a corre-
sponding perturbation on $Θ . In this section, we analytically esti-
mate the perturbation of $Θ , expressed by its covariance matrix

Σ∆Θ, in terms of the covariance matrix Σ∆X of $X , through the the-
ory of error propagation.

The nonlinear error estimation and propagation technique
studied here is an extension of the standard technique which ap-
proximates an nonlinear function by a linear function around a
point of interest. The standard technique only works well if the
input and output are explicitly related by a function. To solve this
problem, Haralick [4] recently proposed a similar linearization
technique for propagation of errors from input to output, where
input and output are not explicitly related by a given function but

are related by minimizing an implicit scaler function F X$ , $Θ4 9,
where $X  represent the input vector and $Θ  is the output vector.

According to the theory, ΣX, the input covariance matrix, and ΣΘ,
the output covariance matrix are related by

=
∂

∂Θ
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   (7)

where g F= ∂
∂Θ .

Following this theory, the scaler function F may be defined as

Fig. 1. An example of the breakpoint model.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  20,  NO.  8,  AUGUST  1998 847
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For the given perturbation model in (1), the input covariance ma-
trix Σ∆X is block diagonal and given by
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A further simplification can be performed on the above covariance
matrix as follows using the following definition. Define
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Geometrically, k can be interpreted as the signed distance between
a point (x, y) and the point on the line closest to the origin. Hence,
Sk

2  represents the spread of points along the line. From (10), it is

clear that with a larger Sk
2 , i.e., points with larger spread along the

line, we can obtain better fit as indicated with smaller trace of the

covariance matrix. In addition, µk is the mean position of the

points along the line. It acts like a moment arm. A larger µk, i.e., a
longer moment arm, can induce more variance to the estimated $ρ .

Equation (10) is significant. It reveals that the covariance matrix
of the estimated line parameters not only relates to the input per-
turbation and to the number of points used, but also relates to the
configuration of these points. It shows that points further from the
origin may induce more uncertainty to the estimated parameter $ρ .
It further indicates that points with larger spread along the fitted
line yield smaller perturbation on the estimated parameters. These
relations are significant in that we can always translate the coordi-
nate system to minimize the perturbations on the estimated line
parameters and therefore to improve the quality of the estimated
line parameters. Equation (10) also reveals that the estimated pa-

rameters $θ  and $ρ  are correlated unless uk = 0 and that $ρ  tends to

incur more perturbation than $θ . Further investigation of (10) re-
veals that σ θ

2  is invariant to coordinate translation and rotation

while σ ρ
2  is variant to coordinate translations that change µk, con-

trary to the popular belief that σ ρ
2  is invariant.

The way in which we have derived the covariance matrix Σ∆Θ
requires unperturbed and unknown input X and ideal parameter

Θ. We can obtain an estimate of Σ∆Θ by substituting X by the ob-
served input $X  and Θ by the estimated parameter $Θ . In addition,
σ2 is estimated from the sum of the residual errors, assuming the
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residual error for each point has a Gaussian distribution with zero
mean and a variance of σ2.

3.3 Hypothesis Testing
With the covariance matrix computed, we can proceed to develop
a test statistic to decide whether the estimated angular parameters

of the two fitted lines differ by a threshold θ0. Given two arc seg-

ments S1 and S2, a least-squares line fitting is performed to fit a

line to S1 and to fit a line to S2, respectively, using the method de-
scribed in Section 3.1, thus resulting in the estimated line orienta-
tion parameters $θ 1  and $θ 2 . From (10), we obtain σ θ 1

2  and σ θ 2

2 , the

estimated variances of $θ 1  and $θ 2 . The hypothesis testing can then
be formulated as

H0 : θ12 < θ0                   H1 : θ12 ≥ θ0                            (11)

where θ0 (ranging from zero to 90 degrees) is a user-supplied an-

gular threshold and θ12 is the population mean of random variable
$θ 12 , which is defined as

$ $ $θ θ θ12 1 2= −

since

$ ~ , $ ~ ,θ θ σ θ θ σθ θ1 1
2

2 2
2

1 2
N and N4 9 4 9 .

Thus, a likelihood ratio test statistic can be designed as follows

T =
+

$θ
σ σθ θ

12
2

2 2

1 2

.                                        (12)

The distribution of the test statistic T under null hypothesis is a
noncentral chi-squared with two degrees of freedom, and the non-
centrality parameter d are

T d~ χ
θ

σ σθ θ
2
2 0

2

2 2

1 2

and =
+

.

Given the test statistic and its distribution, an appropriate sig-
nificant level α may be selected to perform the test. If the p-value1

of a test is larger than α, the null hypothesis is accepted, i.e., no
breakpoint exists between S1 and S2. On the other hand, if the p-
value of the test is less than α, the null hypothesis is rejected, and
the vertex formed by arcs S1 and S2 is declared a breakpoint.

3.4 Breakpoint Optimization
The set of breakpoints detected from a digital arc are only optimal
locally but not globally. This may result in locational errors with

1. The p-value of a test statistic x at x0 is defined as prob(x > x0|H0),
where H0 is the null hypothesis.

Fig. 2. Extracted edges of building model for a RADIUS image with detected corners (represented by black square dots) overlaid.
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detected breakpoints. To reduce the location errors with the de-
tected breakpoints, we perform a breakpoint optimization for all
breakpoints detected on a digital arc sequence. The breakpoint
optimization, based on Pavlidis’s discrete optimization method
[9], iteratively alternate-shifts all the detected breakpoints until
breakpoint shifting does not improve the error. Pavlidis sug-
gested several error norms to use. For this research, the error
norm we used is the variance of the residual fitting errors as de-
fined by (3).

4 PERFORMANCE CHARACTERIZATION

This section covers the performance analysis and characterization
of the breakpoint detector using images from our RADIUS images
[15]. A total of 80 model board images were used. They are divided
into three sets: J, K, and M, taken from two model-boards, with
different orientations. Each image represents an outdoor scene,
containing primarily building structures. The breakpoint detector

was applied to detect building corners.2 The criteria used for the
evaluation are misdetection and false alarm rates. The groundtruth
data used for computing the misdetection and false alarm rates are
obtained by manually annotating the aerial images to delineate the
edges of the buildings and other structures in the image. All verti-
ces formed by the line segments are selected as the groundtruth
corners [15]. In addition, we perform a receiver operating charac-
teristics (ROC) analysis of the breakpoint detector to identify the
optimal operating parameters for the RADIUS images (see Fig. 2).

Fig. 3 plots the average false alarm (top) and misdetection
(bottom) rates versus the context window length for all 27 J im-
ages. Increasing window length leads to a decrease in false alarm
rate but an increase in misdetection. The decrease in false alarm
rate may be partially due to the fact that larger context window
yields more data for more accurate statistical analysis. The de-
crease tapers off, however, for large context window. This shows
that once a threshold is reached, increasing the window length
only yields marginal improvement to false alarm rate. On the other
hand, an increase in misdetection rate as the window size in-
creases, may be due to the assumption that only one breakpoint is
allowed to be present within the context window. Increasing win-
dow size leads to the presence of multiple breakpoints in the win-
dow, this will lead to an increase in σ θ

2 , causing the test statistic to
be insensitive to orientation difference, thus increasing the misde-
tection rate.

Fig. 4 plots the average false alarm rate (top) and misdetection
rate (bottom) versus the included angle threshold for all J images.
It shows as the included angle threshold increases, the false alarm
rate tends to decrease while the misdetection rate increases. In-
creasing the included angles removes breakpoints with small in-
cluded angles, therefore reducing the false alarm rate. On the other
hand, the removed breakpoints may contain true breakpoints,
therefore increasing the misdetection rate. Fig. 4 also shows that
the included angle threshold has a much stronger impact on mis-
detection than on false alarm. While a small increase in the angle
threshold leads to marginal improvement in false alarm, it could
lead to a dramatic increase in misdetection.

The result of ROC analysis is shown in Fig. 5, which plots aver-
age probability of false alarm as a function of the average prob-
ability of misdetection for all J images. Each point in Fig. 5 results
from a particular combination of a context window length and an

2. Building corners refer to corners of man-made structures, with
orthogonal adjacent surfaces.

Fig. 3. Misdetection and false alarm rates versus context window
length, θ0 = 30.

Fig. 4. Misdetection and false alarm rates versus included angle
threshold, with window length being 25 pixels.

Fig. 5. ROC analysis of the breakpoint detector for J images.
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included angle threshold. The lower boundary of the ROC plot
(referred to as ROC curve) represents the optimal operating range
for the breakpoint detector. The optimal operating parameters can
be determined from the tangent intersection point between the

ROC curve and a line representing the cost function. The line
shown in Fig. 5 represents a cost function of equal effective cost3

for committing a misdetection and false alarm. It is clear that at the
optimal point (denoted by the small circle), the misdetection rate is
about 2.5 percent while the false alarm rate is about 2.2 percent.
The optimal operating point can be achieved with a window
length of and angular threshold of 30 and five, respectively.

Given the optimal context window length (30) and included
angle threshold (five) derived from the ROC analysis, we applied
the breakpoint detector to all 80 RADIUS images. The results show
that the breakpoint detector has an average misdetection rate of
less than 2.3 percent and false alarm rate of about 2.1 percent, re-
spectively. The 2.1 percent false alarm rate corresponds to about 20
false alarm points per 1,000 arc points. This result echos the one
obtained from the ROC analysis. Fig. 2 gives an example of the
detected corners overlaid on the corresponding edge image of a
RADIUS image, where the detected corners are represented by
small black dots.

5 PERFORMANCE COMPARISON

This section describes results of evaluating the performance of our
breakpoint detector against that of Lowe’s algorithm [7] using both
synthetic data and RADIUS data.4 Lowe’s algorithm for digital arc
segmentation has been widely cited and was found superior to
most breakpoint detection algorithms available [13], [12], [5].

5.1 Synthetic Curves
First, we evaluate the performance of Lowe’s algorithm and ours
using synthetic curves for polygonal approximation. Synthetic
curves were generated by sampling the original model curve con-
sisting of piecewise linear line segments and by perturbing each
sampled pixel with iid Gaussian noise with mean zero and vari-
ance σ2. The reconstructed test curves consist of perturbed sam-
pled points. Fig. 6a shows a model curve before corruption. Fig. 6b
shows a perturbed synthetic curve adapted from Teh [14]. The
model curve in Fig. 6a was corrupted with two different noise
levels (σ = 0.5) and (σ = 1.5), respectively, to which the two break-
point detectors are applied. Results from Lowe’s algorithm are
shown in Fig. 7a and Fig. 7b, while results from our algorithm are
shown in Fig. 7c and Fig. 7d. It is clear from Fig. 7 that while both
algorithms can detect all breakpoints (five breakpoints from the
model curve), our algorithm is superior to Lowe’s algorithm in
that Lowe’s algorithm tends to detect local irregular arc points as
breakpoints, therefore yielding a much higher false alarm rate than
our algorithm. Furthermore, increasing the noise level leads to an
increase in the false alarm rate on both algorithms but its impact
on our algorithm is much smaller than on Lowe’s algorithm.

To further compare the two algorithms, we applied them to the
curve shown in Fig. 6b. The results from Lowe’s algorithm and our
algorithm are shown in Fig. 8a and Fig. 8b, respectively. Visually,
both algorithms performed equally well on the two curves, but our
algorithm outperformed Lowe’s algorithm. Lowe’s algorithm
tends to detect local irregularity like small bumps or dips as
breakpoints, therefore yielding a high false alarm rate.

5.2 RADIUS Data
A detailed comparison was also carried out on four different RA-
DIUS images. The goal here is to find the building corners from the
edge images of the buildings. Groundtruth building corners were
obtained via the annotation procedure as described above. The

3. Effective cost is the actual cost of a mistake multiplied by its
probability.

4. The source code for Lowe’s algorithm can be obtained from
ftp://ftp.brunel.ac.uk/CompSci/Paul.Rosin/curves.

  

                           (a)                                                (b)

Fig. 6. Two synthetic curves used for comparison.

  

                               (a)                                             (b)

  

                               (c)                                              (d)

Fig. 7. Polygonal approximation of the perturbed test curves shown in
Fig. 6a. (a) and (b) From Lowe’s algorithm. (c) and (d) From our algo-
rithm with context window length = 30 and included angle threshold =
5. (a) and (c) are perturbed with σ = 0.5, and (b) and (d) are perturbed
with σ = 1.5.

  

                               (a)                                          (b)

Fig. 8. Results of polygonal approximation to the curves shown in Fig.
6b using Lowe’s algorithm (a) and our algorithm (b), where window
length = 50 and angular threshold = 25.
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criteria are the misdetection and false alarm rates. Table 1 and
Table 2 quantitatively show the performance of the two algorithms
for each of the four images. As expected, while both algorithms are
comparable in terms of misdetection rates, our algorithm has a
much lower false alarm rate for all four images. Lowe’s algorithm
tends to make two to seven times as many false alarm mistakes.
This again demonstrates the superiority of our algorithm.

6 DISCUSSION AND CONCLUSIONS

In this paper, we have presented a statistical approach for detect-
ing breakpoints on digital arc sequences. A breakpoint is defined
to be an arc point where two line segments meet and form a ver-
tex. The arc point closest to the vertex point is declared as a break-
point if the angular orientations of the two lines that form the ver-
tex are significantly statistically different. The essence of the break-
point detector lies in the covariance propagation theory we devel-
oped for propagating input perturbation to the perturbation of
estimated line parameters. Based on the analytically derived co-
variance matrix, a test statistic is designed to statistically check
each arc point.

The performance of the breakpoint detection technique was
evaluated using 80 images from RADIUS dataset. A comparative
performance evaluation was also conducted using both synthetic
data and RADIUS data. The study showed that the algorithm is
robust and accurate for the complex images. It has an average
misdetection rate of 2.3 percent and false alarm rate of 2.1 percent
for the complex RADIUS images. The comparative study revealed
that our algorithm consistently outperforms Lowe’s technique on
both synthetic and real data. While our algorithm has a compara-
ble misdetection rate with existing methods, our method yields a
much lower false alarm rate. This is because the technique has
great statistical efficiency and it properly takes into account the
perturbation on the estimated line parameters.

Our technique, however, has the following limitations. First
while the parameters α and θ0 are scale invariant, the context win-
dow length is not scale invariant. Given different scales of the
same image, the context window length may need to be tuned
separately to achieve optimal performance. Second, for reliable
statistical testing, the window size cannot be too small. Our study
shows that window size less than six pixels may not yield reliable
breakpoints. Third, the technique is not effective in detecting
breakpoints formed by very curved line segments like a circle.
Finally, like all breakpoint detection techniques, our technique is
limited by the performance of the edge tracing and linking meth-
ods employed to produce the digital curves which are input to
breakpoint detection technique.
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TABLE 1
PERFORMANCE OF LOWE’S ALGORITHM

Images FA MD
1 10.6 1.3
2 9.2 1.6
3 9.3 0.7
4 10.1 3.8

TABLE 2
PERFORMANCE OF OUR ALGORITHM

Images FA MD
1 2.5 1.9
2 5.4 1.8
3 1.3 1.8
4 4.4 2.0


